

A Novel Processor for Artificial Intelligence Acceleration

ATANAS N. KOSTADINOV
Department of Computer Systems and Technologies

Technical University of Sofia, Plovdiv Branch
25 Tsanko Diustabanov Str., 4000 Plovdiv

BULGARIA

GUENNADI A. KOUZAEV
Department of Electronic Systems

Norwegian University of Science and Technology - NTNU
Gløshaugen, O.S. Bragstads plass 2B, 7491 Trondheim

NORWAY

Abstract: - A variable predicate logic processor (VPLP) is proposed for artificial intelligence (AI), robotics,
computer-aided medicine, electronic security, and other applications. The development is realized as an
accelerating unit in AI computing machines. The difference from known designs, the datapath of this processor
consists of universal gates changing on-the-fly their logical styles-subsets of predicate logic according to the
data type and implemented instructions. In this paper, the processor’s reconfigurable gates and the main units
are proposed, designed, modeled, and verified using a Field-Programmable Gate Array (FPGA) board and
corresponding computer-aided design (CAD) tool. The implemented processor confirmed its reconfigurability
on-the-fly performing testing codes. This processor is interesting in accelerating AI computing, molecular and
quantum calculations in science, cryptography, computer-aided medicine, robotics, etc.

Key-Words: - Variable predicate logic processor (VPLP), predicate logic, artificial intelligence (AI), predicate
RAM (PRAM), topological computing, Hilbert-space pseudo-quantum computers, hybrid quantum-classical
computers, Field-Programmable Gate Array (FPGA).

Received: June 29, 2021. Revised: April 13, 2022. Accepted: May 11, 2022. Published: July 1, 2022.

1 Introduction
In artificial intelligence (AI), many data flows have
very complicated structures requiring fast change of
the logic processing styles. Partially, this idea is
realized in FPGAs (Field-Programmable Gate
Arrays), where a designed processor is modeled by
programmed computing cells. Unfortunately,
moving from one design to another requires an
essential reconfiguration time [1]-[5]. Meanwhile,
accelerated change of logic style requires fine-grain
reconfigurability on the gate level [6],[7].

In this paper, a new specific approach to this
reconfigurability is discussed. It is known that
predicate logic (the logic of our intelligence) is
general for many logic styles, including the Boolean
one, for instance [8]-[10].

If universal predicate gates controlled by
instructions are realized, they can fulfill particular
logic operations of different styles. We have already
published the first ideas and circuits in this field in
Refs. [11]-[14]. These contributions describe only
initial designs for several different logic styles.

Section 2 is on the theory and hardware
realizations of predicate logic and its subsets that
can be unified in a single processor. In Section 3,
the proposed variable predicate logic processor is
described in detail. Section 4 is on implementing the
processor in FPGA and its verification. Concluding
remarks are in Section 5.

2 Predicate Logic and Processing

Units
In mathematics, predicate logic is a generic term for
formal symbolic systems [8]-[10],[15],[16].
This predicate system is distinguished from others
in the formula S containing variables A and
quantifiers T .

 ,S A T (1)
Thus, predicate logic operates with sentences S

similar to the atomic one (1) instead of truth tables

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 125 Volume 21, 2022

of propositional logic [8]. Some predicate logic
applications are used in computer science.
They could be found in AI modeling software, big
data-based systems, circuit theory, hardware
verification codes, etc. [17]-[21].

However, such programs are mostly executed on
processors built on propositional logic gates.
Depending on the number of quantifiers, this
source-code-level simulation can increase the
execution time in orders of magnitude compared to
possible micro-parallel gates realized operations
with these predicated data streams.

In some hardware, the predicate gates of fixed
logic and even large units are implemented to
enhance the processor parameters, as it was in the
Itanium processor architecture [22]. Several ideas
were published to modify the conventional
computer modules for better processing Prolog
programs [23]-[26] or enhance information
exchange in multi-processor supercomputing
systems [27].

Today, the computing devices involved in
massive AI operations [28] require new designs
called artificial intelligence accelerators [15],
[29]-[34]. Some of them can be built on the
combined use of propositional and predicate logic
units [12] to improve AI computers’ performance.

According to our best knowledge, the first
application-specific instruction-set processor (ASIP)
accelerating some AI operations was a predicate
logic processor published in Refs. [35],[36].

The idea of computing the electromagnetic (EM)
signals carrying predicated information relates to the
90th of the last century [11],[37]-[41]. The
elementary binary predicate or atomic unit of
knowledge [42]-[44] is a pair of logically
coupled bits for the formula (1). They can be carried
by two logically or even EM coupled wires [39].

 Generally, predicate logic uses an extended set
of logical and non-logical symbols. Among them
are the quantifier ones, conjunction (AND),
disjunction (OR), negation (NOT), and
implications (if-then).

A reduced predicate logic in Ref. [36] and here
uses only the AND, OR, and NOT logical
operations applied to a predicate expression S :

 1 2

1 2

 (NOT),
S (AND),
S (OR).

S S

S S

S S

 (2)

After developing predicate gates according to the

formula (2), an experimental 8-bit processor

consisting of a predicate datapath and a
conventional control unit was designed [36]. The
datapath there implements the mentioned logically
full set of predicate operations (2) in a parallel
manner.

This processor, thought a predicate logic
accelerator, was modeled by VHDL (Very High-
Speed Integrated Circuit Hardware Description
Language) and synthesized in FPGA board from
Intel (formerly Altera) using Quartus II design
software. The realized microprocessor works at a
maximum clock frequency of 130.28 MHz. It
consists of 5868 total logic elements, 3482
combinational functions, 4628 registers, and 10624
memory bits. The results of some testing programs
were observed helped by the Quartus II tool and
successfully compared with theoretical calculations.

Ref. [36] shows the need for further
enhancement of the designed predicate processor. It
was overly specific for some practical applications.
As a rule, the data is not always organized in
predicate form in knowledge-based applications.
Many flows need Boolean, multi-valued, reversible,
etc., operations. Performing them by fixed predicate
gates requires an additional program code. In this
way, it leads to a decrease in throughput.

As it was mentioned in the Introduction, the
main idea of this paper is the development of a
processor whose universal gates are controlled by
instructions and realize several subsets of predicate
logic. This possibility was noticed in the first
works on spatially-modulated signals propagating
along paired wires in Refs. [11],[37],[39]. There,
one of the predicate logic units in the formula (1)
can be assigned to control a logic type or realize the
reversibility of gates [14]. Additionally, the paired
wires can be used to model qubits in quantum
computer emulators [11],[41].

In some applications, such as security-enhanced
data processing, the paired wires can be used to
avoid or diminish information leakage through
irradiation from signal traces or/and power
delivering wires. Again, this pair-wire style is a
subset of the predicate logic set (2).

 In all these cases, the signals propagating along
the paired lines, formally in predicate form, require
new universal reconfigurable gates and newly built
arithmetic logic units (ALUs).

In this article, based on our experience in the
development, design, simulation, and FPGA
implementations, a novel flexible processor
architecture tailored to modern artificial intelligence
applications is considered prospective to boost AI
operations. The predicate flows are combined with

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 126 Volume 21, 2022

conventional data representation in a specially
designed microprocessor containing flexible ALU.

 As a difference from all other microprocessors,
the processor’s datapath can perform operations
logically equal to the results produced by seven
types of logic. These logics allow new possibilities
which have been not realized earlier in full:

(1) Predicate logic with the paired wires
(2) Conventional Boolean operations along

each wire (depending on signal and
instruction) [14]

(3) Multi-valued (with four logic levels)
operations spatially mapped on two
wires [45]-[47]

(4) Pseudo-quantum logic [13],[41],[45],
[48]-[59]

(5) Reversible logic [60]-[61]
(6) Dual-rail operations [62],[63]
(7) Dual-rail single-spacer operations

[64],[65]
(8) Dual-rail dual-spacer operations

[66],[67]

The initial designs of universal gates performing
the above-considered operations have already been
published in Refs. [13],[14]. More information is
needed on pseudo quantum gates, which are not
widely known to the electronic community.

