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1 Introduction 
In artificial intelligence (AI), many data flows have 
very complicated structures requiring fast change of 
the logic processing styles. Partially, this idea is 
realized in FPGAs (Field-Programmable Gate 
Arrays), where a designed processor is modeled by 
programmed computing cells. Unfortunately, 
moving from one design to another requires an 
essential reconfiguration time [1]-[5]. Meanwhile, 
accelerated change of logic style requires fine-grain 
reconfigurability on the gate level [6],[7]. 

In this paper, a new specific approach to this 
reconfigurability is discussed. It is known that 
predicate logic (the logic of our intelligence) is 
general for many logic styles, including the Boolean 
one, for instance [8]-[10].  

If universal predicate gates controlled by 
instructions are realized, they can fulfill particular 
logic operations of different styles. We have already 
published the first ideas and circuits in this field in  
Refs. [11]-[14]. These contributions describe only 
initial designs for several different logic styles.  

Section 2 is on the theory and hardware 
realizations of predicate logic and its subsets that 
can be unified in a single processor. In Section 3, 
the proposed variable predicate logic processor is 
described in detail. Section 4 is on implementing the 
processor in FPGA and its verification. Concluding 
remarks are in Section 5.  

 
 

2 Predicate Logic and Processing 

Units 
In mathematics, predicate logic is a generic term for 
formal symbolic systems [8]-[10],[15],[16].              
This predicate system is distinguished from others 
in the formula S  containing variables A and 
quantifiers T . 

  

  ,S A T  (1) 
Thus, predicate logic operates with sentences S  

similar to the atomic one (1) instead of truth tables 
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of propositional logic [8]. Some predicate logic 
applications are used in computer science.               
They could be found in AI modeling software, big 
data-based systems, circuit theory, hardware 
verification codes, etc. [17]-[21].  

However, such programs are mostly executed on 
processors built on propositional logic gates. 
Depending on the number of quantifiers, this 
source-code-level simulation can increase the 
execution time in orders of magnitude compared to 
possible micro-parallel gates realized operations 
with these predicated data streams. 

In some hardware, the predicate gates of fixed 
logic and even large units are implemented to 
enhance the processor parameters, as it was in the 
Itanium processor architecture [22]. Several ideas 
were published to modify the conventional 
computer modules for better processing Prolog 
programs    [23]-[26] or enhance information 
exchange in multi-processor supercomputing 
systems [27].  

Today, the computing devices involved in 
massive AI operations [28] require new designs 
called artificial intelligence accelerators [15],       
[29]-[34]. Some of them can be built on the 
combined use of propositional and predicate logic 
units [12] to improve AI computers’ performance.  

According to our best knowledge, the first 
application-specific instruction-set processor (ASIP) 
accelerating some AI operations was a predicate 
logic processor published in Refs. [35],[36].  

The idea of computing the electromagnetic (EM) 
signals carrying predicated information relates to the 
90th of the last century [11],[37]-[41]. The 
elementary binary predicate or atomic unit of 
knowledge        [42]-[44] is a pair of logically 
coupled bits for the formula (1). They can be carried 
by two logically or even EM coupled wires [39]. 

 Generally, predicate logic uses an extended set 
of logical and non-logical symbols. Among them 
are the quantifier ones, conjunction (AND), 
disjunction (OR), negation (NOT), and 
implications (if-then).  

A reduced predicate logic in Ref. [36] and here 
uses only the AND, OR, and NOT logical 
operations applied to a predicate expression S : 

 

 1 2

1 2

 (NOT),  
S  (AND),  
S  (OR).

S S

S S

S S



 

 

 (2) 

 
After developing predicate gates according to the 

formula (2), an experimental 8-bit processor 

consisting of a predicate datapath and a 
conventional control unit was designed [36]. The 
datapath there implements the mentioned logically 
full set of predicate operations (2) in a parallel 
manner.  

This processor, thought a predicate logic 
accelerator, was modeled by VHDL (Very High-
Speed Integrated Circuit Hardware Description 
Language) and synthesized in FPGA board from 
Intel (formerly Altera) using Quartus II design 
software. The realized microprocessor works at a 
maximum clock frequency of 130.28 MHz. It 
consists of 5868 total logic elements, 3482 
combinational functions, 4628 registers, and 10624 
memory bits. The results of some testing programs 
were observed helped by the Quartus II tool and 
successfully compared with theoretical calculations. 

Ref. [36] shows the need for further 
enhancement of the designed predicate processor. It 
was overly specific for some practical applications. 
As a rule, the data is not always organized in 
predicate form in knowledge-based applications. 
Many flows need Boolean, multi-valued, reversible, 
etc., operations. Performing them by fixed predicate 
gates requires an additional program code. In this 
way, it leads to a decrease in throughput. 

As it was mentioned in the Introduction, the 
main idea of this paper is the development of a 
processor whose universal gates are controlled by 
instructions and realize several subsets of predicate 
logic.         This possibility was noticed in the first 
works on spatially-modulated signals propagating 
along paired wires in Refs. [11],[37],[39]. There, 
one of the predicate logic units in the formula (1) 
can be assigned to control a logic type or realize the 
reversibility of gates [14]. Additionally, the paired 
wires can be used to model qubits in quantum 
computer emulators [11],[41]. 

In some applications, such as security-enhanced 
data processing, the paired wires can be used to 
avoid or diminish information leakage through 
irradiation from signal traces or/and power 
delivering wires. Again, this pair-wire style is a 
subset of the predicate logic set (2). 

