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Abstract: The terms of the Galois matrices G , as well as those bijectively associated with them the Fibonacci 
matrices F  connect by the operator of the right-hand transposition (that is, transposition to the auxiliary 
diagonal), are borrowed from the theory of cryptography, in which generators of pseudorandom number (PRN) 
widely use according to Galois and Fibonacci schemes (in configuration). A distinctive feature of both the G  
and F  matrices is that the identical binary sequences can programmatically calculate the sequences formed by 
the PRN generators. The latter's constructions are based on linear feedback shift registers, implemented by 
software or hardware methods in Galois and Fibonacci architecture. The proposed generalized Galois matrices, 
discussed in the Chapter, significantly expand the variety of PRN generators. That is achieved both by increasing 
the number of generating elements   (in the classical version used a single element  = ) and since generalized 
generators can construct not only using PRN but also polynomials, not necessarily (as in classical generators), 
which are primitive. The listed features of generalized Galois matrices provide PRN generators with significantly 
higher cryptographic security than generators based on conventional matrices. 
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1 Introduction  
In the theory and practice of cryptographic 
information protection, one of the most critical 
problems is constructing generators of 
pseudorandom numbers (PRN) of the maximum 
length (period) with good statistical properties. 

There are two main types of PRN generators built 
using hardware or software. The first class of 
generators is made based on linear feedback shift 
registers (LFSR) in Galois or Fibonacci 
configurations (according to schemes) [1, 2]. The 
structural-logic diagrams of classical LFSR 
generator's PRN are uniquely defined by their 
generating primitive polynomials (PrP), through 
which the single-loop feedbacks in the shift registers 
are established [3, 4]. The software-implemented 
PRN generators, which make up the second class of 
generators, can also be built based on LFSR.  

This Chapter focuses on constructing generalized 
matrix PRN generators in Galois and Fibonacci 
configurations [5, 6]. The terms of the Galois matrix 
G  and those objectively associated with them by the 
operator of the right-hand transposition (i.e., 
transposition to the auxiliary diagonal [7]) of the 

Fibonacci matrix F  borrowed from cryptography 
theory. The Galois and Fibonacci matrices will be 
called PRN generators. 

In addition to the named base (initial) matrices 
G  and F , the so-called conjugate matrices G  and 

F  introduce in the Chapter, which forms by the 
classical (left-sided) transposition to the main 
diagonal of the corresponding initial matrices. For 
simplicity, the set of matrices 
   , , ,   =Q G F G F , which does not lead to 
ambiguity, will be called "Galois matrices". All 
Galois matrices can obtain by linear transformations 
of the left-sided and right-sided transposition of the 
Frobenius [8] standard form: 
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called in linear algebra the accompanying matrix of 
the unitary polynomial 
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The possibilities of using Frobenius matrices (1) 
for constructing a PRN generator based on the 
following properties n . First, if as a polynomial 

( )n x  we choose a unitary irreducible polynomial 

nf , represented by its vector form (by the set of 
polynomial coefficients)  
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then the matrix n  goes into the Fibonacci matrix 
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And secondly, matrix (2) generates a linear 
recurrent m − sequence 0 1, , ,k    by 
transforming 
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for all 0k  . 

Let's pay attention to that recursion feature (3). 
All high elements 1 2 ( 1)k k k n  + + + −  of the output 
vector outV  are contained in the set of components of 
the input vector in 1 ( 1)k k k n  + + −=V . The only 

unknown part k n +  of the vector outV  determined, 
according to relations (2), (3), by the scalar product 
of vectors inV  and 0 1 2 1k n n    − −=A , i.e. 

 0 1 1

1 1

(
) mod

k n k k

k n n p

    

 

+ +

+ − −

= + +

+
. (4) 

Calculating a sequence of vectors outV  will be 
formative to illustrate the fourth-order Fibonacci 
matrix 4F  generated by the binary PrP 4 10011f =  

 4
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0 1 0 0
0 0 1 0

 
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 

F , (5) 

generated by the binary PrP 4 10011f = . As the 
initialization vector, let us designate it as 

nV , on the 
left side of the expression (3), you can choose any 
non-zero binary vector of the fourth-order. Let this 
be the vector 4 1011=V . The calculation results by 
formulas (3)-(5) of the recursive sequence are 
summarized in Table 1. 

Table 1. The sequence of the state of the Fibonacci  
PRN generators generated PrP 4 10011f =  

Step 
(k) 

The elements of outV   Step 
(k) 

The elements of outV  
0 1 2 3 0 1 2 3 

0 1 1 0 1 8 1 0 0 0 
1 1 0 1 0 9 0 0 0 1 
2 0 1 0 1 10 0 0 1 0 
3 1 0 1 1 11 0 1 0 0 
4 0 1 1 1 12 1 0 0 1 
5 1 1 1 1 13 0 0 1 1 
6 1 1 1 0 14 0 1 1 0 
7 1 1 0 0 15 1 1 0 1 

The shading in Table 1 highlights the vector that 
coincides with the initialization vector. The number 
of non-repeating non-zero vectors generated by the 
Fibonacci generator turned out to be 15, as it should 
be for the selected parameters of the generation. 

