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 Abstract: - 3D Vertical Nanotube Field Effect Transistors (NTFETs) with various channel materials are analysed 
for 5nm gate length (LG) in this research work. The DC and RF studies are performed on NTFET devices with 
Silicon, Gallium Nitride (GaN), and SiliconGermanium (SiGe) as channel materials. The impact of variation of 
channel length, channel thickness, and temperature analysis on these devices have been studied. The ION/IOFF ratio 
of Si-NTFET, GaN-NTFET and SiGe-NTFET are found to be 2.7×108, 1.08×109, 1.69×108 respectively. GaN 
channel NTFET exhibits the lowest subthreshold swing (SS) of 33.1mV/dec with the highest cut-off frequency 
of 190 GHz. From the analysis, it is found that NTFET with GaN channel device outperforms the other two 
devices. 
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1 Introduction 
The nanoscale device experiences short channel 
effects (SCEs)[1] such as Drain-Induced Barrier 
Lowering (DIBL) and Gate-Induced Drain Leakage 
(GIDL) [2]. The multigate devices and Gate-all-
around (GAA) devices such as Nanowire[3]–[5], 
Nanotubes[6]–[10], Tunnel FET[11]–[14], 
FinFET[15]–[17] were proposed in the literature to 
reduce the SCEs [17]–[22]. Because these devices 
retain high driving capabilities and produce immune 
to SCEs due to their strong carrier confinement and 
channel control [23]–[26]. Nanotube Field Effect 
Transistor (NTFET) is one of the promising devices 
for low-power applications. Its hollow cylindrical 
shape contributes eventual electrostatic 
controllability to the gates [27]–[29]. NTFET is an 
improved version of nanowire FET[10]. Silicon-
based FET displays better drivability with good 
performance. GaN channel FETs have qualities such 
as high mobility, high saturation velocity, low 
electron mass and a large bandgap. [30]–[32].  GaN 
FET with high-ĸ dielectric produces a low leakage 
current with a high drive current of the device [33]–
[35]. 

In this research work, DC and RF analysis of the n-
type NTFET with different channel materials such as 
Silicon, Gallium Nitride (GaN), SiliconGermanium 
(SiGe) are analysed. The performance analysis is 
done by using the Sentaurus TCAD tool. For Si-
NTFET, GaN-NTFET, and SiGe-NTFET devices, 
input and output characteristics, transconductance 
(gm), and cut-off frequency (ft) are analysed. The 
study was performed on SiGe-NTFETs with various 
mole fractions. The DC characteristics are analysed 
for Si-NTFET, GaN-NTFET, and SiGe-NTFET 
devices with various gate length (LG).  
 

2 Device Structure 
NTFET device architecture is designed and material 
analysis is done by using the Sentaurus TCAD tool. 
The NTFET device structure and cross-sectional 
view are given in Fig.1. Inner and outer gate 
architecture is significant in NTFET because it helps 
to reduce the impact of SCEs. The inner gate is 
surrounded by HfO2 high-ĸ dielectric which could 
resolve the poor reliability issue caused by thin gate 
oxide [36], [37]. The thin gate oxide layer is 
surrounded by source/drain, source/drain extension, 
and channel. The channel is enveloped by the GAA 
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outer gate and outer gate oxide layer. Different 
channel materials such as Silicon, Gallium Nitride 
(GaN), SiliconGermanium (SiGe) are used.  

 

 

Fig.1. 3D vertical NTFET device and cross-

sectional view 

The parameters used in this work are given in Table 
1. Sentaurus Structure Editor is used to develop the 
devices, doping, and to generate meshes for Si-
NTFET, GaN-NTFET, and SiGe-NTFET. Sentaurus 
Workbench is used for performance analysis. Field 
and doping-dependent mobility degradations, as well 
as Shockley-Read-Hall (SRH), are utilized to 
simulate the NTFET device. Hurkx model provides a 
better evaluation of the Trap Assisted Tunneling 
current contribution to junction leakage current.   

Table 1.  Device Specification of NTFET 

Parameter NTFET 

Inner Gate Length (LIG) 130 nm 

Outer Gate Length (LOG) 5-70 nm 

Channel Thickness (tCH) 1.8-5 nm 

Inner Gate Diameter (DIG) 20 nm 

Outer Gate Diameter (DOG) 32 nm 

Source/Drain Length (LS /LD)  15 nm 

Source/Drain Extension Length (LSxtn 
/LDxtn) 

33 nm 

Oxide Thickness (TOX) 0.5 nm 

Doping Concentration in 
Source/Drain Region 

2×1020 cm-3 

(N+) 
Doping Concentration in 
Source/Drain Extension 

1×1020 cm-3 

(N+) 
 

 

 

3 Results and Discussion 
The transfer characteristics of Si-NTFET, SiGe-
NTFET, GaN-NTFET are plotted in Fig.2. NTFET 
with GaN as a channel material shows a better 
ION/IOFF ratio (1.08×109) compared to Silicon 
(2.7×108) and SiGe (1.69×108) due to its high 
bandgap energy. Wide bandgap semiconductor 
materials improve efficiency and power density.  
 