It is known that quantum computing can be
powerful in some cases because of quantum
parallelism when n - particles are in 2n states.
We need 2n classical electronic gates integrated
into a 2n dimensional Hilbert-space processor to
emulate a quantum computing unit. The initial idea
in this field was from R.J.C. Spreeuw, who
discussed building a Hilbert-space processor using
photons of opposite polarization [50] paired into
qubits. Unfortunately, the use of a multitude of
bulky optical elements is a rather challenging
problem.

Contemporary electronics integrating billions of
gates allows emulating a several-ten-qubit quantum
machine. In 1999, we proposed using the
microwave or digital electronics when a sum of
even and odd modes in coupled strip lines models a
qubit state because they have topologically different
electromagnetic field maps [41]. A logically full set
of gates was designed and realized in hardware by
us in those years [40],[48],[49].

 In Fig. 1 (not published earlier), a PCB board for

a CNOT gate and switch-controlled signal
generator (designed with A. Ermakov in 1999) is

shown as an example. The gate is described in detail
in Ref. [40].

The interest in emulation of quantum computers
has been strong for many next following years [13],
[14],[51]-[55], considering the problems in the
developments of full-scale fault-tolerant quantum
processors. It was found that pseudo-quantum
architectures, being still classical, can calculate the
quantum algorithms used in cryptography, quantum
physics, chemistry, and biology more effectively
than ordinary computers [53]-[56]. It is known,
emulating quantum computers, that not all
operations are with qubits; then, a universal
computer should have gates performing Boolean
and other operations belonging to the predicate set.
Besides, in AI applications, quantum algorithms are
not always powerful.

Fig. 1: A gate module (from G.A. Kouzaev’s
archive, see as well [40]).

 The proposed here processor, called the variable
logic one, can change its logic styles on-the-fly
according to the incoming data flow and
corresponding control signal. It will increase the
effectiveness of data processing. Considering that
all eight mentioned operations are the subsets of

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 127 Volume 21, 2022

predicate logic, the full name of our design is the
Variable Predicate Logic Processor (VPLP)

3 Variable Predicate Logic Processor

(VPLP) Design
This VPLP architecture [13] has been developed in
three major steps. Initially, the design of the variable
predicate logic gates is performed [14], which is not
considered here. The PRAM (Predicate Random-
Access Memory) is also composed and designed in
the second step. Finally, the complete variable
predicate logic processor has been realized and
verified using an appropriate CAD (Computer-
Aided Design) tool and an FPGA board (Fig. 2).

Fig. 2: Cyclone II FPGA Starter Development
Board (Altera, now Intel) is connected to a
computer to emulate the designed VPLP.

An 8-bit predicate processor is studied, i.e., each
value in predicate expression (1) is represented by
8-bit digits.

A PRAM basic cell has been implemented in the
second step of the processor development (Fig. 3).
This basic cell has two inputs and two outputs for
predicated signals. These signals can be of predicate
information origin or contain the bits for control of
logic of predicate gates.

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

ENB

CLKpmc

p1

p2

RSTpmc

ENpmc
ENB

q1

q2

Dff1

Dff2

Dff3

Dff4 ENB

ENB

TSB1

TSB2

Fig. 3: Implemented PRAM cell.

This design uses four D flip-flops (from Dff1 to
Dff4) and two three-state buffers (TSB1 and TSB2,
denoted by triangles). The inputs CLKpmc and
RSTpmc are for the clock and reset signals. The
signal ENpmc enables the input of this PRAM unit.
When the ENpmc signal is equal to the logic zero,
then the three-state buffer outputs go to a
high-impedance state. In this case, PRAM basic cell
is disabled. In the opposite case, the ENpmc signal
goes to logic one.

A new 8-bit PRAM module is designed (Fig. 4)
when eight cells are combined. Two memory data
buses have 8-bit width. All other signals are equal to
the described ones in Fig. 3 (a basic predicate
memory unit). Then, 256 8-bit PRAM cells are
connected, and PRAM is organized as 256 words by
16 bits. An address decoder and a multiplexer have
been added to this PRAM module (they are not
included in Fig. 4 due to simplification reasons).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 128 Volume 21, 2022

CLKpmc
RSTpmc
ENpmc
p1
q1

p2

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLKpmc
RSTpmc
ENpmc
p1

q2

CLK8pmc
RST8pmc
EN8pmc

q18

p18 q28

p28

8
8

8
8

q1

q1

q1

q1

q1

q1

q1

p2

p2

p2

p2

p2

p2

p2

Fig. 4: Designed 8-bit PRAM cell.

The complete variable predicate logic processor

has been realized and verified in the final step.
VPLP is a successor of the PLP (Predicate Logic
Processor) [36] and PBOP (Predicate and Boolean
Operation Processor) [12] processor architectures.
It extends the architectures mentioned above.
The instruction set is enlarged with new
instructions. It has been used term flexible processor
to express its opportunity to tune to different types
of incoming data. The synthesized block diagram of
the variable predicate logic processor is shown in
Fig. 5. The VPLP includes a reset circuit,
datapath, and control unit.

vplp_clk

vplp_rst

MVD_in

MVD_out

dato

RD

WR

addressdati

RESET
CIRCUIT

DATAPATH

CONTROL
UNIT

Qrst

Fig. 5: Synthesized variable predicate logic
processor (VPLP).

Another part of the variable predicate logic
processor is its interface. It includes the signal lines
vplp_clk, vplp_rst, MVD_in, MVD_out, dati, dato,
RD, WR, and address. The lines vplp_clk and
vplp_rst interface the clock and reset (Qrst is
produced by reset circuit) signals to various
components of VPLP. Signal lines MVD_in and
MVD_out are the input and output of multi-valued
numbers to the variable predicate logic processor.
At the input, the multi-valued numbers are
converted to binary ones and vice versa to the
output using convertors.

The rest signal lines (Fig. 5) connect VPLP to the
PRAM module. RD and WR signals are utilized to
perform the read and write memory operations.
A signal line address is the address bus of the
variable predicate logic processor. The data buses of
the VPLP are formed by dati and dato signals.

In Fig. 6, the variable predicate logic processor
datapath is shown. It is responsible for the
manipulation of data. It consists of the storage units:
register B, accumulator A, multi-valued register,
flag register (FLAGs), and the combinational units:
data multiplexer and variable predicate arithmetic
logic unit (VPALU).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 129 Volume 21, 2022

VPALUs_dp

LD1_dp

LD2_dp

dato_dp

vplp_clk

Qrst

DEC_dp

INC_dp

LDB

Fld_dp

MS

Mvi_dp

dati_dp

Mvo_dp

FL_dp
FLAGs

MULTI-VALUED
REGISTER

ACCUMULATOR
A

VARIABLE
PREDICATE

ARITHMETIC
LOGIC UNIT

REGISTER
B

DATA
MULTIPLEXER

Fig. 6: Designed VPLP datapath.

The data multiplexer in Fig. 6 selects the data

either from PRAM (dati_dp) or from multi-valued
signal lines Mvi_dp and sends the selected input’s
data to VPALU. This data multiplexer has a select
line, which is named MS. The VPALU control bits
belong to signal line VPALUs_dp, which is of 5-bit
size. Accumulator A and register B are provided to
aid in executing instructions in VPALU.

Accumulator A is a 16-bit register (Fig. 6).
It usually contains one of the two operands involved
in actual instruction execution. The second operand
is read from PRAM or register B. The result of an
operation is again stored in accumulator A, either
register B or both. The load signal line LD1_dp is
applied to load/store operations.

Register B is 16-bit, too. It plays the same role as
accumulator A in some instructions. The added
letter B in the assembly instruction names (in
mnemonics) specifies the application of register B
in their execution.

Accumulator A and register B are both used in
some operations. Clock vplp_clk and reset Qrst
signal lines are distributed to other datapath
components except for the data multiplexer and
VPALU. The decrement DEC_dp, increment
INC_dp and load LDB signal lines only apply to
register B.

The multi-valued register (Fig. 6) is 16-bit that
stores the processed multi-valued data. Load signal
line LD2_dp is used for this operation to be
performed. The multi-valued register output signal
line is Mvo_dp. The output signal line of datapath
for a different type of data, excluding multi-valued
one, is dato_dp.

A flag register (FLAGs) is a 3-bit one containing
three status flags. These bits are set to logic one or
logic zero based on the results after completion of
the comparison operation by VPALU. The FLAGs
load signal line is Fld_dp. When logic one is applied
to this load signal line FLd_dp, the VPLP flags are
saved into the flag register. They are placed on the
output signal line FL_dp.