The vast majority of the generators of PRN are 
based on LFSR [9]. The main requirement for LFSR 
generators in cryptographic applications is to 

generate a sequence of cipher bits of maximum 
length (period). Its knowns that LFSR is a maximum 
period shift register if the corresponding feedback 
polynomial is primitive. 

Along with LFSR generators, can use PRN 
generators based on shift registers with generalized 
feedback. Such generators include the Mersen 
vortex [10], which contains a modified Frobenius 
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matrix. Unfortunately, matrix PRN generators are 
not yet widely used in cryptography. Classic 
generators (both matrix and LFSR) do not provide 
the required level of cryptographic security. The 
noted disadvantage is that the output serial bits of the 
generator by the Berlecamp-Massey algorithm can 
be uniquely defined primitive polynomial, which 
generates the matrix of the PRN generator. And as a 
consequence, the generator turns out to be cracked 
[11]. 

The main task of this study is to develop PRN 
generators of the maximum period based on 
generalized Galois matrices in the general case over 
fields of arbitrary characteristics p , free from the 
Berlecamp-Massey attack. 

2  Galois Сlassical Hardware and 

Matrix Generators PRN 
Definition 1. To subset of classical PRN generators 
of the maximum period will include generators built 
based on linear shift registers covered by single-loop 
feedback, which is exclusively a function of a 
primitive polynomial that plays the role of a 
generator polynomial. 

Usually, D-triggers are used as LFSR bits. An 
example of a fourth-order Galois generator, 
feedbacks in which fourth-degree PrP 4 10011f =  
formed, is shown in Fig. 1. Using Fig. 1, let us 
develop a mnemonic rule for constructing classic 
LFSR generators in the Galois configuration. For 
this purpose, we will supplement the drawing with 
dotted strokes, placing them on those parts of the 
circuit in which there are no XOR operators. 

 
Fig. 1. Block diagram of the PRN generator 
in the Galois configuration generated by PrP 

4 10011f =  
Then we put numbers 1 above the solid vertical 

lines (feedback lines) and numbers 0 above the 
dashed lines. Finally, we come to Fig. 2. 

 
Fig. 2. To build a block diagram fourth-order 

Galois generator 

As follows from Fig. 2, the ones of the primitive 
polynomial in vector form predetermine the position 
of the vertical lines in a single-loop feedback circuit 
in the classical LFSR Galois PRN generator. 

Will illustrate the technology of applying 
formulated rules for drawing up a block diagram of 
the PRN generator of the maximum period in the 
Galois configuration will be illustrated by 
constructing a generator circuit generated by a PrP 
of the eighth-degree 8 101100101f = . The solution 
to this problem involves the implementation of two 
stages of synthesis. 

Stage 1. Form an eight-bit ring shift register (Fig. 
3), in the nodes of the feedback line of which we 
equidistantly arrange the coefficients of the selected 
primitive polynomial 

 
Fig. 3. To the construction of an eight-bit Galois generator circuit 

Stage 2. Connecting, as shown in Fig. 4, the 
internal nodes of the feedback line, above which 
there are coefficients 1, with the XOR operator, we 

complete the construction of the classical LFSR 
Galois generator. 

 
Fig 4. Block diagram of the Galois generator, generated PrP 8 101100101f =  

Similarly, by steps 1 and 2, it is possible to 
construct the block diagram of the classical LFSR 
generators in the Galois configuration for an 
arbitrary degree of the primitive polynomial that 
forms a feedback loop in the generator register. 

Classical Fibonacci LFSR generators PRN created 
from Galois generators by rotating the feedback loop 
relative to the vertical and horizontal axes. At the 
same time, the numbering of the shift register cells 
remains unchanged (Fig. 5). 
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Fig 5. Block diagram of the Fibonacci generator, generated PrP 8 101100101f =  

Each LFSR generator (Galois or Fibonacci) 
corresponds to uniquely associated with the 
matrices, which we will denote by G  and F , 
respectively. A distinctive feature of the Galois and 
Fibonacci matrices is that it is possible to generate 
binary series similar to the m − sequences formed by 
the classical LFSR generators on their basis.  

Let be ( )S k  — the state vector of the n −

discharge PRN generator in the Galois configuration 
after the k  sync pulse (at the k step of the register 
shift), the calculation scheme of which is 
represented by the matrix expression 

 

( )

bit

( 1) ( ) , 0,1, ,

(0) 00 01

n

f

n

S k S k k

S

+ =  =

=

G

. (6) 

Our task is to calculate the Galois matrix for a 
given PrP 1 2 11 1n n kf − −=     , 

 (2) 0,1k GF = , with the help of which relation 
(6) forms the same sequence of pseudorandom 
numbers as the LFSR generator. Let us try first to 
deal with this problem for small orders of matrices. 
Then, let us turn to the analysis of the state of the 
triggers of the PRN generator (Fig. 6), previously 
shown in Fig. 1. 