 In all these cases, the signals propagating along 
the paired lines, formally in predicate form, require 
new universal reconfigurable gates and newly built 
arithmetic logic units (ALUs).  

In this article, based on our experience in the 
development, design, simulation, and FPGA 
implementations, a novel flexible processor 
architecture tailored to modern artificial intelligence 
applications is considered prospective to boost AI 
operations. The predicate flows are combined with 
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conventional data representation in a specially 
designed microprocessor containing flexible ALU.   

 As a difference from all other microprocessors, 
the processor’s datapath can perform operations 
logically equal to the results produced by seven 
types of logic. These logics allow new possibilities 
which have been  not realized earlier in full: 

 
(1) Predicate logic with the paired wires 
(2) Conventional Boolean operations along 

each wire (depending on signal and 
instruction) [14] 

(3) Multi-valued (with four logic levels) 
operations spatially mapped on two 
wires [45]-[47] 

(4) Pseudo-quantum logic [13],[41],[45], 
[48]-[59] 

(5) Reversible logic [60]-[61] 
(6) Dual-rail operations [62],[63] 
(7) Dual-rail single-spacer operations 

[64],[65] 
(8) Dual-rail dual-spacer operations 

[66],[67] 
 

The initial designs of universal gates performing 
the above-considered operations have already been 
published in Refs. [13],[14]. More information is 
needed on pseudo quantum gates, which are not 
widely known to the electronic community.  

It is known that quantum computing can be 
powerful in some cases because of quantum 
parallelism when n  - particles are in 2n  states.          
We need 2n  classical electronic gates integrated 
into a 2n   dimensional Hilbert-space processor to 
emulate a quantum computing unit. The initial idea 
in this field was from R.J.C. Spreeuw, who 
discussed building a Hilbert-space processor using 
photons of opposite polarization [50] paired into 
qubits. Unfortunately, the use of a multitude of 
bulky optical elements is a rather challenging 
problem.  

Contemporary electronics integrating billions of 
gates allows emulating a several-ten-qubit quantum 
machine. In 1999, we proposed using the 
microwave or digital electronics when a sum of 
even and odd modes in coupled strip lines models a 
qubit state because they have topologically different 
electromagnetic field maps [41]. A logically full set 
of gates was designed and realized in hardware by 
us in those years [40],[48],[49].  

 In Fig. 1 (not published earlier), a PCB board for 

a CNOT  gate and switch-controlled signal 
generator (designed with A. Ermakov in 1999) is 

shown as an example. The gate is described in detail 
in Ref. [40].  

The interest in emulation of quantum computers 
has been strong for many next following years [13], 
[14],[51]-[55], considering the problems in the 
developments of full-scale fault-tolerant quantum 
processors. It was found that pseudo-quantum 
architectures, being still classical, can calculate the 
quantum algorithms used in cryptography, quantum 
physics, chemistry, and biology more effectively 
than ordinary computers [53]-[56]. It is known, 
emulating quantum computers, that not all 
operations are with qubits; then, a universal 
computer should have gates performing Boolean 
and other operations belonging to the predicate set. 
Besides, in AI applications, quantum algorithms are 
not always powerful.  

 

Fig. 1: A   gate module (from G.A. Kouzaev’s 
archive, see as well [40]). 

 
 The proposed here processor, called the variable 
logic one,  can change its logic styles on-the-fly 
according to the incoming data flow and 
corresponding control signal. It will increase the 
effectiveness of data processing. Considering that 
all eight mentioned operations are the subsets of 
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predicate logic, the full name of our design is the 
Variable Predicate Logic Processor (VPLP) 

 

 

3 Variable Predicate Logic Processor 

(VPLP) Design 
This VPLP architecture [13] has been developed in 
three major steps. Initially, the design of the variable 
predicate logic gates is performed [14], which is not 
considered here. The PRAM (Predicate Random-
Access Memory) is also composed and designed in 
the second step. Finally, the complete variable 
predicate logic processor has been realized and 
verified using an appropriate CAD (Computer-
Aided Design) tool and an FPGA board (Fig. 2).  
 

 
 
Fig. 2: Cyclone II FPGA Starter Development 
Board (Altera, now Intel) is connected to a 
computer to emulate the designed VPLP. 
 

An 8-bit predicate processor is studied, i.e., each 
value in predicate expression (1) is represented by    
8-bit digits. 

A PRAM basic cell has been implemented in the 
second step of the processor development (Fig. 3). 
This basic cell has two inputs and two outputs for 
predicated signals. These signals can be of predicate 
information origin or contain the bits for control of 
logic of predicate gates. 
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Fig. 3: Implemented PRAM cell. 
 

This design uses four D flip-flops (from Dff1 to 
Dff4) and two three-state buffers (TSB1 and TSB2, 
denoted by triangles). The inputs CLKpmc and 
RSTpmc are for the clock and reset signals. The 
signal ENpmc enables the input of this PRAM unit.       
When the ENpmc signal is equal to the logic zero, 
then the three-state buffer outputs go to a                
high-impedance state. In this case, PRAM basic cell 
is disabled. In the opposite case, the ENpmc signal 
goes to logic one.  

A new 8-bit PRAM module is designed (Fig. 4) 
when eight cells are combined. Two memory data 
buses have 8-bit width. All other signals are equal to 
the described ones in Fig. 3 (a basic predicate 
memory unit). Then, 256 8-bit PRAM cells are 
connected, and PRAM is organized as 256 words by 
16 bits. An address decoder and a multiplexer have 
been added to this PRAM module (they are not 
included in Fig. 4 due to simplification reasons). 
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Fig. 4: Designed 8-bit PRAM cell. 