Variable predicate arithmetic logic unit
(VPALU) performs arithmetic and logical
operations (Fig. 6). The current design extends these
operations with the ones applicable to several types
of logics: mainly the Boolean, predicate, multi-
valued (multiple-valued), pseudo-quantum,
reversible, and dual-rail (differential) logics and its
modifications using a single spacer (all-zeroes state)
or dual spacers (all-zeroes and all-ones states).

The corresponding processor instructions have
been implemented. Table 1 shows new instructions
belonging to the VPLP instruction set. The old ones,
including a part of the Boolean and predicate
instructions, are inherited from previous PLP and
PBOP variants [12],[36].

Table 1. New VPLP instructions.
Command Semantic

Arithmetic and load

instructions

INCA Increment the content of
accumulator A by 1

DECA Decrement the content of
accumulator A by 1

INCB Increment the content of register
B by 1

DECB Decrement the content of register
B by 1

LDB Load constant into register B
LBA Load register B with the content

of accumulator A
LAB Load accumulator A with the

content of register B
Multi-valued logic instructions
INM Load accumulator A with

converted quaternary to binary
number

OUTM Load multi-valued register with
processed binary number

Pseudo-quantum logic

instructions

CNB The logic equivalent of
controlled-NOT (CNOT)
operation
(according to the truth table)

SWB The logic equivalent of the swap
operation (with an identical truth
table)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 130 Volume 21, 2022

Table 1. (continued)

Additional information about the VPLP

instruction set is presented in the following lines:

o INCA – VPALU increments by one

accumulator A. The result is stored in
accumulator A.

o DECA – VPALU decrements by one
accumulator A content. The result is saved
in accumulator A.

o INCB – Variable predicate logic controller
sets a logic one on datapath signal line
INC_dp. The content of register B is
incremented by one.

o DECB – Variable predicate logic controller
sets a logic one on datapath signal line
number DEC_dp. The content of register B
is decremented by one.

o LDB – The program counter is incremented
by one. From the next PRAM cell (each

memory cell is 16-bits wide), the 16-bit
operand is fetched. With VPALU pass-
through operation, the operand is loaded to
register B.

o LBA – 16-bit operand is initially stored in
accumulator A. With a VPALU pass-
through operation, the operand is transferred
to register B.

o LAB – Register B contains a 16-bit operand
initially. With VPALU pass-through
operation, the operand is moved to
accumulator A.

o INM – 16-bit value (converted quaternary
to binary number) is placed on VPLP signal
lines MVD_in. With a VPALU pass-through
operation, the operand is loaded into
accumulator A.

o OUTM – 16-bit operand is initially stored
in accumulator A. With datapath load signal
line LD2_dp the operand is transferred to a
multi-valued register.

o CNB – Register B holds two 8-bit operands.
According to the controlled-NOT (CNOT)
truth table, the result is again stored in
register B.

o SWB – Register B holds two 8-bit
operands. The result, according to the
SWAP truth table, is contained again in
register B.

o FGO – The first 8-bit operand is stored in
the most significant byte of accumulator A
and the second two 8-bit operands – in
register B. According to the Fredkin gate
truth table, the result is kept again in the
same registers (one 8-bit result in the most
significant byte of accumulator A and two
8-bit results in register B).

o DOR – Two 8-bit dual-rail operands are
loaded into accumulator A and register B.
The dual-rail OR logic operation results are
stored again in the same registers.

o DAND – Two 8-bit dual-rail operands are
loaded into accumulator A and register B.
Result of dual-rail AND logic operation is
kept again in the same registers.

 TNOT, TOR, TAND, SNOT, SOR, and

SAND instructions perform the dual-rail NOT, OR,
and AND logic operations. The operand and result
for TNOT and SNOT instructions are in
accumulator A only. The operands and results for
TOR, TAND, SOR, and SAND instructions are in
accumulator A and register B. A single spacer (all-
zeroes state) or dual spacer (all-zeroes and all-ones

Reversible logic instruction
FGO Logic equivalent (with identical

truth table) of Fredkin gate
operation

Dual-rail (differential) logic

instructions

DOR Dual-rail OR operation
DAND Dual-rail AND operation

Dual-rail (differential) logic

instructions using a single

spacer (all-zeroes state)

TNOT Dual-rail NOT operation
TOR Dual-rail OR operation
TAND Dual-rail AND operation
Dual-rail (differential) logic

instructions using dual

spacers (all-zeroes and all-

ones states)

SNOT Dual-rail NOT operation
SOR Dual-rail OR operation
SAND Dual-rail AND operation
Reversible logic instruction
FGO Logic equivalent (with identical

truth table) of Fredkin gate
operation

Dual-rail (differential) logic

instructions

DOR Dual-rail OR operation
DAND Dual-rail AND operation

Dual-rail (differential) logic

instructions using a single

spacer (all-zeroes state)

TNOT Dual-rail NOT operation
TOR Dual-rail OR operation
TAND Dual-rail AND operation
Dual-rail (differential) logic

instructions using dual

spacers (all-zeroes and all-

ones states)

SNOT Dual-rail NOT operation
SOR Dual-rail OR operation
SAND Dual-rail AND operation

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 131 Volume 21, 2022

states) can be used during transmission for each of
the two groups of three instructions, respectively.

 The control unit (CU) issues the appropriate
signals to be executed the current command. The
CU also performs instruction fetching and decoding.
It consists of sequential components such as an
instruction register, index counter, program counter,
another register, variable predicate logic controller,
and combinational units, which are the address
multiplexer and adder. Fig. 7 shows the internal
architecture of the VPLP control unit.

vplp_clk

dati

VPALUs_cu

RD

LD_cu

LDMV_cu

WR

MS_cu

LDB_cu

Bdec_cu

Binc_cu

Qrst

dato_cu

address

FLs_cu

FLd_cu

ADDER

REGISTER
ADDRESS

MULTIPLEXER

PROGRAM
COUNTER

INDEX
COUNTER

INSTRUCTION
REGISTER

VARIABLE
PREDICATE

LOGIC
CONTROLLER

Fig. 7: Realized VPLP control unit.

 The instruction register is 16-bit. It holds the

instruction fetched from PRAM. Every instruction is
encoded in eight bits. Clock vplp_clk and reset Qrst
signal lines are distributed to other control unit
sequential components. A variable predicate logic
controller (VPLCl) is the main component of the
control unit. The VPLCl is realized as a finite state
machine (FSM). Each state of the FSM corresponds
to a different instruction encoded in eight bits.
Depending on decoded instruction, other control
signals are issued and sent to datapath, control unit
components, and PRAM. These signals are required
for proper instruction execution.

PRAM data is transferred to the instruction
register using signal lines dati. Data are also sent to
signal lines dato_cu. The VPLCl output signal line
VPALU_cu selects a VPALU operation.

PRAM read or write operation is performed
when RD or WR signals are applied. The select
signal line MS_cu is coupled to the data multiplexer
signal line MS (in Fig. 6). The following output
signal lines are the load ones. Signal line LD_cu is
set to load the accumulator A. Signal line LDMV_cu
is used to load the multi-valued register. The next
signal line LDB_cu applies to register B. When
logic one is set to Binc_cu or Bdec_cu control
signals, it is possible to increment or decrement the
value of register B.

The index counter (IC) can contain the operand
address. The IC output line is connected to one
address multiplexer inputs.

Adder is implemented to calculate the operand
address when a branch instruction is executed. It
adds the offset value to the current program counter
content. The result is loaded into the program
counter.

The additional register (located under VPLCl in
Fig. 7) stores the program counter content.
Later, this program counter could be loaded again
with stored value.

Address multiplexer selects the address signals
from the program counter or the index counter.
The selected address will appear on the address bus
address.

The Program Counter (PC) is an 8-bit digital
component, and it holds the address of the next
instruction, which must be executed. This PC needs
to be incremented by one count for every instruction
or two of them. Its output is the signal line PCout.
Fig. 8 illustrates the Program Counter
implementation.