 

Fig. 6. Initial state illustration Generator 
PRN, according to Galois scheme 

The numbers placed above the generator bits 
characterize the logic level of the signal at the output 
of the corresponding cell (trigger) of the register. As 
shown in Fig. 7, using sync pulses, 1 from the least 
significant bit of the register moved to its most 
essential bits.  

From Fig.7, it follows that after the third 
synchrotact, logical ones arrive at the inputs of both 
the first and second flip-flops and, therefore, at the 
fourth step of the PRN generation (Fig. 8) appear at 
the outputs of these triggers. 

 
 
 
 

 
a) 

 
b) 

 
c) 

Fig. 7. PRN generator states after: 
a) - the first, b) - the second, c) - the third 

synchro tact 

 
Fig. 8. State of the PRN generator after the 

fourth synchro title 
Let us compose a matrix (4)

13G  from a set of state 
vectors ( )S k , into which the Galois generator passes 
after the first four synchronizations, placing the 
vectors in the matrix, starting from its bottom row 

1i = . 

 (4)
13

0 0 1 1 4
1 0 0 0 3

.
0 1 0 0 2
0 0 1 0 1

4 3 2 1

i

j



 
 
 
 
  
 



=G , (7) 

Note that index 13 in the notation of the matrix 
( )n

fG  in (7) is the hexadecimal notation of PrP 

4 10011f = . We will continue to use the same form 
of presentation of the numerical values of the degree 
of polynomials in the future. 

Thus, firstly, the matrix (7), when substituted into 
relation (6), forms a sequence of four-bit codes 
(Table 2), which include the multiplicative group of 
the field generated by PrP 4 10011f = . 

 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2022.21.1 Anatoly Beletsky

E-ISSN: 2224-266X 4 Volume 21, 2022



Table 2. The sequence of the state of the PRN  
generator from PrP 4 10011f =  

Step 
(k) 

LRS discharges Step  
(k) 

LRS discharges 
4 3 2 1 4 3 2 1 

0 0 0 0 1 8 0 1 0 1 
1 0 0 1 0 9 1 0 1 0 
2 0 1 0 0 10 0 1 1 1 
3 1 0 0 0 11 1 1 1 0 
4 0 0 1 1 12 1 1 1 1 
5 0 1 1 0 13 1 1 0 1 
6 1 1 0 0 14 1 0 0 1 
7 1 0 1 1 15 0 0 0 1 
6 1 1 0 0 14 1 0 0 1 
7 1 0 1 1 15 0 0 0 1 
6 1 1 0 0 14 1 0 0 1 
7 1 0 1 1 15 0 0 0 1 
 
And secondly, the top row of the matrix (7) is 

nothing but the fourth degree PrP 4 10011f = , in 
which the leading unit remove, and the left element 
of the truncated polynomial is the coefficient 1n − . 

Based on the analysis of the matrix (4)
13G  in (7), 

we arrive at the following construction rule 
(synthesis algorithm) of the classical Galois matrix 
(CGM) ( )n

fG  of the order n  generated by a primitive 
polynomial nf  of degree n . 

Algorithm for the synthesis of CGM: let nf  – 
a primitive binary polynomial of degree n  and 
 =  – the minimal primitive element of the field 

(2 )nGF , generated by the polynomial nf . Place   
in the lower right corner of the generated Galois 
matrix ( )n

fG . All other digits of the bottom line ( ),n

fG

located to the element's left  , are filled with zeros. 
Suppose the stage of formation of the next row its 
senior 1 goes beyond the left boundary of the matrix. 
In that case, the polynomial in this row reduces to 
the remainder modulo nf . Thus, the row returns to 
the matrix, and the formation process of ( )n

fG  
continues further. 

The right-hand side of the matrix (2) can 
represent in a more compact form [8]: 

 ( )n

f

f 
=  
 0

G
E

◀
, (8) 

where E  is the identity matrix of the ( 1)n − − order, 
the −0 zero column vector of length ( 1)n− , and ◀ 
— the pointer of the position of the highest PrP nf  
coefficient 1n − . 
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G . (9) 

In matrix (9), for clarity, the elements of the main 
diagonal of the identity matrix E  and the bordering 
elements of this matrix are highlighted in bold (on 
the right – the zero column 0 , and on top – the row, 
which is a primitive polynomial nf  reduced by one 
digit on the left). 