 
The complete variable predicate logic processor 

has been realized and verified in the final step.   
VPLP is a successor of the PLP (Predicate Logic 
Processor) [36] and PBOP (Predicate and Boolean 
Operation Processor) [12] processor architectures.       
It extends the architectures mentioned above.          
The instruction set is enlarged with new 
instructions. It has been used term flexible processor 
to express its opportunity to tune to different types 
of incoming data. The synthesized block diagram of 
the variable predicate logic processor is shown in 
Fig. 5.             The VPLP includes a reset circuit, 
datapath, and control unit. 
 

 

 

vplp_clk

vplp_rst

MVD_in

MVD_out

dato

RD

WR

addressdati

 

RESET 
CIRCUIT

DATAPATH

CONTROL
UNIT

Qrst

Fig. 5: Synthesized variable predicate logic 
processor (VPLP). 
 

Another part of the variable predicate logic 
processor is its interface. It includes the signal lines 
vplp_clk, vplp_rst, MVD_in, MVD_out, dati, dato, 
RD, WR, and address. The lines vplp_clk and 
vplp_rst interface the clock and reset (Qrst is 
produced by reset circuit) signals to various 
components of VPLP. Signal lines MVD_in and 
MVD_out are the input and output of multi-valued 
numbers to the variable predicate logic processor.     
At the input, the multi-valued numbers are 
converted to binary ones and vice versa to the 
output using convertors.  

The rest signal lines (Fig. 5) connect VPLP to the 
PRAM module. RD and WR signals are utilized to 
perform the read and write memory operations.          
A signal line address is the address bus of the 
variable predicate logic processor. The data buses of 
the VPLP are formed by dati and dato signals.  

In Fig. 6, the variable predicate logic processor 
datapath is shown. It is responsible for the 
manipulation of data. It consists of the storage units: 
register B, accumulator A, multi-valued register, 
flag register (FLAGs), and the combinational units: 
data multiplexer and variable predicate arithmetic 
logic unit (VPALU).  
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Fig. 6: Designed VPLP datapath. 

 
The data multiplexer in Fig. 6 selects the data 

either from PRAM (dati_dp) or from multi-valued 
signal lines Mvi_dp and sends the selected input’s 
data to VPALU. This data multiplexer has a select 
line, which is named MS. The VPALU control bits 
belong to signal line VPALUs_dp, which is of 5-bit 
size. Accumulator A and register B are provided to 
aid in executing instructions in VPALU. 

Accumulator A is a 16-bit register (Fig. 6).              
It usually contains one of the two operands involved 
in actual instruction execution. The second operand 
is read from PRAM or register B. The result of an 
operation is again stored in accumulator A, either 
register B or both. The load signal line LD1_dp is 
applied to load/store operations.   

Register B is 16-bit, too. It plays the same role as 
accumulator A in some instructions. The added 
letter B in the assembly instruction names (in 
mnemonics) specifies the application of register B 
in their execution.  

Accumulator A and register B are both used in 
some operations. Clock vplp_clk and reset Qrst 
signal lines are distributed to other datapath 
components except for the data multiplexer and 
VPALU.            The decrement DEC_dp, increment 
INC_dp and load LDB signal lines only apply to 
register B. 

The multi-valued register (Fig. 6) is 16-bit that 
stores the processed multi-valued data. Load signal 
line LD2_dp is used for this operation to be 
performed. The multi-valued register output signal 
line is Mvo_dp. The output signal line of datapath 
for a different type of data, excluding multi-valued 
one, is dato_dp.  

A flag register (FLAGs) is a 3-bit one containing 
three status flags. These bits are set to logic one or 
logic zero based on the results after completion of 
the comparison operation by VPALU. The FLAGs 
load signal line is Fld_dp. When logic one is applied 
to this load signal line FLd_dp, the VPLP flags are 
saved into the flag register. They are placed on the 
output signal line FL_dp. 

Variable predicate arithmetic logic unit 
(VPALU) performs arithmetic and logical 
operations (Fig. 6). The current design extends these 
operations with the ones applicable to several types 
of logics: mainly the Boolean, predicate, multi-
valued (multiple-valued), pseudo-quantum, 
reversible, and dual-rail (differential) logics and its 
modifications using a single spacer (all-zeroes state) 
or dual spacers         (all-zeroes and all-ones states). 

The corresponding processor instructions have 
been implemented. Table 1 shows new instructions 
belonging to the VPLP instruction set. The old ones, 
including a part of the Boolean and predicate 
instructions, are inherited from previous PLP and 
PBOP variants [12],[36].  
 

Table 1. New VPLP instructions. 
Command Semantic 

Arithmetic and load 

instructions 

 

INCA Increment the content of 
accumulator A by 1 

DECA Decrement the content of 
accumulator A by 1 

INCB Increment the content of register 
B by 1 

DECB Decrement the content of register 
B by 1 

LDB Load constant into register B 
LBA Load register B with the content 

of accumulator A 
LAB Load accumulator A with the 

content of register B 
Multi-valued logic instructions  
INM Load accumulator A with 

converted quaternary to binary 
number 

OUTM Load multi-valued register with 
processed binary number 

Pseudo-quantum logic 

instructions 

 

CNB  The logic equivalent of  
controlled-NOT (CNOT) 
operation  
(according to the truth table) 

SWB  The logic equivalent of the swap 
operation (with an identical truth 
table) 
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Table 1. (continued)  