 

Fig.2. DC analysis of NTFET with various 

channel materials 

3.1 The effect of Gate Length (LG) 
The study has been performed for Si-NTFET, SiGe-
NTFET, GaN-NTFET for different outer gate 
lengths, between 5 nm and 70 nm (Fig.3 (a, b, c)).  

 

Fig.3(a).  DC analysis of Si-NTFET with various 

gate length 

Based on this investigation, it is discovered that Si-
NTFET, GaN-NTFET, and SiGe-NTFET have 
higher drive current even for reduced gate length, 
which is attributed to the NTFET device’s excellent 
drain velocity at the drain side. Scaled-down NTFET 
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device shows better device drivability [38]. The 
leakage current of the NTFET decreases as the gate 
length increases. 

 

Fig.3(b).  DC analysis of GaN-NTFET with 

various gate length 

 

Fig.3(c). DC analysis of SiGe-NTFET with various 

gate length 

3.2 The effect of Channel Thickness (tCH) 

 

Fig.4(a).  DC analysis of Si-NTFET with various 

Channel Thickness (tCH)  

Fig. 4(a), 4(b), and 4(c) show the DC characteristics 
of Silicon, GaN, SiGe-NTFET for different channel 
thicknesses for a gate length of 5nm. As the channel 
thickness (tCH) increases, the ION/IOFF ratio decreases 
with an increased value of SS. The thin tCH reduces 
the leakage current. This indicates that the smaller tCH 
value has higher electrostatic control of the inner and 
outer gate over the channel. Compared to Silicon and 
SiGe channel devices, GaN-NTFET shows a better 
ION/IOFF ratio because of its higher electron mobility.  

 

Fig.4(b). DC analysis of GaN-NTFET with 

various Channel Thickness (tCH) 

 

Fig.4(c). DC analysis of SiGe-NTFET with various 

Channel Thickness (tCH) 

Fig.5 shows the effect of tCH on the leakage current, 
drive current, and SS of Si, GaN, SiGe-NTFET 
devices. For reduced channel thickness the gate 
control is good which reduces the lateral field effects 
from the drain end. The threshold voltage of Si, GaN, 
and SiGe devices increases as the tCH decreases 
(Fig.5(a)). The subthreshold swing is gently reduced 
with thin tCH  (fig 5(b)). Fig.5(c) compares the ION/IOFF 
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ratio of Si-NTFET, GaN-NTFET, SiGe-NTFET with 
different channel thicknesses. ION/IOFF ratio of GaN-
NTFET is higher than Si and SiGe-NTFET. As 
shown in Fig.5(d) the OFF-state current (IOFF) of 
GaN-NTFET is the lowest among the three devices. 
From these analyses, it is found that GaN-NTFET 
outperforms the other devices due to its high electron 
mobility. 

 

Fig.5 (a) Threshold Voltage (VTH) (b) 

Subthreshold swing (c) ION/IOFF ratio (d) OFF-

state current of Si, GaN, SiGe-NTFET at 

different thickness Channel (tCH) 

3.3 The effect of Si(1-x) Gex mole fraction 
Fig.6 represents the drain current of Si(1-x) Gex-
NTFET for various mole fractions. 

Table 2. ION, IOFF, VTH, SS values of Si1-xGex-NTFET 

for various mole fraction 

Si1-xGex ION 

(A/µm) 
IOFF 

(A/µm) 
VTH 

(V) 
SS 

(mV/dec) 

Si0.1Ge0.9 1.22×10-3 2.78×10-11 0.47 39.2 
Si0.2Ge0.8 1.17×10-3 1.97×10-11 0.48 38.5 
Si0.3Ge0.7 1.10×10-3 8.52×10-12 0.511 37 
Si0.4Ge0.6 1.06×10-3 6.26×10-12 0.52 36.4 
Si0.5Ge0.5 1.03×10-3 5.30×10-12 0.524 36.1 
Si0.6Ge0.4 8.56×10-4 1.06×10-12 0.57 33.6 
Si0.7Ge0.3 8.44×10-4 1.73×10-13 0.62 30.9 
Si0.8Ge0.2 7.61×10-4 1.52×10-14 0.67 28 
Si0.9Ge0.1 7.26×10-4 8.60×10-15 0.69 27.4 

 
It is found that as the mole fraction of Ge in                
Si(1-x)Ge(x) increases, the band gap shrinks, and carrier 
mobility increases, which leads to a higher drive 
current. In Table 2 ION, IOFF, VTH, SS values of Si(1-x) 
Ge(x) for various mole fraction are given. 
 

 

Fig.6 DC analysis of SiGe-NTFET with various 

mole fraction 

3.4 Temperature Analysis 

 

 

Fig.7(a) OFF-state current (IOFF) (b) ION/IOFF ratio (c) 

Subthreshold swing (SS) (d) Threshold Voltage (VTH) 

of Si, GaN, SiGe-NTFET at different temperature 

The temperature analysis of Si, GaN, SiGe-NTFET 
is plotted in fig.7. Fig 7(a) shows the leakage current 
vs temperature. The leakage current (IOFF), threshold 
voltage (VTH) and SS of GaN are greatly reduced and 
good ION/IOFF ratio is maintained even for high 
temperature which is shown in fig7(b), (c) and (d) 
due to high band gap of GaN.  