Compact forms of Fibonacci matrices ( )n

fF  are 

interconnected with Galois matrices ( )n

fG  in 

configuration (8) by the operator of right-hand 
transposition  

 ( ) ( )n n

f f

f⊥  
⎯→ =  

 


G F

E ▼
, (10) 

where   — is the zero-row vector of the ( 1)n − −

order. 
Let us give expressions for the G  and F  

matrices of the eight-order. 
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Structural-logic diagrams of Galois and 
Fibonacci LFSR generators, corresponding to 
relations (1)), are shown above in Figures 4 and 5, 
respectively. Supplementing the symbolic forms (8), 
(10) of the Galois G  and Fibonacci F  matrices with 
the corresponding conjugate matrices 

G  and 
F  

formed by the left-hand transposition of the base 
matrices, 

 

( ) ( )T

f f

 ⎯→ =

    
=     
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0



G F G F

E E▲

▶

, (12) 

we arrive at the interconnection scheme (Fig. 9) of 
the subset of matrices, which we denote 
   , , , =Q G F G F . 

 
Fig. 9. The diagram of the relationship between 

primary and adjoint Galois and Fibonacci 
matrices 

The conjugate eighth-order Galois 
G  and 

Fibonacci 
F  matrices generated by 

transformations (12) of matrices (11) have the form: 

 

0 1 0 0 0 0 0 0 8 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 7 0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0 6 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 5 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 4 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 3 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 1 0 1 0 0 1 1 0

8 7 6 5 4 3 2 1
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   
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

 (13) 

LFSR generators PRN, corresponding to matrices (13), are shown in Fig. 10. 

 
Fig. 10. Block diagrams of coupled PRN generator in configurations 

Galois )a  and Fibonacci )b  generated by PrP 8 101100101f =  
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The term "feedback loop" in PRN generators can 
explain by their stylized graphical representation in 

Fig. 11. The PrP 8 101100101f =  take as the 
generating polynomial. 

 
Fig. 11. A stylized representation of feedback schemes in PRN generators 

Let's pay attention to such peculiarities of 
feedback. If the feedback loops of generators G  and 
F  wound clockwise, those of generators 

G  and 


F wound counterclockwise.  This fact can also be 
a sense in the block diagrams of the PRN generators 
shown in Figures 4, 5, and 10. The ways of 
transforming LFSR loops of PRN generators are 
present in Table 3. The table elements contain 
operators of loops rotation:   — relative to the 
vertical axis of symmetry and  — relative to the 
horizontal axis of symmetry. 

Table 3: Relationship of  Q  
LFSR feedback loops 

 G  F  
G  

F  

G  –      

F    –    


G     –   


F       – 

 

3 Efficient Algorithms for Calculating 

the States of Classical Matrix Galois 
The algorithm's complexity for assessing the state of 
any of four PRN generators shown in Figure 9 is, 
according to relation (1), is 2( )O n , i.e., increases in 
quadratic dependence on the order of the classical 
Galois matrices. Based on the structures of the CGM 
(due to their components — the unit matrices E  of 
( 1)n − − order), it is possible to significantly reduce 
the computer time spent on assessing the state of the 
PRN generators at the next ( 1)k +  computation step. 

For simplicity, let us introduce a notation system 
somewhat different from the one used earlier, 
assuming:  1 2 1 0, , , ,k n nV v v v v− −=  — the PRN 
vector at the k  generation step, in the curly brackets 
of which the binary components of the vector 
indicated;  1 1 01, , , , 1n n nf −=  =    =  — 

primitive polynomial generating CGM. The final 
relations that determine the vectors 1kV +  for various 
CGMs summarize in Table 4. The arrows in Table 
2, located to the right of the column vectors nf  and 

kV , indicate the location of their senior element, and 

 0 1, , ,n nf =    . 

Table 4. State vectors of classical matrix PRN generators 

Matrices 
Galois 1kV +   Matrices 

Fibonacci 1kV +  

G  
1 0

1
1

1 bit

\ ,
,

\
n n n

n
k n

n

v f
v

V

−

−

−

−

  



 

F  ( )1

1 bit 1 bit

\ ,k n k n

n

V v V f−

−

    


G  ( ) 0

1 bit1 bit

, \k n k

n

V f V v
−

    


F  
0

0
0 0

1 bit

,
\ ,

\k

n n
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V
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v f
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−
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  
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Let us confirm the correctness of the expressions 
given in Table 4. For example, let us calculate the 
vector 1kV +  for the matrix G . Let us write the 
general relation 

 ( )
1

n

k k fV V+ = G . (14) 

Substituting matrix (9) into (14), we have 

 

1 2 3 2 1

1 1 2 1 0

0 0 0 0
0 0 0 0

( , , , , )
0 0 0 0 0
0 0 0 0
0 0 0 0

n n n

k n nV v v v v

− − −

+ − −

 
 
 
 
 

=  
 
 
 
 
 

α α α α α 1

1 0

1 0

0

1 0

1 0

. (15) 

From formula (15), we uniquely arrive at the 
value of the vector-row, which locates at the 
intersection of row G  and column 1kV +  of Table 3. 
Similarly, expressions can determine for the 
remaining cells of Table 4. 

Following the analysis of Table 4, we conclude 
that the proposed algorithm formation of the PRN is 
much simpler than those stated above. However, 
their computational complexity is  ( )O n , i.e., 
linearly depends on the order of Galois matrices 
forming generators of binary pseudorandom 
sequences. 

