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Abstract: - Copying the quantum states is contradictory to classical information processing since the fundamental 

difference between classical and quantum information is that while classical information can be copied perfectly, 

quantum information cannot. However, this statement does not rule out the risk of building a device that can 

reproduce a set of quantum states. This paper investigates the naturally arising question of how well or under 

what conditions one can copy and measure an arbitrary quantum superposition of states. The CNOT and XOR 

operation-based quantum circuit is presented that exhibits entanglement of states and allows for measuring the 

doubled qubits.  
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1 Introduction 

As In 1982, Wootters and Zurek showed that no 

unitary process could create exact copies of arbitrary 

quantum states [1]. The statement that non-

orthogonal quantum states cannot be copied was also 

made by Dieks [2], and new no-cloning theorems can 

be found in [3,4]. Many publications exist devoted to 

the no-cloning theorem that uses the linearity and 

unitarity of the copying transformations [5-7], perfect 

cloning of no commuting mixed states [8], perfect 

cloning with assistance [9], multiple copying of 

qubits [10,11], supplementary information [12], the 

additional measurement for probabilistic quantum 

cloning [13,14], cloning of identical mixed qubits 

[15], cloning with the local operation and classical 

communication [16], and unclonable encryption [17]. 

With such an assertion, quantum computing theory 

has become particularly distinctive from computing 

on traditional computers. In addition, such theorems 

were used to justify the security of quantum 

cryptography [18,19].  

The main goal of this work is to show that copies 

of qubits can be nested in other more complex states 

of systems with a large number of qubits, from where 

they can be measured and processed. We illustrated 

it, by presenting a quantum circuit that exhibits 

entanglement of states and allows for measuring the 

doubled qubits.  

The rest of the paper is organized in the following 

way. Section 2 discusses the well-known statement 

about the impossibility of copying qubits. Section 3 

analyses a simple quantum circuit with two CNOT 

and XOR operations for nesting the doubled qubits in 

3- qubit. Such a circuit allows us to observe and 

measure the duplicated states of a qubit. 
 

2 Problem Formulation 

In this section, we discuss the known statement 

about copying qubits. The unitary operator 𝑈 for 

performing such a copy of an individual qubit in a 

superposition 

|𝜑⟩ = 𝑎|0⟩ + 𝑏|1⟩ = [
𝑎
𝑏
] 

is considered to be the 2-qubit operator  

𝑈(|𝜑⟩|0⟩) ≜ 𝑈(|𝜑⟩⨂|0⟩) = |𝜑⟩
2
= |𝜑⟩|𝜑⟩

≜ |𝜑⟩⨂|𝜑⟩.                       (1) 

Here, the amplitudes are such that 𝑎2 + 𝑏2 = 1 (or 

|𝑎|2 + |𝑏|2 = 1 in the complex case). Also, |0⟩ and 

|1⟩ denote the quantum computational basis states 

of the single qubit,  

|0⟩ = [
1
0
],     |1⟩ = [

0
1
], 

and ⨂ is the operation of the tensor product, or 

Kronecker product, of vectors. 

When measuring the qubit, by using the Hermitian 

projection on the basis |0⟩ and |1⟩, the probability of 

the outcome |0⟩ is 𝑎2 and the probability of outcome 

|1⟩ is 𝑏2. The axioms of quantum mechanics 
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demonstrate that after the measurement, a qubit is 

collapsed to the measured basis state so that a qubit 

will be destroyed in this measurement. Thus, we may 

perhaps state the well-known no-cloning theorem: no 

quantum procedure exists that can reproduce 

perfectly an arbitrary quantum state. Therefore, the 

measurement is irreversible; in contrast, it is pretty 

easy to copy information, even in a reversible manner 

in classical computers. It means that using the well-

known teleportation protocol, we may create a 

perfect replica of the original qubit, but this will be at 

the cost of destroying information encoded in the 

original qubit [10,18]. Thus, a) if we are only 

interested in producing imperfect copies, then it is 

possible to design machines (actually, to find unitary 

transformations) that can copy quantum states, b) if 

we do two identical copies, then the quality of these 

copies depends on the input state; and c) we may 

formulate the quantum copying problem goal is to 

produce a copy of the initial qubit, which is as close 

as possible to the original state, while the output state 

of the original qubit is minimally disturbed [18]. 

However, this theorem does not rule out the 

possibility of building a device that can copy a 

particular set of orthonormal quantum states [20]. In 

quantum computing, the CNOT operation does not 

allow copying the qubits, as in traditional computing, 

when copying the bits. In a digital computer, when 

copying a bit, a new cell is allocated in the computer's 

memory, the value of the bit is read, and then this 

value is written to the cell. Such a read-write-out 

procedure is likely to take place in quantum systems. 