 
Additional information about the VPLP 

instruction set is presented in the following lines: 
 
o INCA – VPALU increments by one 

accumulator A. The result is stored in 
accumulator A. 

o DECA – VPALU decrements by one 
accumulator A content. The result is saved 
in accumulator A. 

o INCB – Variable predicate logic controller 
sets a logic one on datapath signal line 
INC_dp.   The content of register B is 
incremented by one. 

o DECB – Variable predicate logic controller 
sets a logic one on datapath signal line 
number DEC_dp. The content of register B 
is decremented by one. 

o LDB – The program counter is incremented 
by one. From the next PRAM cell (each 

memory cell is 16-bits wide), the 16-bit 
operand is fetched. With VPALU pass-
through operation, the operand is loaded to 
register B.  

o LBA – 16-bit operand is initially stored in 
accumulator A. With a VPALU pass-
through operation, the operand is transferred 
to register B. 

o LAB – Register B contains a 16-bit operand 
initially. With VPALU pass-through 
operation, the operand is moved to 
accumulator A. 

o INM – 16-bit value (converted quaternary 
to binary number) is placed on VPLP signal 
lines MVD_in. With a VPALU pass-through 
operation, the operand is loaded into 
accumulator A. 

o OUTM – 16-bit operand is initially stored 
in accumulator A. With datapath load signal 
line LD2_dp the operand is transferred to a 
multi-valued register. 

o CNB – Register B holds two 8-bit operands.        
According to the controlled-NOT (CNOT) 
truth table, the result is again stored in 
register B. 

o SWB – Register B holds two 8-bit 
operands. The result, according to the 
SWAP truth table, is contained again in 
register B. 

o FGO – The first 8-bit operand is stored in 
the most significant byte of accumulator A 
and the second two 8-bit operands – in 
register B. According to the Fredkin gate 
truth table, the result is kept again in the 
same registers (one 8-bit result in the most 
significant byte of accumulator A and two 
8-bit results in register B). 

o DOR – Two 8-bit dual-rail operands are 
loaded into accumulator A and register B. 
The dual-rail OR logic operation results are 
stored again in the same registers. 

o DAND – Two 8-bit dual-rail operands are 
loaded into accumulator A and register B. 
Result of dual-rail AND logic operation is 
kept again in the same registers. 

 

 TNOT, TOR,  TAND,  SNOT, SOR, and 

SAND instructions perform the dual-rail NOT, OR, 
and AND logic operations. The operand and result 
for TNOT and SNOT instructions are in 
accumulator A only. The operands and results for 
TOR, TAND, SOR, and SAND instructions are in 
accumulator A and register B. A single spacer (all-
zeroes state) or dual spacer (all-zeroes and all-ones 

Reversible logic instruction  
FGO Logic equivalent (with identical 

truth table) of Fredkin gate 
operation 

Dual-rail (differential) logic 

instructions 

 

DOR Dual-rail OR operation 
DAND Dual-rail AND operation 
 

Dual-rail (differential) logic 

instructions using a single 

spacer (all-zeroes state) 

 

TNOT Dual-rail NOT operation 
TOR Dual-rail OR operation 
TAND Dual-rail AND operation 
Dual-rail (differential) logic 

instructions using dual 

spacers (all-zeroes and all-

ones states) 

 

SNOT Dual-rail NOT operation 
SOR Dual-rail OR operation 
SAND Dual-rail AND operation 
Reversible logic instruction  
FGO Logic equivalent (with identical 

truth table) of Fredkin gate 
operation 

Dual-rail (differential) logic 

instructions 

 

DOR Dual-rail OR operation 
DAND Dual-rail AND operation 
 

Dual-rail (differential) logic 

instructions using a single 

spacer (all-zeroes state) 

 

TNOT Dual-rail NOT operation 
TOR Dual-rail OR operation 
TAND Dual-rail AND operation 
Dual-rail (differential) logic 

instructions using dual 

spacers (all-zeroes and all-

ones states) 

 

SNOT Dual-rail NOT operation 
SOR Dual-rail OR operation 
SAND Dual-rail AND operation 
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states) can be used during transmission for each of 
the two groups of three instructions, respectively. 
  
 The control unit (CU) issues the appropriate 
signals to be executed the current command. The 
CU also performs instruction fetching and decoding.        
It consists of sequential components such as an 
instruction register, index counter, program counter, 
another register, variable predicate logic controller, 
and combinational units, which are the address 
multiplexer and adder. Fig. 7 shows the internal 
architecture of the VPLP control unit. 
 

vplp_clk

dati

VPALUs_cu

RD

LD_cu

LDMV_cu

WR

MS_cu

LDB_cu

Bdec_cu

Binc_cu

Qrst

dato_cu

address

FLs_cu

FLd_cu

ADDER

REGISTER
ADDRESS 

MULTIPLEXER

PROGRAM 
COUNTER 

INDEX 
COUNTER

INSTRUCTION 
REGISTER

VARIABLE 
PREDICATE 

LOGIC 
CONTROLLER

 
Fig. 7: Realized VPLP control unit. 

 
 The instruction register is 16-bit. It holds the 

instruction fetched from PRAM. Every instruction is 
encoded in eight bits. Clock vplp_clk and reset Qrst 
signal lines are distributed to other control unit 
sequential components. A variable predicate logic 
controller (VPLCl) is the main component of the 
control unit. The VPLCl is realized as a finite state 
machine (FSM). Each state of the FSM corresponds 
to a different instruction encoded in eight bits. 
Depending on decoded instruction, other control 
signals are issued and sent to datapath, control unit 
components, and PRAM. These signals are required 
for proper instruction execution.  