  

4 Generalized Binary Hardware and 

Matrix PRN Generators 
Definition 2. To the subset of generalized maximum 
period PRN generators, we will refer generators 
based on LFSR, covered by a multi-loop feedback 
circuit, which depends on the generating polynomial 

nf  (not necessarily primitive) and the generating 
element   . One should choose a primitive 
element   of the Galois field (2 )nGF  produced by 
an irreducible polynomial (IP) nf  as a generating 
element. 

The Galois matrix ( )
,
n

f G , which use to 
programmatically form the same PRN as the 
sequence generated by the generalized LFSR 
generator, is called the generalized Galois matrix 
(GGM).  Matrices synthesized by the rule similar to 
the regulation of CGM synthesis outlined in Section 
2. Namely 

Algorithm for the synthesis of GGM: Let nf  – 
an irreducible (not necessarily primitive) binary 
polynomial of degree n  and    – the primitive 
element of the field (2 )nGF , generated by the 
polynomial nf . Place   in the lower right corner of 
the generated Galois matrix ( )

,
n

f G . All other digits of 

the bottom line ( )
,
n

f G ,  located to the element's left 
, are filled with zeros. Suppose that on the stage of 
formation of the following matrix row, its senior unit 
goes beyond the left boundary of the matrix. In that 
case, the polynomial located in this row gives by the 
remainder modulo nf . Thus, the row returns to the 
matrix, and the formation process ( )

,
n

f G  continues 
further. 

Let us consider examples of synthesis of a subset 
of primitive generalized Galois and Fibonacci 
matrices    , , ,g g g g g

 Q G F G F  and build on their 

basis the PRN generators of the maximum period. 
First, let's choose an irreducible binary polynomial 
of the fourth-degree 4 11111f = , which is not 
primitive, and a primitive forming element (FE) 
equal to 111. Then, the matrices corresponding to 
the selected parameters have the form: 

The block diagram of the generalized four-bit 
Galois generator corresponding to the GGM 

gG  
shows in Fig. 12. The vertically arranged registers of 
the generators, marked at the top by the symbol  , 
implement the operation of bitwise multiplication. 
In the registers is a saving symbol   — a function 
of adding the contents of the register modulo 2.  
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0 1 1 0 1 0 1 0
0 0 1 1 1 1 1 1

; ;
1 1 1 0 1 1 0 1
0 1 1 1 0 1 0 0

0 0 1 0 1 1 1 0
1 0 1 1 0 1 1 1

; .
1 1 1 1 1 1 0 0
0 1 0 1 0 1 1 0

g g

g g

 

   
   
   = =
   
   
   

   
   
   = =
   
   
   

G F

G F

 (16) 

 

Fig. 12. Block diagram of the basic generalized Galois generator 

Replacing in Figure 12 the contents of the cells 
of the vertical feedback registers by the elements of 
the matrix g


G  from the system (16), we obtain the 

circuit (Fig. 13) of the conjugated generalized PRN 

generator in the Galois configuration. Block 
diagrams of the PRN generator shown in Fig.  12 and 
13 are just examples of LFSR generators with multi-
loop feedback. 

 

Figure 13. Block diagram of a conjugate generalized Galois generator 

If in the graphs in Fig. 13 to replace the contents 
of the feedback register cells with matrix elements  
F  and 

F  from the (16), we come to the basic and 
conjugate generalized PRN generator schemes in the 
Fibonacci configuration. 

The fundamental difference between generalized 
Galois matrices  gQ  and classical matrices  Q  is 

as follows. If in CGM  Q  we can highlight the unit 
matrix E  of (n-1)-order, the zero column-vector, 
and the row-vector, containing the bits of the 

generator polynomial f , that in generalized 
matrices  gQ  does not have such features. It 

follows that there are no compact forms similar to 
the (8) of matrices  gQ  for the set matrices. It 

follows that there are no compact forms similar to 
matrices  gQ  represented by expression (8).   

It is convenient to present a scheme of the 
interrelation of classical  Q  and generalized  gQ  

Galois matrices in Table 5. 
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Table 5. Interrelation of Galois and Fibonacci matrices 

 G  F  G  
F  

G  – ⊥  T  Т⊥  

F  ⊥  – Т⊥  T  
G  T  Т⊥  – ⊥  


F  Т⊥  T  ⊥  – 

5 Generalize Hardware and Matrix 

PNR Generators Over a Field of Odd 

Characteristics  
The developed synthesis algorithms for binary 
matrix Galois PRN generators are easily generalized 
for constructing PRN generators over a field of odd 
characteristics p . The Galois matrices 
corresponding to such generators denote by ( )

, ,
n

f pG . 