Q

Q
SET

CLR

DS1

S2

D

C ENB

Multiplexer 1
S1

S2

D

C ENB

Multiplexer 2Adder

A

B
S

D Flip-flop

ENA

CLK
PCclr
PCld1
PCld2
PCinc
PCin1
PCin2

PCout

00000001

ENB

Fig. 8:Implemented VPLP’s Program Counter.

This electronic circuit consists of an 8-bit adder,
an 8-bit register (denoted as a D flip-flop in Fig. 8),
and two multiplexers (Mux1, Mux2). The register is
incremented by one helped by the adder and
corresponding signal line PCinc (in logic high).
For this purpose, the input operand is used equally
to the value one (0000 0001) placed on input B of
this adder. The 8-bit register could be loaded using

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 132 Volume 21, 2022

two multiplexers and corresponding load signal
lines PCld1 and PCld2. Two values are applied to
8-bit input buses PCin1 and PCin2. For multiplexers
to work properly, they must be enabled (ENB signal
must be logic 1).

The signal lines CLK and PCclr (connected to
Qrst) are clock and reset signals correspondingly.
Fig. 9 shows the VPLP reset circuit [68].

D1
FLIP-FLOP

D2
FLIP-FLOP

vplp_clk

vplp_rst

Qrst

D

 D

Q1

Q2

CLR

CLR

Fig. 9: VPLP reset circuit.

The main building blocks are two D flip-flops

D1 and D2. Clock vplp_clk and reset vplp_rst signal
lines are connected to both flip-flops. D input of the
first D flip-flop is coupled to ground potential. Its
output signal line (Q1) is connected to the D input
of the second flip-flop. The output of the reset
circuit is the signal line Qrst.

The reset circuit is used to synchronize
asynchronous VPLP reset signals (Qrst). It is
avoided any potential problems with asynchronous
reset using this presented circuit.

4 Variable Predicate Logic Processor

Testing
The designed VPLP is connected to the PRAM
module, as it is shown in Fig. 10.

Multiplexer

S1

S2

C1

VPLP

PRAM

CONTROLLER

PRAM

vplp_rst

26

26
26

pram_rst

16

vplp_clk

Qrst

Fig. 10: Designed VPLP connected to PRAM.

A test program is coded and loaded into memory
using an additional PRAM controller and a
multiplexer. VPLP and PRAM controllers have
reset signals with different logic levels. VPLP has
an active-high reset signal, and the PRAM controller
uses an active-low reset signal. The reset signal
(Qrst) is connected to the select input of the
multiplexer (C1). In this way, when the PRAM
controller works, VPLP is idle and vice versa.
The PRAM reset signal is pram_rst.

VPLP address bus, data (dato), and read/write
signals are coupled to the first data input of the
multiplexer (S1). The same signals of the PRAM
controller are connected to the second data input of
the multiplexer (S2). Another part of VPLP data bus
information (dati) is transferred directly to the
processor. Clock signal vplp_clk is distributed to
VPLP, PRAM controller, and PRAM. Reset signal
vplp_rst is connected to VPLP’s reset circuit input.

During the VPLP verification phase, the results
obtained from the test programs used for the earlier
designed computer architectures [12],[36] are
compared with those obtained using this new
architecture. Then, the implemented further
instructions are checked for correct work. It is done
with the SignalTap II Embedded Logic Analyzer,
which is a part of Quartus II design software [69]
and Cyclone II FPGA Starter Development Board
Σφάλμα! Το αρχείο προέλευσης της αναφοράς

δεν βρέθηκε..

4.1 Test program 1
The final step in the VPLP verification process is
executing several test programs. One example of
them, with short comments, is given below.

o LDB #$55AF ; Register B is loaded with
hexadecimal value “55AF” (timestamp – ts
11).

o LAB ; Accumulator A is loaded
with hexadecimal value “55AF” (ts 15).

o CNB ; Operation, logically equal
to control-NOT, is executed between 8-bit
numbers located in register B (ts 22).

o FGO ; Operation, logically
equal to Fredkin gate, is performed. 8-bit A
operand is in the MSB of accumulator A.
The other two 8-bit operands (B and C) are
maintained in register B (ts 26).

o LDB #$AACD ; Register B is loaded with
hexadecimal value "AACD" (ts 35).

o LAB ; Accumulator A is loaded
with hexadecimal value “AACD” (ts 39).

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 133 Volume 21, 2022

o CNB ; Operation, logically
equal to control-NOT one, is executed
between 8-bit numbers in register B (ts
46).

o FGO ; Operation, logically
equal to Fredkin gate one, is performed. 8-
bit A operand is in the MSB of accumulator
A. The other two 8-bit operands (B and C)
are maintained in register B (ts 50).

o NOP ; There is no processor
operation (ts 54).

o HLT ; VPLP stops execution
of any instructions (ts 58).

The checked instructions in the above-presented

test program are the LDB, LAB, CNB, FGO, NOP,
and HLT ones. The SignalTap II Embedded Logic
Analyzer’s captured data is compared with one
based on theoretical calculations. The conclusion is
that the designed VPLP works appropriately. The
basic signals used in the verification process are
shown in Table 2.

Table 2. VPLP test signal legend.
Key Signal name Signal explanation

0
vplp_rst

VPLP reset signal (It is
assigned pushbutton

KEY [0]
to vplp_rst)

1
PRAM|address

PRAM address

2
PRAM|dati

PRAM input data

3
PRAM|dato

PRAM output data

4
PRAM|RD

PRAM read signal

5
PRAM|WR

PRAM write signal

6
control_unit|VPLPcontroller

|OPCODE

Operation code of
executed instruction

7
control_unit|PC|PCout

Program counter output

data

8
datapath|ACCA|Q1

Accumulator A output

data

9
datapath|REGB|regBout Register B output data

The clock frequency of this variable predicate
logic computer prototype in Figure 9 is 50 MHz
(PIN_L1 of the Cyclone II FPGA Starter
Development Board is connected to the vplp_clk
signal Σφάλμα! Το αρχείο προέλευσης της

αναφοράς δεν βρέθηκε.).

An essential part of the collected data is included
in Table 3. It is a portion of the created SignalTap II
Embedded Logic Analyzer list file. The data in this
Table 3 is captured using the clock (vplp_clk) as an
acquisition signal. The VPLP reset signal (vplp_rst)
is a trigger one. The signal keys from Table 2 are in
the first row of Table 3.

The sample depth of the SignalTap II Embedded
Logic Analyzer data buffer is specified to get 128
samples. Table 3 presents half of them. The first
column contains the time in which the logic value of
the test signals is registered. Minus sign (-) denotes
a period before a trigger signal appears.

Table 3. A part of SignalTap II Embedded Logic
Analyzer list file.

t 0 1 2 3 4 5 6 7 8 9

-2 1
00
h

0000
h

0000
h 0 0

07
h

00
h

0000
h

0000
h

-1 1
00
h

0000
h

0000
h 0 0

07
h

00
h

0000
h

0000
h

0 0
00
h

0000
h

0000
h 0 0

07
h

00
h

0000
h

0000
h

1 0
00
h

0000
h

0000
h 0 0

07
h

00
h

0000
h

0000
h

2 0
00
h

0000
h

0000
h 0 0

07
h

00
h

0000
h

0000
h

3 0
00
h

0000
h

0000
h 1 0

07
h

00
h

0000
h

0000
h

4 0
00
h

0000
h

171
Dh 0 0

07
h

00
h

0000
h

0000
h

5 0
00
h

0000
h

171
Dh 0 0

07
h

00
h

0000
h

0000
h

6 0
00
h

0000
h

171
Dh 0 0

17
h

00
h

0000
h

0000
h

7 0
00
h

0000
h

171
Dh 0 0

17
h

00
h

0000
h

0000
h

8 0
00
h

0000
h

171
Dh 0 0

17
h

00
h

0000
h

0000
h

9 0
01
h

0000
h

171
Dh 1 0

17
h

01
h

0000
h

0000
h

10 0
01
h

0000
h

55A
Fh 0 0

17
h

01
h

0000
h

0000
h

11 0
01
h

0000
h

55A
Fh 0 0

17
h

01
h

0000
h

55A
Fh

12 0
01
h

0000
h

55A
Fh 0 0

1D
h

01
h

0000
h

55A
Fh

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 134 Volume 21, 2022

Table 3. (continued)