PRAM data is transferred to the instruction 
register using signal lines dati. Data are also sent to 
signal lines dato_cu. The VPLCl output signal line 
VPALU_cu selects a VPALU operation. 

PRAM read or write operation is performed 
when RD or WR signals are applied. The select 
signal line MS_cu is coupled to the data multiplexer 
signal line MS (in Fig. 6). The following output 
signal lines are the load ones. Signal line LD_cu is 
set to load the accumulator A. Signal line LDMV_cu 
is used to load the multi-valued register. The next 
signal line LDB_cu applies to register B. When 
logic one is set to Binc_cu or Bdec_cu control 
signals, it is possible to increment or decrement the 
value of register B. 

The index counter (IC) can contain the operand 
address. The IC output line is connected to one 
address multiplexer inputs. 

Adder is implemented to calculate the operand 
address when a branch instruction is executed. It 
adds the offset value to the current program counter 
content. The result is loaded into the program 
counter.   

The additional register (located under VPLCl in 
Fig. 7) stores the program counter content.             
Later, this program counter could be loaded again 
with stored value.  

Address multiplexer selects the address signals 
from the program counter or the index counter.       
The selected address will appear on the address bus 
address.  

The Program Counter (PC) is an 8-bit digital 
component, and it holds the address of the next 
instruction, which must be executed. This PC needs 
to be incremented by one count for every instruction 
or two of them. Its output is the signal line PCout. 
Fig. 8 illustrates the Program Counter 
implementation.  
 

Q

Q
SET

CLR

DS1

S2

D

C ENB

Multiplexer 1
S1

S2

D

C ENB

Multiplexer 2Adder

A

B
S

D Flip-flop

ENA

CLK
PCclr
PCld1
PCld2
PCinc
PCin1
PCin2

PCout

00000001

ENB

 
Fig. 8:Implemented VPLP’s Program Counter. 
 

This electronic circuit consists of an 8-bit adder, 
an 8-bit register (denoted as a D flip-flop in Fig. 8), 
and two multiplexers (Mux1, Mux2). The register is 
incremented by one helped by the adder and 
corresponding signal line PCinc (in logic high).       
For this purpose, the input operand is used equally 
to the value one (0000 0001) placed on input B of 
this adder. The 8-bit register could be loaded using 
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two multiplexers and corresponding load signal 
lines PCld1 and PCld2. Two values are applied to 
8-bit input buses PCin1 and PCin2. For multiplexers 
to work properly, they must be enabled (ENB signal 
must be logic 1). 

The signal lines CLK and PCclr (connected to 
Qrst) are clock and reset signals correspondingly. 
Fig. 9  shows the VPLP reset circuit [68].       
 

D1
FLIP-FLOP

D2
FLIP-FLOP

vplp_clk

vplp_rst

Qrst

D

     D

Q1

Q2

CLR

CLR

 
Fig. 9: VPLP reset circuit. 

 
The main building blocks are two D flip-flops 

D1 and D2. Clock vplp_clk and reset vplp_rst signal 
lines are connected to both flip-flops. D input of the 
first D flip-flop is coupled to ground potential. Its 
output signal line (Q1) is connected to the D input 
of the second flip-flop. The output of the reset 
circuit is the signal line Qrst.  

The reset circuit is used to synchronize 
asynchronous VPLP reset signals (Qrst). It is 
avoided any potential problems with asynchronous 
reset using this presented circuit. 

 
 

4 Variable Predicate Logic Processor 

Testing   
The designed VPLP is connected to the PRAM 
module, as it is shown in Fig. 10.  
 

Multiplexer

S1

S2

C1

VPLP

PRAM

CONTROLLER

PRAM

vplp_rst

26

26
26

pram_rst

16

vplp_clk

Qrst

 
Fig. 10: Designed VPLP connected to PRAM. 

A test program is coded and loaded into memory 
using an additional PRAM controller and a 
multiplexer. VPLP and PRAM controllers have 
reset signals with different logic levels. VPLP has 
an active-high reset signal, and the PRAM controller 
uses an active-low reset signal. The reset signal 
(Qrst) is connected to the select input of the 
multiplexer (C1). In this way, when the PRAM 
controller works, VPLP is idle and vice versa.         
The PRAM reset signal is pram_rst.  

VPLP address bus, data (dato), and read/write 
signals are coupled to the first data input of the 
multiplexer (S1). The same signals of the PRAM 
controller are connected to the second data input of 
the multiplexer (S2). Another part of VPLP data bus 
information (dati) is transferred directly to the 
processor. Clock signal vplp_clk is distributed to 
VPLP, PRAM controller, and PRAM. Reset signal 
vplp_rst is connected to VPLP’s reset circuit input. 

During the VPLP verification phase, the results 
obtained from the test programs used for the earlier 
designed computer architectures [12],[36] are 
compared with those obtained using this new 
architecture. Then, the implemented further 
instructions are checked for correct work. It is done 
with the SignalTap II Embedded Logic Analyzer, 
which is a part of Quartus II design software [69] 
and Cyclone II FPGA Starter Development Board 
Σφάλμα! Το αρχείο προέλευσης της αναφοράς 

δεν βρέθηκε.. 
 