The matrix ( )
, ,
n

f pG  synthesis algorithm coincides 
with the above algorithm for synthesizing binary 

GGMs ( )
,
n

f G . In this case, the algorithm is enough to 
perform only such simple replacements: 

(2 () )n nGF GF p→  and ( ) ( )
, , ,
n n

f f p →G G . 
Let us look at an example. Let 4n = , 3p = , 

12121f =  and 221 = . The parameters include an 
irreducible polynomial f , the exponent of 10, and 
 −  a primitive element of the field 4 )(3GF , 
generated by the IP f . The selected parameters 
correspond to the generalized primitive Galois and 
Fibonacci matrices over (3)GF  

 

,

0 1 2 2 1 0 1 2
1 2 2 1 2 1 2 2

,
2 2 1 0 2 2 2 1
0 2 2 1 0 2 1 0

0 1 2 0 1 2 2 0
1 2 2 2 0 1 2 2

, ,
2 2 1 2 1 2 2 1
2 1 0 1 2 2 1 0

 

   
   
   
   
   
      

   
   
   
   
   
      

= =

= =G F

G F

 (17) 

in which letter indices are omitted for simplicity. 
Using the matrix G  of the system (17) and the 

generator circuit shown in Fig. 14, we will compose 
a generalized structural logic diagram (Figure 14) of 
a ternary four-bit register PRN generators in the 

Galois configuration. The numbers 3 located in the 
bitwise multiplication and addition operators mean 
that the calculations were modulo 3. It also assumed 
that the register D − triggers transfer ternary 
numbers from the input to the output.  

 
Fig. 14. Block diagram of the generalized Galois generator over IP 12121f =  
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An alternative register generator shown in Fig. 14 
is a matrix PRN generator, which generates the same 

sequence of pseudorandom ternary codes (Table 6) 
as a registered generator. 

Table 6. A sequence of ternary vectors generated by the registered (Fig. 14) 
and matrix ( )

, ,
n

f pG  ( 221 = ) generators of the PRN over the IP 12121f =  
1  0 0 0 1  0 0 1 0  0 1 0 0  1 0 0 0  1 2 1 2 
2  0 2 2 1  2 2 1 0  1 2 2 1  0 1 2 2  1 2 2 0 
3  0 1 2 0  1 2 0 0  0 2 1 2  2 1 2 0  0 0 2 1 
4  2 0 1 1  2 2 0 1  1 1 0 1  2 2 2 2  1 0 1 1 
5  2 0 1 2  2 2 1 1  1 2 0 1  0 2 2 2  2 2 2 0 
6  2 2 0 0  1 1 2 1  2 1 2 2  0 0 1 1  0 1 1 0 
7  2 0 2 0  2 0 2 1  2 0 0 1  2 1 0 1  0 1 0 1 
8  1 0 0 1  1 2 2 2  0 1 0 2  1 0 2 0  1 1 1 2 
 0 0 0 2 

 
Table 6 contains only the first half of the 

sequence of the maximum period, consisting (for the 
selected values of the generator parameters) of 80 
ternary four-digit codes. The second half of the 
series, starting with code 0002, is formed from codes 
of the first half due to their bitwise multiplication by 
2 modulo 3. 

 

6.  Isomorphism of Generalized 

Galois Matrices  
The theory of polynomials of one variable x  knows 
that multiplication of an arbitrary degree k

polynomial ( )
k

x  by the x  equivalent of its shift 
by one digit to the left. Or, in other words, 

 1( ) ( )
k k

x x x 
+

 → . (18) 
Using ratio (18) and taking into account how 

GGM formed, record the transformation chain  

 

1 1

2 2

( )
, mod

1 1

mod

n n

n n

n

f n n

x x

x x

f f

x x













− −

− −

   
   

   
    = 
   

   
      

G . (19) 

The elements of the right vector-column of 
inequality (19) are monomials, which, when 

presented in binary form, transform the column into 
a unit matrix, i.e. 

 

1

2

1

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

n

n

n

x

x

x

−

−

  
  
  
  
  
  
  

    

= = E

, 

(2
0) 

which makes it possible to formulate the following 
statement. 

Affirmation. The GGM ( )
,
n

f G  of the order n  

above IP nf  isomorphous to its constitutive element 

 , which belongs to the field (2 )nGF , i.e.  

  ( )
,
n

f G  ≃  , (21) 

where ≃ – the isomorphism symbol. 
According to the expressions (19), (20), there is 

a mutually unambiguous correspondence 
(isomorphism) between GGM ( )

,
n

f G  and its forming 
element  , which reflects by the ratio (21) and 
leads to such consequences:    

Consequence 1. The generalized matrixes of 
Galois ( )

,
n

f G  are non-singular at any parameters nf  
and  , as are formed by linearly independent lines. 