Undoubtedly, other operators and quantum circuits 

are needed here. For each state of a qubit, probably 

somewhere in space, an identical state is reproduced. 

Maybe it is not in its pure form, but in some entangled 

state with other qubits. In other words, it is possible 

that such copies can be nested in other shells of 

systems with a large number of qubits, from where 

they can be measured and processed. 
 

2.1 No Cloning Qubits 

Let us consider the common calculations in the 

statement of copying qubits. We consider the qubit 

in the Hadamard superposition  

|𝜑⟩ = (|0⟩ − |1⟩)/√2. 

If a unitary transform 𝑈 copies this qubit and it is a 

linear operator, we obtain two qubits in the following 

state: 

𝑈(|𝜑⟩|0⟩) =
1

√2
(𝑈(|0⟩|0⟩) − 𝑈(|1⟩|0⟩))

=
1

√2
(|0⟩|0⟩ − |1⟩|1⟩)

=
1

√2
(|0,0⟩ − |1,1⟩). 

The state of doubled qubits is  

|𝜑⟩
2
= |𝜑⟩|𝜑⟩ = (

|0⟩ − |1⟩

√2
)⨂(

|0⟩ − |1⟩

√2
)

=
1

2
(|0,0⟩ + |1,1⟩ − |0,1⟩

− |1,0⟩). 

Thus, we obtain different 2-qubit quantum 

superpositions 𝑈(|𝜑⟩|0⟩ and |𝜑⟩|𝜑⟩. What we use 

in the above calculations is the assumption that if 

an unitary operator copies a single qubit in the 

superposition |𝜑⟩, then it copies any other 

superposition |𝜓⟩ = 𝑐|0⟩ + 𝑑|1⟩ of the qubit, i.e.,  

 

𝑈(|𝜑⟩|0⟩) = |𝜑⟩|𝜑⟩⏟             → 𝑈(|𝜓⟩|0⟩) = |𝜓⟩|𝜓⟩⏟            .  (2)  

 

2.1.1 Matrix of the Transformation  

We can consider the quantum states |𝜑⟩|0⟩ and 
|𝜑⟩|𝜑⟩ as 4-D vectors, 

|𝜑⟩|0⟩ = |𝜑, 0⟩ = 𝑎|00⟩ + 𝑏|10⟩ = [

𝑎
0
𝑏
0

]      (3) 

and 

|𝜑⟩|𝜑⟩ = |𝜑, 𝜑⟩ = 𝑎2|00⟩ + 𝑎𝑏(|01⟩ + |10⟩)

+ 𝑏2|11⟩  = [

𝑎2

𝑎𝑏
𝑎𝑏
𝑏2

].                     (4) 

We are looking for a 4×4 unitary matrix 𝑼, such 

that 

𝑼[

𝑎
0
𝑏
0

] = [

𝑡0,0 𝑡0,1 𝑡0,2 𝑡0,3
𝑡1,0 𝑡1,1 𝑡1,2 𝑡1,3
𝑡2,0 𝑡2,1 𝑡2,2 𝑡2,3
𝑡3,0 𝑡3,1 𝑡3,2 𝑡3,3

] [

𝑎
0
𝑏
0

] = [

𝑎2

𝑎𝑏
𝑎𝑏
𝑏2

].  (5) 

 

It is clear that the coefficients of such a matrix will 

be defined by the values of inputs, 𝑎 and 𝑏. Unitary 

transformations for copying qubits are parameterized 

by amplitudes of quantum superpositions of states of 

the qubits. They are not universal, i.e., they cannot 

copy any qubits. It is clear that additional operators 

are needed to complete this task. The only operators 

that can be used in additional to the unitary 

transforms are operators of measurement, or 
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projection operators. However, in order to use them, 

we need to first include the required 2-qubit in a 

system with a large number of qubits. 

 

 

3 Quantum Circuit for Nesting 

Doubled Qubits 
This section presents a method of nesting the 

doubled qubits in a larger state. In other words, we 

discuss the circuit which might be used to calculate 

the doubled qubits in arms of 3-qubit. The 

measurement and separation of states of doubled 

qubits are described.  