3.5 Output Characteristics 
Further analysis has been performed for LG of 5nm 
and channel thickness (tCH) of 5nm. The output 
characteristics of the Si-NTFET, GaN-NTFET, 
SiGe-NTFET plotted for gate voltage (VGS) are swept 
from 0.3V to 1.5V (Fig.8). The ON-state current (ION) 
is low for a VGS of 0.3V due to the wider barrier 
width. The ON-state current increases as VGS is 
increased from 0.3V to 1.5V. 
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Fig.8. Drain current Vs Drain voltage of NTFET 

with different materials 

3.6 Transconductance and cut off frequency 
In Fig.9 the transconductance characteristics of Si-
NTFET, GaN-NTFET, SiGe-NTFET are plotted for 
VDS=0.3V. From Fig.9, it is noted that the value of 
transconductance steadily increases as VGS extends 
from 0V to 1.5V. The trans-conductance increases as 
the control over the gate is enhanced. The 
transconductance is greatly high for GaN-NTFET 
than for Si-NTFET and SiGe-NTFET. The 
transconductance is impacted by the drain current 
(1): 

gm =
∆ID
∆VGS

 
(1) 

  

 

Fig.9. Transconductance characteristics of Si-

NTFET, GaN-NTFET, SiGe-NTFET 

 

Fig.10. Cut off Frequency for Si-NTFET, GaN-

NTFET, SiGe-NTFET 

The frequency at which the current gain equals unity 
is denoted as the cut-off frequency (ft) and can be 
represented mathematically (2) 

ft =
gm

2πCGG
 

 

 
(2) 

The leakage current of GaN-NTFET is improved by 
17.37% compared to Si-NTFET and by 77.54% 
compared to SiGe-NTFET. The transconductance of 
GaN-NTFET is improved by 29.92% compared to Si-
NTFET and by 60.36% compared to SiGe-NTFET. 
The cut-off frequency of GaN-NTFET is improved 
by 29.25% compared to Si-NTFET and by 59.66% 
compared to SiGe-NTFET. In terms of Subthreshold 
Swing (SS), GaN-NTFET is decreased by 6.76% and 
8.31% compared to Si-NTFET and SiGe-NTFET 
respectively. The comparison of Si-NTFET, GaN-
NTFET, and SiGe-NTFET for the various parameters 
such as ION, IOFF, ION/IOFF, VTH, SS, gm, fT is shown in 
Table 3. 

Table 3. Comparison of Si-NTFET, GaN-

NTFET, SiGe-NTFET for LG=5nm, tCH=5nm 

Material Silicon GaN SiGe 

ION (A/µm) 1.06×10-3 1.94×10-3 1.06×10-3 

IOFF (A/µm) 1.44710-12 1.19×10-12 6.26×10-12 

ION/IOFF 2.70×108 1.08×109 1.69×108 

VTH (V) 0.53 0.56 0.52 

SS(mV/dec) 35.5 33.1 36.4 

gm (S) 1.37×10-3 1.78×10-3 1.11×10-3 

ft (GHz) 147 190 119 

The performance comparison of GaN channel 
NTFET and SiGe channel NTFET are compared with 
reported NTFET and NWFET devices as given in 
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Table 4. The proposed novel GAA GaN channel 
NTFET shows a 55% improvement in SS and the 
ION/IOFF ratio is improved by 4 magnitudes compared 
to the work reported in [7]. Compared to GaN-
NWFET [39], the SS is improved by 57% and the 
ION/IOFF ratio is improved by 4 magnitudes. 

Table 4. Performance comparison of GaN, SiGe-

NTFET and GaN, SiGe-NWFET at same gate length 

(LG) and channel thickness (tCH) 

Ref Mater

ial 
Device 

LG 

(nm) 

tCH 

(nm) 

SS 

(mV/d

ec) 

This 
Work GaN NTFET 5 1.8 28 

[7] GaN NTFET 5 1.8 ~63 
This 

Work GaN NTFET 5 1.6 27.1 

[7] GaN NTFET 5 1.6 63.8 
[39] GaN NWFET 5 1.6 65.7 
This 

Work SiGe NTFET 7.5 5 34.38 

[40] SiGe NW-
FinFET 7.5 5 - 

 

4 Conclusion 
Silicon, GaN, SiGe based NTFET have been 
simulated. The results of important metrics like ON-
state current (ION), OFF-state current (IOFF), 
subthreshold swing (SS), transconductance (gm), and 
cut-off frequency (ft) have been compared for Si-
NTFET, GaN-NTFET, and SiGe-NTFET. From this 
study, GAA double gate GaN-NTFET results in the 
lowest leakage current. This shows that GaN-NTFET 
has good control over the channel due to its high 
electric field strength and electron mobility. GaN 
NTFET outperforms in terms of ION/IOFF ratio, 
transconductance, and cut-off frequency. 
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