Consequence 2. For elevating the matrix ( )
,
n

f G  
the degree k  is enough to calculate forming element 

(mod )k

k kf =  and make a matrix ( )
,
n

f G . 
Consequence 3. The minimum non-zero value of 

degree e providing equality ( )( )
,

en

f 
= EG  coincides 
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with the order of the element  , which forms the 
matrix ( )

,
n

f G  
Consequence 4.  The generalized matrix of 

Galois ( )
,
n

f G  is primitive if the element forming   
it is primitive, i.e., if  = , there is — a 
primitive element of the field (2 )n

GF . 
Consequence 5. The operation of multiplication 

matrixes Galois 
1

( )
,
n

f G  and 
2

( )
,
n

f G , 1 2   , is 

commutative because according to the ratio (21) of 
the product in the left and right parts of the equality 

1 2 2 1

( ) ( ) ( ) ( )
, , , ,
n n n n

f f f f    = G G G G  is equivalent to 

the products of elements 1 2( )   and 2 1( )  , 

calculated on the module of the IP nf . 
Consequence 6. Arbitrary modular arithmetic 

transformations over Galois matrixes are isomorphic 
to the same changes over the forming elements of 
these matrixes. 

Consequence 7. The generalized matrixes of 
Galois ( )

,
n

f G , inverse matrix ( )
,
n

f G , can be 
constructed according to the rule formulated in item 
4. The forming element of the matrix ( )

,
n

f G  is 

element  , the inverse of the forming element 
matrix ( )

,
n

f G .  

7 Calculating Inverse Elements of the 

Galois Field 
For each "direct" matrix from subset 
  ( ), , , Q G F G F , we will match the so-called 

"reverse" matrices, the set of which forms subset 
  ( ), , , Q G F G F . Let us supplement the 

internal matrix contour  Q , shown in Figure 9, 
another so-called external contour, placing the 
matrixes of the subset in its nodes  Q . The posed 

problem has a trivial solution. Indeed, according to 
(21) Galois matrices ( )n

fG  and their forming 
elements are connected by the isomorphism relation. 
And, as a consequence, two Galois matrices 
generated by the same non-acceptance (primitive for 
CGM) polynomial become mutually convertible if 
the elements forming them are mutually convertible. 
Therefore, to construct ( )

,
n

f G  a reverse matrix ( )n

fG , 
it is sufficient to replace forming element   with its 
reverse value   at the stage of matrix synthesis, i.e., 

( ) ( )
, ,

n n

f f 
=G G . 

For CGM, generated by PrP nf , the forming 
element  = . By definition, some non-zero 
element   of the Galois extended field is a reverse 
element   if and only if the condition met 

) mod 1f( = . Let 1 2 11 , , 1n n nf   − −=  — 
the primitive binary polynomial and ( =)  — 
forming element matrix ( )

,
n

f G . Then 

1 2 11 , ,n n  − − =  and 1 2 11 , , 0n n  − − = . 
The product    by modulo nf  forms a subtraction 
of 1, required for a pair of reciprocal values. Thus, 
we come to the following general form of inverse 
CGM 

 ( )

1 2 3 2 1

0 0 0 0
0 0 0 0
0 0 0 0 0

0 0 0 0
0 0 0 0

1 2 3 2 1

1
2

3
2
1

n

f

n n

n n n

n

n

n

− −

 
 
 
 
 
 

=  
 
 
 
 

− −

−

−

0 1

0 1

0

0 1

0 1

1     

G , (22) 

which can present in such a compact form 

 ( )n

f
f

 
=  
 

0 E
G

◀
.  

In particular, for PrP 8 101100101f =  under 
(22), we will receive 
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0 1 0 0 0 0 0 0 8
0 0 1 0 0 0 0 0 7
0 0 0 1 0 0 0 0 6
0 0 0 0 1 0 0 0 5
0 0 0 0 0 1 0 0 4
0 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 1 2
1 0 1 1 0 0 1 0 1
8 7 6 5 4 3 2 1

i

j

=

 
 
 
 
 
 
 
 
 
 
 
 

G . (23) 

Hardware implementation of the LFSR generator's PRN, to which the matrix (23) responds, is shown in Fig.  
15. 

 
Fig. 15. Block diagram of the "reverse" generator PRN in the 
Galois configuration generated by the PrP 8 101100101f =  

The interrelation of Galois  Q  inverse matrices 
is determined by the same operators ⊥   and Т  
performed according to the same scheme as direct 

matrices  Q . The scheme of the interrelation of the 

complete set of matrices  Q  is shown in Fig. 16. 

 
Fig. 16. The scheme of the interconnection  

of the set of classical Galois matrices 

The matrix (23) is converted into a reverse Fibonacci matrix by right-hand transposition. 

 

0 1 0 0 0 0 0 0 8
1 0 1 0 0 0 0 0 7
0 0 0 1 0 0 0 0 6
0 0 0 0 1 0 0 0 5
1 0 0 0 0 1 0 0 4
1 0 0 0 0 0 1 0 3
0 0 0 0 0 0 0 1 2
1 0 0 0 0 0 0 0 1
8 7 6 5 4 3 2 1

i

j

=

 
 
 
 
 
 
 
 
 
 
 
 

F . (24) 
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Hardware implementation of the LFSR of the PRN generator to which the matrix (24) responds shows in Fig. 
17. 