Let us consider a qubit in the state |𝜑⟩ = 𝑎|0⟩ +
𝑏|1⟩ with the required condition that |𝛼|2 + |𝑏|2 =
1. These coefficients are considered real. The 

duplicated copy of this state is the 2-qubit state 

|𝜑2⟩ ≜ |𝜑⟩|𝜑⟩ = 𝑎2|00⟩ + 𝑏2|11⟩ + 𝑎𝑏|01⟩ +
 𝑎𝑏|10⟩.                                                               (6) 

When applying the CNOT operator (X) with 

control qubit |𝜑⟩ and controlling (target) state |0⟩, 
the result is the 2-qubit state  

|𝜓⟩ ≜ 𝑋[|𝜓⟩, |0⟩] = 𝑋[𝑎|0⟩ + 𝑏|1⟩, |0⟩] =
                                           𝑎|00⟩ + 𝑏|11⟩,          (7) 

as it is illustrated in Fig. 1. This operation changes 

the 2nd qubit state |0⟩ to |1⟩, when the control qubit 

is |1⟩, i.e., 𝑋[|1⟩, |0⟩] = |1⟩|1⟩ = |11⟩. Except for 

the cases when 𝑎 = 0 and 𝑏 = 0, the states |𝜑2⟩ 
and |𝜓⟩ are different. Thus, the qubit in its general 

state is not copying by this circuit with the CNOT 

gate.    

 

 

Figure 1 The circuit with the CNOT operation. 

 

Now, we apply the second CNOT operator with 

a new control qubit in the state |𝜙⟩ =(|0⟩ +

|1⟩)/√2. This qubit can be obtained, by using the 

Walsh-Hadamard gate 𝐻 on the basis state |0⟩, 

𝐻|0⟩ =
1

√2
[
1 1
1 −1

] |0⟩ =
|0⟩ + |1⟩

√2
. 

The target is the second qubit of the 2-qubit state 

|𝜓⟩ = 𝑎|00⟩ + 𝑏|11⟩. The result of this operation is 

the following superposition of 3-qubit (without 

coefficient 1/√2):  

|𝜒⟩ = 𝑋[|𝜙⟩, |𝜓⟩]2
= 𝑋[|0⟩ + |1⟩, 𝑎|00⟩ + 𝑏|11⟩]2   
= 𝑋[|0⟩, 𝑎|00⟩ + 𝑏|11⟩]2
+ 𝑋[|1⟩, 𝑎|00⟩ + 𝑏|11⟩]2 

= 𝑎|000⟩ + 𝑏|011⟩ + 𝑎|101⟩ + 𝑏|110⟩.      (8) 

We consider the 3-qubit permutation (1,5)(2,6), 
for which we will use the gate shown in Fig. 2 in part 

(a) and call it the 2-XOR operator. This permutation 

is  

𝑃(1,5),(2,6): (0,1,2,3,4,5,6,7)  → (0,5,6,3,4,1,2,7). 

The matrix of this permutation can be written as   

𝑷 = [
𝑨 𝑩
𝑩 𝑨

] ,   𝑨 = [

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

],    

𝑩 = [

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

]. 

The logic element in this figure is not a Toffoli 

gate over 3-qubit state, which performs the 

permutation (6,7). The circuit representation of the 

Toffoli gate is shown in part (b). 

 

(a)                                            (b)      

Figure 2  Circuit representation of the 3-qubit permutations (a) 

(1,5)(2,6) and (b) (6,7). 

Applying this operator on 3-qubit in superposition of 

Eq. 8, we obtain the following state: 

|𝜉⟩ = 𝑎|000⟩ + 𝑏|010⟩⏟          + 𝑎|100⟩ + 𝑏|110⟩⏟          

= 𝑎|00⟩ + 𝑏|01⟩⏟        |0⟩

+ 𝑎|10⟩ + 𝑏|11⟩⏟        |0⟩. 

It is a superposition of the first four basis states |0⟩, 
|1⟩, |2⟩, and |3⟩. Now, considering the normalization 

coefficient 1/√2, we obtain 

|𝜑⟩ = 𝑎|0⟩ + 𝑏|1⟩ 

𝑎|00⟩ + 𝑏|11⟩ 
Q2 |0⟩ 

Q1 
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|𝜉⟩ =
𝑎|00⟩ + 𝑏|01⟩

√2
|0⟩ +

𝑎|1 ⟩ + 𝑏|11⟩

√2
|0⟩,   (9) 

One can note that the second qubit is in state |𝜑⟩ =
𝑎|0⟩ + 𝑏|1⟩. The abstract circuit for calculating this 

3-qubit |𝜉⟩ is given in Fig. 3 (in Appendix). The 

same diagram in compact form is shown in Fig. 

4 (see Appendix). 