4.1 Test program 1 
The final step in the VPLP verification process is 
executing several test programs. One example of 
them, with short comments, is given below. 
 

o LDB  #$55AF   ; Register B is loaded with 
hexadecimal value “55AF” (timestamp – ts 
11). 

o LAB                  ; Accumulator A is loaded 
with hexadecimal value “55AF” (ts 15). 

o CNB                  ; Operation, logically equal 
to control-NOT, is executed between 8-bit 
numbers located in register B (ts 22). 

o FGO                   ; Operation, logically 
equal to Fredkin gate, is performed. 8-bit A 
operand is in the MSB of accumulator A.  
The other two 8-bit operands (B and C) are 
maintained in register B (ts 26). 

o LDB  #$AACD  ; Register B is loaded with 
hexadecimal value "AACD" (ts 35). 

o LAB                   ; Accumulator A is loaded 
with hexadecimal value “AACD” (ts 39). 
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o CNB                      ; Operation, logically 
equal to  control-NOT one, is executed 
between    8-bit numbers in register B (ts 
46). 

o FGO                      ; Operation, logically 
equal to Fredkin gate one, is performed. 8-
bit A operand is in the MSB of accumulator 
A.  The other two 8-bit operands (B and C) 
are maintained in register B (ts 50). 

o NOP                ; There is no processor 
operation (ts 54). 

o HLT               ; VPLP stops execution 
of any instructions (ts 58). 

 
The checked instructions in the above-presented 

test program are the LDB, LAB, CNB, FGO, NOP, 
and HLT ones. The SignalTap II Embedded Logic 
Analyzer’s captured data is compared with one 
based on theoretical calculations. The conclusion is 
that the designed VPLP works appropriately. The 
basic signals used in the verification process are 
shown in Table 2. 
 

Table 2. VPLP test signal legend. 
Key Signal name Signal explanation 

0 
vplp_rst 

 
 

VPLP reset signal  (It is 
assigned pushbutton 

KEY [0] 
to vplp_rst) 

1 
PRAM|address 

 
PRAM address 

 

2 
PRAM|dati 

 
PRAM input data 

 

3 
PRAM|dato 

 
PRAM output data 

4 
PRAM|RD 

 
PRAM read signal 

 

5 
PRAM|WR 

 
PRAM write signal 

6 
control_unit|VPLPcontroller 

|OPCODE 
 

Operation code of 
executed instruction 

7 
control_unit|PC|PCout 

 
Program counter output   

data 
 

8 
datapath|ACCA|Q1 

 
Accumulator A output 

data 
 

9 
datapath|REGB|regBout Register B output data 

 
 

The clock frequency of this variable predicate 
logic computer prototype in Figure 9 is 50 MHz 
(PIN_L1 of the Cyclone II FPGA Starter 
Development Board is connected to the vplp_clk 
signal Σφάλμα! Το αρχείο προέλευσης της 

αναφοράς δεν βρέθηκε.).  

An essential part of the collected data is included 
in Table 3. It is a portion of the created SignalTap II 
Embedded Logic Analyzer list file. The data in this 
Table 3  is captured using the clock (vplp_clk) as an 
acquisition signal. The VPLP reset signal (vplp_rst) 
is a trigger one. The signal keys from Table 2 are in 
the first row of Table 3. 

The sample depth of the SignalTap II Embedded 
Logic Analyzer data buffer is specified to get 128 
samples. Table 3 presents half of them. The first 
column contains the time in which the logic value of 
the test signals is registered. Minus sign (-) denotes 
a period before a trigger signal appears. 
 

Table 3. A part of SignalTap II Embedded Logic 
Analyzer list file. 

t  0 1 2 3 4 5 6 7 8 9 

-2 1 
00
h 

0000
h 

0000
h 0 0 

07
h 

00
h 

0000
h 

0000
h 

-1 1 
00
h 

0000
h 

0000
h 0 0 

07
h 

00
h 

0000
h 

0000
h 

0 0 
00
h 

0000
h 

0000
h 0 0 

07
h 

00
h 

0000
h 

0000
h 

1 0 
00
h 

0000
h 

0000
h 0 0 

07
h 

00
h 

0000
h 

0000
h 

2 0 
00
h 

0000
h 

0000
h 0 0 

07
h 

00
h 

0000
h 

0000
h 

3 0 
00
h 

0000
h 

0000
h 1 0 

07
h 

00
h 

0000
h 

0000
h 

4 0 
00
h 

0000
h 

171
Dh 0 0 

07
h 

00
h 

0000
h 

0000
h 

5 0 
00
h 

0000
h 

171
Dh 0 0 

07
h 

00
h 

0000
h 

0000
h 

6 0 
00
h 

0000
h 

171
Dh 0 0 

17
h 

00
h 

0000
h 

0000
h 

7 0 
00
h 

0000
h 

171
Dh 0 0 

17
h 

00
h 

0000
h 

0000
h 

8 0 
00
h 

0000
h 

171
Dh 0 0 

17
h 

00
h 

0000
h 

0000
h 

9 0 
01
h 

0000
h 

171
Dh 1 0 

17
h 

01
h 

0000
h 

0000
h 

10 0 
01
h 

0000
h 

55A
Fh 0 0 

17
h 

01
h 

0000
h 

0000
h 

11 0 
01
h 

0000
h 

55A
Fh 0 0 

17
h 

01
h 

0000
h 

55A
Fh 

12 0 
01
h 

0000
h 

55A
Fh 0 0 

1D
h 

01
h 

0000
h 

55A
Fh 
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Table 3. (continued) 