13 0
01
h

0000
h

55A
Fh 0 0

1D
h

01
h

0000
h

55A
Fh

14 0
01
h

0000
h

55A
Fh 0 0

1D
h

01
h

0000
h

55A
Fh

15 0
01
h

55A
Fh

55A
Fh 0 0

1D
h

01
h

55A
Fh

55A
Fh

16 0
02
h

55A
Fh

55A
Fh 1 0

1D
h

02
h

55A
Fh

55A
Fh

17 0
02
h

55A
Fh

1B20
h 0 0

1D
h

02
h

55A
Fh

55A
Fh

18 0
02
h

55A
Fh

1B20
h 0 0

1D
h

02
h

55A
Fh

55A
Fh

19 0
02
h

55A
Fh

1B20
h 0 0

1B
h

02
h

55A
Fh

55A
Fh

20 0
02
h

55A
Fh

1B20
h 0 0

1B
h

02
h

55A
Fh

55A
Fh

21 0
02
h

55A
Fh

1B20
h 0 0

1B
h

02
h

55A
Fh

55A
Fh

22 0
02
h

55A
Fh

1B20
h 0 0

1B
h

02
h

55A
Fh

55F
Ah

23 0
02
h

55A
Fh

1B20
h 0 0

20
h

02
h

55A
Fh

55F
Ah

24 0
02
h

55A
Fh

1B20
h 0 0

20
h

02
h

55A
Fh

55F
Ah

25 0
02
h

55A
Fh

1B20
h 0 0

20
h

02
h

55A
Fh

55F
Ah

26 0
02
h

55A
Fh

1B20
h 0 0

20
h

02
h

55A
Fh

50FF
h

27 0
03
h

55A
Fh

1B20
h 1 0

20
h

03
h

55A
Fh

50FF
h

28 0
03
h

55A
Fh

171
Dh 0 0

20
h

03
h

55A
Fh

50FF
h

29 0
03
h

55A
Fh

171
Dh 0 0

20
h

03
h

55A
Fh

50FF
h

30 0
03
h

55A
Fh

171
Dh 0 0

17
h

03
h

55A
Fh

50FF
h

31 0
03
h

55A
Fh

171
Dh 0 0

17
h

03
h

55A
Fh

50FF
h

32 0
03
h

55A
Fh

171
Dh 0 0

17
h

03
h

55A
Fh

50FF
h

33 0
04
h

55A
Fh

171
Dh 1 0

17
h

04
h

55A
Fh

50FF
h

Table 3. (continued)

34 0
04
h

55A
Fh

AAC
Dh 0 0

17
h

04
h

55A
Fh

50FF
h

35 0
04
h

55A
Fh

AAC
Dh 0 0

17
h

04
h

55A
Fh

AAC
Dh

36 0
04
h

55A
Fh

AAC
Dh 0 0

1D
h

04
h

55A
Fh

AAC
Dh

37 0
04
h

55A
Fh

AAC
Dh 0 0

1D
h

04
h

55A
Fh

AAC
Dh

38 0
04
h

55A
Fh

AAC
Dh 0 0

1D
h

04
h

55A
Fh

AAC
Dh

39 0
04
h

AAC
Dh

AAC
Dh 0 0

1D
h

04
h

AAC
Dh

AAC
Dh

40 0
05
h

AAC
Dh

AAC
Dh 1 0

1D
h

05
h

AAC
Dh

AAC
Dh

41 0
05
h

AAC
Dh

1B20
h 0 0

1D
h

05
h

AAC
Dh

AAC
Dh

42 0
05
h

AAC
Dh

1B20
h 0 0

1D
h

05
h

AAC
Dh

AAC
Dh

43 0
05
h

AAC
Dh

1B20
h 0 0

1B
h

05
h

AAC
Dh

AAC
Dh

44 0
05
h

AAC
Dh

1B20
h 0 0

1B
h

05
h

AAC
Dh

AAC
Dh

45 0
05
h

AAC
Dh

1B20
h 0 0

1B
h

05
h

AAC
Dh

AAC
Dh

46 0
05
h

AAC
Dh

1B20
h 0 0

1B
h

05
h

AAC
Dh

AA6
7h

47 0
05
h

AAC
Dh

1B20
h 0 0

20
h

05
h

AAC
Dh

AA6
7h

48 0
05
h

AAC
Dh

1B20
h 0 0

20
h

05
h

AAC
Dh

AA6
7h

49 0
05
h

AAC
Dh

1B20
h 0 0

20
h

05
h

AAC
Dh

AA6
7h

50 0
05
h

AAC
Dh

1B20
h 0 0

20
h

05
h

AAC
Dh

22EF
h

51 0
06
h

AAC
Dh

1B20
h 1 0

20
h

06
h

AAC
Dh

22EF
h

52 0
06
h

AAC
Dh

0807
h 0 0

20
h

06
h

AAC
Dh

22EF
h

53 0 06 AAC 0807 0 0 20 06 AAC 22EF

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 135 Volume 21, 2022

h Dh h h h Dh h

54 0
06
h

AAC
Dh

0807
h 0 0

08
h

06
h

AAC
Dh

22EF
h

Table 3. (continued)

55 0
06
h

AAC
Dh

0807
h 0 0

08
h

06
h

AAC
Dh

22EF
h

56 0
06
h

AAC
Dh

0807
h 0 0

08
h

06
h

AAC
Dh

22EF
h

57 0
06
h

AAC
Dh

0807
h 0 0

08
h

06
h

AAC
Dh

22EF
h

58 0
06
h

AAC
Dh

0807
h 0 0

07
h

06
h

AAC
Dh

22EF
h

59 0
06
h

AAC
Dh

0807
h 0 0

07
h

06
h

AAC
Dh

22EF
h

60 0
06
h

AAC
Dh

0807
h 0 0

07
h

06
h

AAC
Dh

22EF
h

61 0
06
h

AAC
Dh

0807
h 0 0

07
h

06
h

AAC
Dh

22EF
h

4.2 Test program 2
Another test program example is given below (with
short comments).

o LDA #$0000 ; Register A is loaded with
hexadecimal value “0000”.
o LDB #$4FB1 ; Register B is loaded with
hexadecimal value "4FB1".
o DECB ; The value in register B is
reduced by one.
o SWB ; A SWAP operation is
executed. The result, according to the SWAP truth
table, is contained again in register B.
o CNB ; Operation, logically equal
to control-NOT one, is executed between 8-bit
numbers in register B.
o NOP ; There is no processor
operation.
o HLT ; VPLP stops execution of
any instructions.

 The checked instructions in the above-
presented test program are the LDA, LDB, DECB,
SWB, CNB, NOP, and HLT ones. The SignalTap
II Embedded Logic Analyzer’s captured data is
compared again with one based on theoretical
calculations. The conclusion is the same as the
previous one that the designed VPLP works
appropriately. The basic signals (in particular the

contents of registers A and B) used in the
verification process are shown in Fig 11.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 136 Volume 21, 2022

Fig. 11: SignalTap II wave diagram.

4.3 Test program 3
The third test program example is given below (with
short comments).

o LDC $0B ; Index counter (IC) is
loaded with hexadecimal value “0B”.
o INC ; IC is incremented by 1.
o LDAC ; Register A is loaded
with hexadecimal value “55AA”.
o INC ; IC is incremented by 1.
o CPAH ; The content of register A
(high byte) is compared (subtracted) with the value
of the memory cell addressed by the IC.
o BIG $02 ; Branch if flag Greater is
equal to one.
o NOP ; There is no processor
operation.
o HLT ; VPLP stops execution of
any instructions.
o INC ; IC is incremented by 1.
o STAC ; The content of register A
is stored in a cell with an address specified by the
IC.
o DEC ; IC is decremented by 1.
o LDAC ; Register A is loaded with
hexadecimal value “00AA”.
o DEC ; IC is decremented by 1.
o STAC ; The content of register A
is stored in a cell with an address specified by the
IC.
o INC ; IC is incremented by 1.
o INC ; IC is incremented by 1.
o LDAC ; Register A is loaded with
hexadecimal value “55AA”.
o DEC ; IC is decremented by 1.
o STAC ; The content of register A
is stored in a cell with an address specified by the
IC.
o HLT ; VPLP stops execution of
any instructions.