Now, we consider the doubled qubits |𝜑⟩2. When 

measuring the first qubit of |𝜑⟩2, we obtain the state 

|(𝜑2)0⟩ = 𝑎|00⟩ + 𝑏|01⟩, with the probability 𝑎
2, 

and the state |(𝜑2)1⟩ = 𝑎|10⟩ + 𝑏|11⟩ with 

probability 𝑏2. As follows from Eq. 9, the 3-qubit 

superposition |𝜉⟩ can be written as 

|𝜉⟩ =
|(𝜑2)0⟩|0⟩ + |(𝜑

2)1⟩|0⟩

√2

=
|(𝜑2)0⟩ + |(𝜑

2)1⟩

√2
|0⟩.           (10) 

Measuring the first qubit of |𝜉⟩, we obtain with the 

same probability 0.5 the following two states. If the 

measured qubit state is 0, the state will be  

|𝜉⟩0 = 𝑎|000⟩ + 𝑏|010⟩ = (𝑎|00⟩ + 𝑏|01⟩)|0⟩  
= |(𝜑2)0⟩|0⟩.                              (11) 

If the measured first qubit state is 1, then the state will 

be  

|𝜉⟩1 = 𝑎|100⟩ + 𝑏|110⟩ = (𝑎|10⟩ + 𝑏|11⟩)|0⟩
= |(𝜑2)1⟩|0⟩.                            (12) 

Thus, after measuring the first qubit in the 3-qubit 

state |𝜉⟩, in the first two qubits of the measurement 

we obtain one of the states of the doubled qubits |𝜑⟩2, 

namely  

|(𝜑2)0⟩ = 𝑎|00⟩ + 𝑏|01⟩    

or    

 |(𝜑2)1⟩ = 𝑎|10⟩ + 𝑏|11⟩. 

The last qubit of both measurements is 0. The full 

circuit of processing the given qubit |𝜑⟩ and 

measuring the doubled qubits nested in the 3-qubit 

state is shown in Fig. 5 (in Appendix). The parameter 

of measurement 𝑀 = 0 or 1 when the measured first 

qubit is 0 or 1, respectively. 

Thus, this circuit shows that the doubled qubits 

can be nested in the 3-qubit state, namely in the first 

two qubits of this state. The output of this scheme is 

a kind of shell containing doubled qubits, from where 

they can be measured. 

Algorithm of nesting and measuring the doubled 

qubits in the 3-qubit state: 

1. |𝜓⟩ = 𝑋(|𝜑⟩⊕ |0⟩). 
2. |𝜙⟩ = 𝐻|0⟩. 
3. |𝜒⟩ = 𝑋[|𝜙⟩, |𝜓⟩]2. 

4. |𝜉⟩ = 𝑃(1,5),(2,6)|𝜒⟩. 

5. Measurement: |𝜉⟩ → {(1 − 𝑀)|(𝜑2)0⟩ +
𝑀|(𝜑2)1⟩, |0⟩}. 

6. The doubled qubits are described by the 

first two qubits of the measured 3-qubit, 

|𝜑⟩2 ≈ |𝜉⟩𝑀 = (1 −𝑀) [𝑎|00⟩ + 𝑏|01⟩⏟        ]

+𝑀 [𝑎|10⟩ + 𝑏|11⟩⏟        ], 

when 𝑀 = 0 or 1. 

Each of these measured 2-qubit superpositions 

carries information of the original qubit |𝜑⟩;  

|𝜉⟩0 = 𝑎|00⟩ + 𝑏|01⟩ = |0⟩|𝜑⟩    and    |𝜉⟩1 =
𝑎|10⟩ + 𝑏|11⟩ = |1⟩|𝜑⟩. 

Measuring any of these 2-qubits, we obtain the 

original qubit |𝜑⟩.   

 

4 Conclusion 
The main challenges in quantum computing are not 

only in developing algorithms and quantum circuits. 

The accurate measurement of the calculated multi-

qubit state is also a difficult task to be solved. Unlike 

the calculation in the traditional computer, in 

quantum computing, many measurements are 

required, i.e., the circuit should be run repeatedly. 

The quantum circuits to get only the copy of the 

qubit, i.e., the doubled qubits, are unknown, namely, 

such circuits do not exist, according to what is said in 

the current literature. In this paper, we present a 

quantum circuit with CNOT operations, Hadamard 

gate, permutation and measurement, which shows the 

doubled qubits in two qubits of the calculated 3-qubit 

state. In other words, we have shown that there exist 

quantum schemes that allow us to measure doubled 

qubits. As stated in the introduction, in this work we 

presented our vision of transforming and copying 

qubits. 
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5 Appendix  

 

 

 

Figure 3 The 3-qubit circuit with two CNOT and 2-XOR operations. 

 

 

 

Figure 4 The 3-qubit circuit with two CNOT operations and 2-XOR operations. 

 

 

 

Figure 5 The 3-qubit circuit with measurement of the duplicated qubit. 
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