13 0 
01
h 

0000
h 

55A
Fh 0 0 

1D
h 

01
h 

0000
h 

55A
Fh 

14 0 
01
h 

0000
h 

55A
Fh 0 0 

1D
h 

01
h 

0000
h 

55A
Fh 

15 0 
01
h 

55A
Fh 

55A
Fh 0 0 

1D
h 

01
h 

55A
Fh 

55A
Fh 

16 0 
02
h 

55A
Fh 

55A
Fh 1 0 

1D
h 

02
h 

55A
Fh 

55A
Fh 

17 0 
02
h 

55A
Fh 

1B20
h 0 0 

1D
h 

02
h 

55A
Fh 

55A
Fh 

18 0 
02
h 

55A
Fh 

1B20
h 0 0 

1D
h 

02
h 

55A
Fh 

55A
Fh 

19 0 
02
h 

55A
Fh 

1B20
h 0 0 

1B
h 

02
h 

55A
Fh 

55A
Fh 

20 0 
02
h 

55A
Fh 

1B20
h 0 0 

1B
h 

02
h 

55A
Fh 

55A
Fh 

21 0 
02
h 

55A
Fh 

1B20
h 0 0 

1B
h 

02
h 

55A
Fh 

55A
Fh 

22 0 
02
h 

55A
Fh 

1B20
h 0 0 

1B
h 

02
h 

55A
Fh 

55F
Ah 

23 0 
02
h 

55A
Fh 

1B20
h 0 0 

20
h 

02
h 

55A
Fh 

55F
Ah 

24 0 
02
h 

55A
Fh 

1B20
h 0 0 

20
h 

02
h 

55A
Fh 

55F
Ah 

25 0 
02
h 

55A
Fh 

1B20
h 0 0 

20
h 

02
h 

55A
Fh 

55F
Ah 

26 0 
02
h 

55A
Fh 

1B20
h 0 0 

20
h 

02
h 

55A
Fh 

50FF
h 

27 0 
03
h 

55A
Fh 

1B20
h 1 0 

20
h 

03
h 

55A
Fh 

50FF
h 

28 0 
03
h 

55A
Fh 

171
Dh 0 0 

20
h 

03
h 

55A
Fh 

50FF
h 

29 0 
03
h 

55A
Fh 

171
Dh 0 0 

20
h 

03
h 

55A
Fh 

50FF
h 

30 0 
03
h 

55A
Fh 

171
Dh 0 0 

17
h 

03
h 

55A
Fh 

50FF
h 

31 0 
03
h 

55A
Fh 

171
Dh 0 0 

17
h 

03
h 

55A
Fh 

50FF
h 

32 0 
03
h 

55A
Fh 

171
Dh 0 0 

17
h 

03
h 

55A
Fh 

50FF
h 

33 0 
04
h 

55A
Fh 

171
Dh 1 0 

17
h 

04
h 

55A
Fh 

50FF
h 

 

Table 3. (continued) 

34 0 
04
h 

55A
Fh 

AAC
Dh 0 0 

17
h 

04
h 

55A
Fh 

50FF
h 

35 0 
04
h 

55A
Fh 

AAC
Dh 0 0 

17
h 

04
h 

55A
Fh 

AAC
Dh 

36 0 
04
h 

55A
Fh 

AAC
Dh 0 0 

1D
h 

04
h 

55A
Fh 

AAC
Dh 

37 0 
04
h 

55A
Fh 

AAC
Dh 0 0 

1D
h 

04
h 

55A
Fh 

AAC
Dh 

38 0 
04
h 

55A
Fh 

AAC
Dh 0 0 

1D
h 

04
h 

55A
Fh 

AAC
Dh 

39 0 
04
h 

AAC
Dh 

AAC
Dh 0 0 

1D
h 

04
h 

AAC
Dh 

AAC
Dh 

40 0 
05
h 

AAC
Dh 

AAC
Dh 1 0 

1D
h 

05
h 

AAC
Dh 

AAC
Dh 

41 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1D
h 

05
h 

AAC
Dh 

AAC
Dh 

42 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1D
h 

05
h 

AAC
Dh 

AAC
Dh 

43 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1B
h 

05
h 

AAC
Dh 

AAC
Dh 

44 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1B
h 

05
h 

AAC
Dh 

AAC
Dh 

45 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1B
h 

05
h 

AAC
Dh 

AAC
Dh 

46 0 
05
h 

AAC
Dh 

1B20
h 0 0 

1B
h 

05
h 

AAC
Dh 

AA6
7h 

47 0 
05
h 

AAC
Dh 

1B20
h 0 0 

20
h 

05
h 

AAC
Dh 

AA6
7h 

48 0 
05
h 

AAC
Dh 

1B20
h 0 0 

20
h 

05
h 

AAC
Dh 

AA6
7h 

49 0 
05
h 

AAC
Dh 

1B20
h 0 0 

20
h 

05
h 

AAC
Dh 

AA6
7h 

50 0 
05
h 

AAC
Dh 

1B20
h 0 0 

20
h 

05
h 

AAC
Dh 

22EF
h 

51 0 
06
h 

AAC
Dh 

1B20
h 1 0 

20
h 

06
h 

AAC
Dh 

22EF
h 

52 0 
06
h 

AAC
Dh 

0807
h 0 0 

20
h 

06
h 

AAC
Dh 

22EF
h 

53 0 06 AAC 0807 0 0 20 06 AAC 22EF
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h Dh h h h Dh h 

54 0 
06
h 

AAC
Dh 

0807
h 0 0 

08
h 

06
h 

AAC
Dh 

22EF
h 

 
 

Table 3. (continued) 