 Memory cell with address $0C has an initial
content $55AA.
 Memory cell with address $0D has an initial
content $00AA.

 The checked instructions in the third test
program are the LDC, INC, LDAC, CPAH, BIG,
NOP, STAC, DEC, and HLT ones. The SignalTap II
Embedded Logic Analyzer’s captured data is
compared with one based on theoretical

calculations. The conclusion is that the designed
VPLP works well as it is shown in Fig 12 (in
Appendix 1).
 During VPLP testing have been used more than
ten test programs of different lengths. All
instructions belonging to the instruction set of the
microprocessor have been checked and their
operation is correct.

5 Conclusions
In this article, a novel variable predicate logic
processor has been presented. The designed VPLP
consists of a variable-logic datapath, control unit,
reset circuit, and PRAM module to store
information.

Depending on the data and generated
instructions, the datapath units perform the logical
operations belonging to eight subsets of reduced
predicate logic, including the predicate, Boolean,
multi-valued (4-level), pseudo-quantum, reversible,
and pair-wire logic styles. The logic change is
realized on-the-fly if it is required. The processor
can emulate in hardware many algorithms, including
the AI operations and 2n - dimensional Hilbert-
space pseudo-quantum computing.

The proposed microprocessor architecture has
been developed in three steps: the variable predicate
logic gates design, PRAM realization, and final
VPLP implementation in an FPGA board (Altera’s
Cyclone II FPGA Starter Development Kit) with
subsequent verification using several test codes.

The invented variable predicate logic processor
is interesting in accelerating artificial intelligence
applications, enhancing hybrid quantum-classical
architectures, molecular and pseudo-quantum
calculations used in science, cryptography,
computer-aided medicine, robotics, electronic
security, etc.

Acknowledgments:

The authors thank their colleagues, Drs. M.
Olavsbraten (NTNU, Norway) and V. Guitberg
(ATSS, Canada) who took part in the earlier stages
of the research.
The authors would like to thank the Research and
Development Sector at the Technical University of
Sofia for the financial support.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 137 Volume 21, 2022

[1] C. Bobda, Introduction to Reconfigurable

Computing Architectures, Algorithms, and

Applications, Springer, 2007.
[2] Reconfigurable Computing: From FPGAs to

Hardware/Software Codesign, Cardoso J.M.P
and M. Hübner, (Eds.), Springer, 2011.

[3] I. Pérez and M. Figueroa, A Heterogeneous
Hardware Accelerator for Image Classification
in Embedded Systems, Sensors, Vol. 21, Issue
8, 2637, 2021.
https://doi.org/10.3390/s21082637

[4] R. Chen,T. Wu,Y. Zheng, and M. Ling, MLoF:
Machine Learning Accelerators for the Low-
Cost FPGA Platforms, Appl. Sc., Vol. 12, Issue
1, 89, 2021.
https://doi.org/10.3390/app12010089

[5] K. Seng, P. Lee, and L. Ang, Embedded
Intelligence on FPGA: Survey, Applications and
Challenges, Electronics, Vol. 10, Issue 8, 895,
2021.
https://doi.org/10.3390/electronics10080895

[6] K. Rajagopalan, B. Phillips, and D. Abbott, On-
the-fly reconfigurable logic, SPIE Proc., Smart

Structures, Devices, and Systems II, Vol. 5649,
2005, pp. 101-109.
https://doi.org/10.1117/12.582429

[7] M.A. Iqbal and S.A. Khan, Run-time

reconfigurable instruction set processor (RT-

RISP): Design and simulation using Verilog-

HLD, Lap Lambert Acad. Publ., 2012.
[8] A.A. Stolyar, Introduction to Elementary

Mathematical Logic, Dover Publ. Inc., 1983.
[9] E.J. Lowe, Forms of Thought. A Study in

Philosophical Logic, Cambridge Univer. Press,
2013.

[10] A. Iacona, Logic: Lecture Notes for

Philosophy, Mathematics, and Computer

Science, Springer, 2021.
[11] G.A. Kouzaev, Topological computing, WSEAS

Trans. Comp. Res., Vol. 5, Issue 10, 2006, pp.
2221-2224.
https://www.researchgate.net/journal/WSEAS-
Transactions-on-Computer-Research-1991-8755

[12] A.N. Kostadinov and G.A. Kouzaev, Predicate
and binary operations processor, Proc. 8th

WSEAS Int. Conf. Appl. El. Eng., WSEAS,
Houston, 2009, pp. 199-204, 2009.

 https://www.researchgate.net/publication/31649
5127_Predicate_and_Boolean_operations_proce
ssor

[13] G.A. Kouzaev, A.N. Kostadinov, M.
Olavsbraten, and V. Guitberg, Variable
predicate logic computer architectures, UK Pat.

Appl. GB2508162 dated on 21.11.2012,

Searchable Pat. J. 6523, online published on
28.05.2014, Publ. # GB2508162.

[14] A.N. Kostadinov, V. Guitberg, M. Olavsbraten,
and G.A. Kouzaev, Multi-logics gates,
Proc. IEEE Int. Sem. Electron. Dev. Design

Production, Prague, 2019. pp. 1-3.
https://doi.org/10.1109/SED.2019.8798452

[15] A.G. Hamilton, Logic for Mathematicians,
Cambridge Univer. Press, 1988.

[16] Microsoft Corp., Project Brainwave, 2018
(accessed June 26, 2021).
https://blogs.microsoft.com/ai/build-2018-
project-
brainwave/?utm_source=press&utm_campaign=
75592,

[17] I. Bratko, Prolog Programming for Artificial

Intelligence, 4th Edition, Pearson Educ., 2011.
[18] S.P. Vingron, Switching Theory: Insight

through Predicate Logic, Springer, Berlin,
2004.

[19] V.D. Shet, M. K. Singh, C. Bahlmann, V.
Ramesh, S. P. Masticola, J. Neumann, T.
Parag, M. A. Gall, and R. A. Suarez, Predicate
logic based image grammars for complex visual
pattern recognition, US Pat. 8548231 B2, 2013
(accessed June 26, 2021).
http://www.google.com/patents/US8548231

[20] G. Tzimpragos, D. Vasudevan, N.
Tsiskaridze, G. Michelogiannakis, A.
Madhavan, and J. Volk, A computational
temporal logic for superconducting
Accelerators, Proc. 25th Int. Conf. Arch.. Supp.

for Prog. Lang. and Oper. Syst., Lausanne,
ACM, New York, 2020, pp. 435–448.
https://dl.acm.org/doi/10.1145/3373376.337851
7

[21] A. Dutt, C. Wang, A. Nazi, S. Kandula, V.
Narasayya, and S. Chaudhuri, Selectivity
estimation for range predicates using
lightweight models, Proc. VLDB Endowment,
Vol. 12, issue 5, 2019, pp. 1044-1057.
https://dl.acm.org/doi/10.14778/3329772.33297
80

[22] H. Sharangpani and H. Arora, Itanium
processor microarchitecture, IEEE Micro., Vol.
20, 2000, pp. 24-43.
https://ieeexplore.ieee.org/document/877948

[23] M. Umemura and M. Yokota, Prolog
processing system US Pat. 4546432 A, 1986
(accessed June 26, 2021).
https://www.google.com/patents/US4546432

[24] K. Kobayashi and M. Sasaki, System for
processing data using logic language, US Pat.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 138 Volume 21, 2022

References:

https://doi.org/10.3390/s21082637
https://doi.org/10.3390/app12010089
https://doi.org/10.3390/electronics10080895
https://doi.org/10.1117/12.582429
https://www.researchgate.net/journal/WSEAS-Transactions-on-Computer-Research-1991-8755
https://www.researchgate.net/journal/WSEAS-Transactions-on-Computer-Research-1991-8755
https://www.researchgate.net/publication/316495127_Predicate_and_Boolean_operations_processor
https://www.researchgate.net/publication/316495127_Predicate_and_Boolean_operations_processor
https://www.researchgate.net/publication/316495127_Predicate_and_Boolean_operations_processor
https://doi.org/10.1109/SED.2019.8798452
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
https://blogs.microsoft.com/ai/build-2018-project-brainwave/?utm_source=press&utm_campaign=75592
http://www.google.com/patents/US8548231
https://dl.acm.org/doi/10.1145/3373376.3378517
https://dl.acm.org/doi/10.1145/3373376.3378517
https://dl.acm.org/doi/10.14778/3329772.3329780
https://dl.acm.org/doi/10.14778/3329772.3329780
https://ieeexplore.ieee.org/document/877948
https://www.google.com/patents/US4546432

5129081 A, 1992 (accessed June 26, 2021).
http://www.google.com.na/patents/US5129081

[25] R.I. Baum, G.A. Brent, D.H. Gibson, and D.B.
Lindquist, Database engine predicate evaluator,
US Pat. 5590362 A, 1996 (accessed June 26,
2021).
http://www.google.ch/patents/US5590362

[26] T. Yokota and K. Seo, Pegasus - an ASIC
implementation of high-performance Prolog
processor, Proc. EURO ASIC’90, IEEE, Paris,
1990, pp. 156-159.
https://doi.org/10.1109/EASIC.1990.207928

[27] P. R. Pietzuch, K. H. Tsoi, I. Papagiannis, M.
Migliavacca, and W. Luk Accelerating
publish/subscribe matching on reconfigurable
supercomputing platforms, Proc. Many-core

and Rec. Supercomp. Conf., Vol. 3, Rome,
MRSC, Rome, 2010.
https://www.semanticscholar.org/paper/Acceler
ating-Publish%2FSubscribe-Matching-on-
Pietzuch-
Tsoi/d9ab550bf483b9adcc4583025e0c44905bea
1809

[28] G.F. Luger, Artificial intelligence: structures

and strategies for complex problems solving, 6th
Edition, Pearson Education Inc., Boston, 2009.

[29] D. Monroe, Chips for artificial intelligence,
Commun. ACM, Vol. 61, 2018, pp. 15-17.
https://doi.org/10.1145/3185523

[30] R. Kumar and S. Baul, Artificial intelligence
chip market outlook – 2025, 2019 (accessed
June 26, 2021).
https://www.alliedmarketresearch.com/artificial
-intelligence-chip-market,

[31] S. Harini, A. Ravikumar, and D. Garg,
VeNNus: An artificial intelligence accelerator
based on RISC-V architecture, Proc. Int. Conf.

Comp. Intell. Data Eng. Singapore, 2020, In:

Lect. Notes Data Eng. Commun. Techn., Vol.
56, Springer, pp. 287-300.
https://doi.org/10.1007/978-981-15-8767-2_25

[32] A. Shawahna, S. Sait, and A. El-Maleh,
FPGA-based accelerators of deep learning
networks for learning and classification: A
review, IEEE Access, Vol. 7, 2019,
pp. 7823-7859.
https://doi.org/10.1109/ACCESS.2018.2890150

[33] Y. Chi, Z. Zheng, R. Liu, and W. Cui, Design
of hardware acceleration system based on
FPGA and deep learning algorithm, Proc. IEEE

Int. Conf. Art. Intell. Comp. Apps., Dalian,
IEEE, New York, 2020, pp. 1332-1337.
https://doi.org/10.1109/ICAICA50127.2020.918
2658

[34] M. Talib, S. Majzoub, Q. Nasir, and D.
Jamal, A systematic literature review on
hardware implementation of artificial
intelligence algorithms, J. Supercomp., Vol.
77, 2021, pp. 1897-1938.
https://doi.org/10.1007/s11227-020-03325-8

[35] G.A. Kouzaev and A.N. Kostadinov, Predicate
logic processor of spatially patterned signals,
Proc. WSEAS Int. Conf. Recent Advances in

Systems Eng. Appl. Math., 2008, pp. 94-96.
[36] G.A. Kouzaev and A.N. Kostadinov, Predicate

gates, components and a processor for spatial
logic, J. Circ. Syst. Comp., Vol. 40, No. 7, 2010,
pp. 1517-1541.
https://doi.org/10.1142/S0218126610006888

[37] V.I. Gvozdev and G.A. Kouzaev, Microwave
flip-flop for topological computers, Russian

Federation Pat., No 2054794, dated May 26,
1992.

[38] G.A. Kouzaev and V.I. Gvozdev, Topological
pulse modulation of field and new microwave
circuits design for superspeed operating devices,
Proc. ISSE’95 – Int. Symp. Signals, Systems

Electron., 1995, pp. 383-384.
https://doi.org/10.1109/ISSSE.1995.498014

[39] G.A. Kouzaev, Topologically modulated
signals and predicate gates for their processing,
2001. https://arxiv.org/abs/physics/0107002v1

[40] G.A. Kouzaev, Applications of Advanced

Electromagnetics. Components and Systems,
Springer, 2013. https://doi.org/10.1007/978-3-
642-30310-4

[41] G.A. Kouzaev, I.V. Nazarov, and A.V. Kalita,
Unconventional logic elements on the base of
topologically modulated signals, 1999.
https://arxiv.org/abs/physics/9911065v1

[42] M. Houška, L. Dömeová, and R. Kvasnička,
Unary operations with knowledge units, Proc.

2nd Int. Conf. Software Techn. Eng., Vol. 1, San
Juan, IEEE, San Juan, 2010, pp. 237-241.
https://doi.org/10.1109/ICSTE.2010.5608840

[43] M.H. Zack, Managing codified knowledge,
Sloan Manag., Vol. 40, 1999, pp. 45-58.

[44] R. Kowalsky, Predicate logic as programming
language, Proc. IFIP Congress., North-Holland
Publ. Comp., Amsterdam, pp. 569-574, 1974.

[45] G.A. Kouzaev, V.V Cherny, and T.A.
Lebedeva, Multivalued processing spatially
modulated discrete electromagnetic signals,
Proc. 30th Europ. Microw. Conf., Paris, Oct.
2000, pp. 209-213.

https://doi.org/10.1109/EUMA.2000.338807
[46] V. Patel and K.S. Gurumurthy, Arithmetic

operations in multivalued logic, Int. J. VLSICS,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 139 Volume 21, 2022

http://www.google.com.na/patents/US5129081
http://www.google.ch/patents/US5590362
https://doi.org/10.1109/EASIC.1990.207928
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://www.semanticscholar.org/paper/Accelerating-Publish%2FSubscribe-Matching-on-Pietzuch-Tsoi/d9ab550bf483b9adcc4583025e0c44905bea1809
https://doi.org/10.1145/3185523
https://www.alliedmarketresearch.com/artificial-intelligence-chip-market
https://www.alliedmarketresearch.com/artificial-intelligence-chip-market
https://doi.org/10.1007/978-981-15-8767-2_25
https://doi.org/10.1109/ACCESS.2018.2890150
https://doi.org/10.1109/ICAICA50127.2020.9182658
https://doi.org/10.1109/ICAICA50127.2020.9182658
https://doi.org/10.1007/s11227-020-03325-8
https://doi.org/10.1142/S0218126610006888
https://doi.org/10.1109/ISSSE.1995.498014
https://arxiv.org/abs/physics/0107002v1
https://doi.org/10.1007/978-3-642-30310-4
https://doi.org/10.1007/978-3-642-30310-4
https://arxiv.org/abs/physics/9911065v1
https://doi.org/10.1109/ICSTE.2010.5608840
https://doi.org/10.1109/EUMA.2000.338807

Vol. 1, 2010, Issue 1, pp. 21-32.
https://doi.org/10.5121/vlsic.2010.1103

[47] M. Huang, X. Wang, G. Zhao, P. Coquet, and
B. Tay, Design and implementation of ternary
logic integrated circuits by using novel two-
dimensional materials, Appl. Sci. J., Vol. 9,
2019, pp. 1-13.
https://doi.org/10.3390/app9204212

[48] G.A. Kouzaev and T.A. Lebedeva, New logic
components for processing complex
measurement data, Measurement Tech., Vol. 43,
2000, pp. 1070-1073.
https://doi.org/10.1023/A:1010948020127

[49] G.A. Kouzaev, Qubit logic modeling by
electronic gates and electromagnetic signals,
2001. https://arxiv.org/abs/quant-ph/0108012v2

[50] R.J.C. Spreeuw, A classical analogy of
entanglement, Found. Phys., Vol. 28, 1998,
pp.361-374.
https://doi.org/10.1023/A:1018703709245

[51] S. O’uchi, M. Fujishima, and K. Hoh, An 8-
qubit quantum circuit processor, Proc. IEEE Int.