55 0 
06
h 

AAC
Dh 

0807
h 0 0 

08
h 

06
h 

AAC
Dh 

22EF
h 

56 0 
06
h 

AAC
Dh 

0807
h 0 0 

08
h 

06
h 

AAC
Dh 

22EF
h 

57 0 
06
h 

AAC
Dh 

0807
h 0 0 

08
h 

06
h 

AAC
Dh 

22EF
h 

58 0 
06
h 

AAC
Dh 

0807
h 0 0 

07
h 

06
h 

AAC
Dh 

22EF
h 

59 0 
06
h 

AAC
Dh 

0807
h 0 0 

07
h 

06
h 

AAC
Dh 

22EF
h 

60 0 
06
h 

AAC
Dh 

0807
h 0 0 

07
h 

06
h 

AAC
Dh 

22EF
h 

61 0 
06
h 

AAC
Dh 

0807
h 0 0 

07
h 

06
h 

AAC
Dh 

22EF
h 

 
4.2 Test program 2 
Another test program example is given below (with 
short comments). 
 
o LDA  #$0000        ; Register A is loaded with 
hexadecimal value “0000”. 
o LDB  #$4FB1       ; Register B is loaded with 
hexadecimal value "4FB1". 
o DECB           ;  The value in register B is 
reduced by one. 
o SWB                     ; A SWAP operation is 
executed. The result, according to the SWAP truth 
table, is contained again in register B. 
o CNB                      ; Operation, logically equal 
to control-NOT one, is executed between    8-bit 
numbers in register B. 
o NOP                     ; There is no processor 
operation. 
o HLT                ; VPLP stops execution of 
any instructions. 
 
 The checked instructions in the above-
presented test program are the LDA, LDB, DECB, 
SWB, CNB, NOP, and HLT ones. The SignalTap 
II Embedded Logic Analyzer’s captured data is 
compared again with one based on theoretical 
calculations. The conclusion is the same as the 
previous one that the designed VPLP works 
appropriately. The basic signals  (in particular the 

contents of registers A and B) used in the 
verification process are shown in Fig 11. 
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Fig. 11: SignalTap II wave diagram. 
 
 

4.3 Test program 3 
The third test program example is given below (with 
short comments). 
 
o LDC $0B            ; Index counter (IC) is 
loaded with hexadecimal value “0B”. 
o INC            ; IC is incremented  by 1. 
o LDAC              ;  Register A is loaded 
with hexadecimal value “55AA”. 
o INC                     ; IC is incremented  by 1. 
o CPAH                        ; The content of register A 
(high byte) is compared (subtracted) with the value 
of the memory cell addressed by the IC. 
o BIG $02                   ;  Branch if flag Greater is 
equal to one. 
o NOP                      ; There is no processor 
operation. 
o HLT                 ; VPLP stops execution of 
any instructions. 
o INC          ; IC is incremented  by 1. 
o STAC          ; The content of register A 
is stored in a cell with an address specified by the 
IC. 
o DEC           ; IC is decremented  by 1. 
o LDAC          ; Register A is loaded with 
hexadecimal value “00AA”. 
o DEC           ; IC is decremented  by 1. 
o STAC           ; The content of register A 
is stored in a cell with an address specified by the 
IC. 
o INC                    ; IC is incremented  by 1. 
o INC                    ; IC is incremented  by 1. 
o LDAC          ; Register A is loaded with 
hexadecimal value “55AA”. 
o DEC           ; IC is decremented  by 1. 
o STAC           ; The content of register A 
is stored in a cell with an address specified by the 
IC. 
o HLT                 ; VPLP stops execution of 
any instructions. 
 
 Memory cell with address $0C has an initial 
content $55AA. 
 Memory cell with address $0D has an initial 
content $00AA. 
 
 The checked instructions in the third test 
program are the LDC, INC, LDAC, CPAH, BIG, 
NOP, STAC, DEC, and HLT ones. The SignalTap II 
Embedded Logic Analyzer’s captured data is 
compared with one based on theoretical 

calculations. The conclusion is that the designed 
VPLP works well as it is shown in Fig 12 (in 
Appendix 1). 
 During VPLP testing have been used more than 
ten test programs of different lengths. All 
instructions belonging to the instruction set of the 
microprocessor have been checked and their 
operation is correct. 
 
 
5 Conclusions 
In this article, a novel variable predicate logic 
processor has been presented. The designed VPLP 
consists of a variable-logic datapath, control unit, 
reset circuit, and PRAM module to store 
information.  

Depending on the data and generated 
instructions, the datapath units perform the logical 
operations belonging to eight subsets of reduced 
predicate logic, including the predicate, Boolean, 
multi-valued (4-level), pseudo-quantum, reversible, 
and pair-wire logic styles. The logic change is 
realized on-the-fly if it is required. The processor 
can emulate in hardware many algorithms, including 
the AI operations and 2n  - dimensional Hilbert-
space pseudo-quantum computing. 

The proposed microprocessor architecture has 
been developed in three steps: the variable predicate 
logic gates design, PRAM realization, and final 
VPLP implementation in an FPGA board (Altera’s 
Cyclone II FPGA Starter Development Kit) with 
subsequent verification using several test codes. 

The invented variable predicate logic processor 
is interesting in accelerating artificial intelligence 
applications, enhancing hybrid quantum-classical 
architectures, molecular and pseudo-quantum 
calculations used in science, cryptography, 
computer-aided medicine, robotics, electronic 
security, etc. 
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Fig. 12: SignalTap II wave diagrams for the third test program. 
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