Symp. Circuits Syst. (ISCAS), 2002,pp.V-209-
212.
https://doi.org/10.1109/ISCAS.2002.1010677

[52] L.B. Kish, Quantum computing with analog
circuits: Hilbert space computing, Proc. SPIE

Conf. Smart Electron., MEMS, BioMEMS, and

Nanotechnology, March 3, 2003.
http://dx.doi.org/10.1117/12.497438

[53] B.R. La Cour and G.E. Ott, Signal based
classical emulation of a universal quantum
computer, New J. Phys.,Vol. 17, 2015, pp.
053017(1-19). http://iopscience.iop.org/1367-
2630/17/5/053017/article

[54] M. Halid, N.I. Muhammad, U.M. Khokhar, A.
Jafri, and H. Choi, An FPGA based hardware
abstraction of quantum computing system, J.

Comput. Electron., Vol. 20, 2021, pp.2001-
2018. https://doi.org/10.1007/s10825-021-
01765-w

[55] M. Borgarino, Circuit-based compact model of
electron spin qubit, electronics, Vol. 11, 2022,
pp. 526 (1-14). https://www.mdpi.com/2079-
9292/11/4/526#

[56] D. O’Shea, Nvidia expands efforts to support
hybrid classical-quantum computing, Fierce

Electronics, March 25, 2022.
https://www.fierceelectronics.com/embedded/nv
idia-expands-efforts-support-hybrid-classical-
quantum-computing

[57] C.P. Williams, Explorations in Quantum

Computing, 2nd Edition, Springer, London,
2011.

[58] R. Stárek, M. Mičuda, M. Miková, I. Straka,
M. Dušek, M. Ježek, and J. Fiurášek,
Experimental investigation of a four-qubit
linear-optical quantum logic circuit, Sci. Rep. J.,
Vol. 6, 2016, pp. 1 – 11.
https://doi.org/10.1038/srep33475

[59] T. Chattopadhyay, All-optical modified
Fredkin gate, IEEE J. Sel. Top. Quant.

Electron., Vol. 18, 2012, pp. 585-592.
https://doi.org/10.1109/JSTQE.2011.2106111

[60] H.G. Rangaraju, U. Venugopal, K.
Muralidhara, and K.B. Raja, Low power
reversible parallel binary adder/subtractor, Int.

J. VLSICS, Vol. 1, 2010, pp. 23-34.
https://doi.org/10.5121/vlsic.2010.1303

[61] J. Rice, Project in Reversible Logic, 2005
(accessed June 26, 2021).

http://www.cs.uleth.ca/~rice/publications/TR-
CSJR1-2005.pdf

[62] J. Waddle and D. Wagner, Fault attacks on
dual-rail encoded systems, Proc. 21st Annual

Comp. Security Appl. Conf., IEEE, Tucson,
2005,pp.483–494.
https://doi.org/10.1109/CSAC.2005.25

[63] Z. Xia, M. Hariyama, and M. Kameyama,
Asynchronous domino logic pipeline design
based on constructed critical data path, IEEE

Trans., VLSI Syst., Vol. 23, 2014, pp. 619-630.
https://doi.org/10.1109/TVLSI.2014.2314685

[64] K. Tiri and I. Verbauwhede, A digital design
flow for secure integrated circuits, IEEE Trans.

Comp.-Aided Des. Int. Circ. Syst., Vol. 25,
2006, pp. 1197-1208.
https://doi.org/10.1109/TCAD.2005.855939

[65] F. Huemer and A. Steininger, Novel
approaches for efficient delay-insensitive
communication, J. Low Pow. Electron. Appl.,
Vol. 9, 2019, Art. no. 16.
https://doi.org/10.3390/jlpea9020016

[66] D. Sokolov, J. Murphy, A. Bystrov, and A.
Yakovlev, Improving the security of dual-rail
circuits, Proc. Crypt. Hardw. Emb. Syst.,
Springer, Cambridge, 2004, pp. 282-297.
https://doi.org/10.1007/978-3-540-28632-5_21

[67] D. Sokolov, J. Murphy, A. Bystrov, and A.
Yakovlev, Design and analysis of dual-rail
circuits for security applications, IEEE Trans.

Comp., Vol. 54, 2005, pp. 449-460.
https://doi.org/10.1109/TC.2005.61

[68] C. Cummings, D. Mills, and S. Golson,
Asynchronous & synchronous reset design
techniques - part deux, 2003 (accessed June 26,
2021).
https://trilobyte.com/pdf/CummingsSNUG2003Bost

on_Resets_rev1_2.pdf
[69] Intel Corp., Quartus II Subscription Edition

Software, 2011 (accessed June 26, 2021).
https://fpgasoftware.intel.com/13.0sp1/?edition=
subscription&platform=windows

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 140 Volume 21, 2022

https://doi.org/10.5121/vlsic.2010.1103
https://doi.org/10.3390/app9204212
https://doi.org/10.1023/A:1010948020127
https://arxiv.org/abs/quant-ph/0108012v2
https://doi.org/10.1023/A:1018703709245
https://doi.org/10.1109/ISCAS.2002.1010677
http://dx.doi.org/10.1117/12.497438
http://iopscience.iop.org/1367-2630/17/5/053017/article
http://iopscience.iop.org/1367-2630/17/5/053017/article
https://doi.org/10.1007/s10825-021-01765-w
https://doi.org/10.1007/s10825-021-01765-w
https://www.mdpi.com/2079-9292/11/4/526
https://www.mdpi.com/2079-9292/11/4/526
https://www.fierceelectronics.com/embedded/nvidia-expands-efforts-support-hybrid-classical-quantum-computing
https://www.fierceelectronics.com/embedded/nvidia-expands-efforts-support-hybrid-classical-quantum-computing
https://www.fierceelectronics.com/embedded/nvidia-expands-efforts-support-hybrid-classical-quantum-computing
https://doi.org/10.1038/srep33475
https://doi.org/10.1109/JSTQE.2011.2106111
https://doi.org/10.5121/vlsic.2010.1303
http://www.cs.uleth.ca/~rice/publications/TR-CSJR1-2005.pdf
http://www.cs.uleth.ca/~rice/publications/TR-CSJR1-2005.pdf
https://doi.org/10.1109/CSAC.2005.25
https://doi.org/10.1109/TVLSI.2014.2314685
https://doi.org/10.1109/TCAD.2005.855939
https://doi.org/10.3390/jlpea9020016
https://doi.org/10.1007/978-3-540-28632-5_21
https://doi.org/10.1109/TC.2005.61

[70] Intel Corp., Cyclon II FPGA Starter

Development Kit, 2016 (accessed June 26,
2021).

https://www.intel.cn/content/dam/www/programma
ble/us/en/pdfs/literature/ug/ug_cii_starter_board
.pdf

Appendix 1

Fig. 12: SignalTap II wave diagrams for the third test program.

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

-Guennadi A. Kouzaev proposed the initial ideas as
well formulation of overarching research goals and
aims. He was also responsible for the research
activity planning and execution, including
mentorship to the core team.
-Atanas N. Kostadinov has implemented the
microprocessor and performed testing of the design.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

The European Research Consortium for Informatics
and Mathematics (ERCIM), Faculty of Information
Technology and Electrical Engineering (NTNU),
and Department of Electronic Systems (NTNU)
supported the initial stage of this research.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
DOI: 10.37394/23201.2022.21.14 Atanas N. Kostadinov, Guennadi A. Kouzaev

E-ISSN: 2224-266X 141 Volume 21, 2022

Conflict of Interest
The authors have no conflicts of interest to declare

that are relevant to the content of this article.

https://trilobyte.com/pdf/CummingsSNUG2003Boston_Resets_rev1_2.pdf
https://trilobyte.com/pdf/CummingsSNUG2003Boston_Resets_rev1_2.pdf
https://fpgasoftware.intel.com/13.0sp1/?edition=subscription&platform=windows
https://fpgasoftware.intel.com/13.0sp1/?edition=subscription&platform=windows
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_cii_starter_board.pdf
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_cii_starter_board.pdf
https://www.intel.cn/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_cii_starter_board.pdf