 

Fig. 17. Block diagram of the "reverse" generator PRN in the 
Fibonacci configuration generated by the PrP 8 101100101f =  

Reverse conjugate Galois 
G  and Fibonacci 

F  
matrices of the eighth order are generated, according 

to transformations 13), by left-hand transposition of 
matrices (23), (24), and have a form: 

 

8 0 1 0 0 1 1 0 10 0 0 0 0 0 1
7 1 0 0 0 0 0 0 01 0 0 0 0 0 0 0
6 0 1 0 0 0 0 0 00 1 0 0 0 0 0 1
5 0 0 1 0 0 0 0 00 0 1 0 0 0 0 1

;4 0 0 0 1 0 0 0 00 0 1 0 0 0 0
3 0 0 0 0 1 0 0 00 0 0 0 1 0 0 0
2 0 0 0 0 0 1 0 00 0 0 0 0 1 0 1
1 0 0 0 0 0 0 1 00 0 0 0 0 1 0

8 7 6 5 4 3 2 1

0

0

0

 

   
   
   
   
   
   
  
  
  
  
  
  

 
  

= =G F

8
7
6
5

.4
3
2
1

8 7 6 5 4 3 2 1









 
(25) 

Structural diagrams of inverse conjugate LFSR generators of PRN, corresponding to matrixes (25), are 
presented in Fig. 18.   

 
Fig. 18. in the of reverse conjugate generators of PRN in Galois (a) 
and Fibonacci (b) configurations, generated by PrP 8 101100101f =  

The main problem in the designated calculation 
chain is the definition of the element ω  . There are 
different ways of finding the inverse elements of the 
Galois field [12]. The most frequently used method 
is based on the extended Euclidian algorithm [13]. 
Below is an alternative approach to calculations of 
ω  that is easier to implement than the Euclidian 
algorithm. 

It is known that for any non-zero element   of a 
binary Galois field, the equality 

 ( ) ( )2 1 1  
n

n n

n

f

L

f

− = = , 
(

2
6) 

where 
nL  is the order of the element  , and 

( ) (mod )fa a f= . 

Introducing (26) in the form 

 
( ) ( )( )

( )

2 1 2 2

1

  
n

n n

n

n

f f

f

− −= 

= 



=


,  

we'll get 

 ( )2 2

n

n

f

−= . 
(

2
7) 

According to formula (27), the inverse element 
ω  is determined by the residue of the even degree 
2 2n −  of the field (2 )nGF  element   modulo .nf

These residues are placed in the odd lines of Table 
7. 
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Table 7. The algorithm for calculating inverse elements of a binary Galois field 

n  nL  k  Residue  n  nL  k  Residue 

VI 1 
2

1 ( )
f

 =   

 

6 63 
8 8 7( ) f =    

3 7 
2 2 1( ) f =    9 2

9 8( ) f =   

3 2
3 2( ) f =   

7 127 
10 10 9( ) f =    

4 15 
4 4 3( ) f =    11 2

11 10( ) f =   

5 2
5 4( ) f =   

8 255 
12 12 11( ) f =    

5 31 
6 6 5( ) f =    13 2

13 12( ) f =   

7 2
7 6( ) f =    

Table 7 it is indicated: n − the degree of the 
irreducible polynomial f ; k  − step of iteration; 

nL  
− the order of the multiplicative group of the field 

(2 )nGF , generated by IP f ; VI − initialization 
vector equal to 2( ) f .   

Based on Table 7, we quickly come to the 
expression for the number of iterations k , 
performed when calculating the inverse field 
elements   over the IP degree n  

 2 3k n= − .  

Let's consider a numerical example. Suppose 
4n = , 10011f =  and  =. According to 

Table 7, the first step is the calculation 

( ) ( )2
1 100111101 1101 1110

f
 =  =  =  

For the next step, we find 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2 1

2
3 2

4 3

2
5 4

1110 1101 1000110 1010;

1010 1010 1000100 1000;

1000 1101 1101000 10;

10 10 100.

f ff

f ff

f ff

ff

 =   =  = =

 =  =  = =

 =   =  = =

 =  =  =

  

Residue 5 100 =  is the opposite of the element 
= . 

The vector of initialization ( )2
1

f
VI =  =   

starts the computational process. The further 
procedure consists of 2n −  cycles, each of which 
includes two iteration steps. We find the auxiliary 
vector 2( 2)n−  as the first (on the even step k ) and 

the second (on the odd iteration stage) — the inverse 
element 2 3n −=  . 

The algorithm for calculating the inverse 
elements of the field (2 )nGF  can easily be 
generalized to determine the inverse elements of an 
arbitrary characteristic p . The block scheme of the 
algorithm shows in Fig. 19. 
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Fig. 19. Block scheme of the algorithm for  
calculating inverse field ( )nGF p  elements. 

For example, let's 5p = , 3n = , 1032f = , 234 = . The sequence of results of calculations the inverse 
element   is as follows: 

1. 1s = ,  1R = , ( ) ( )4 4234 24f
f

с =  = = , ( ) ( )5 524 131f fR R c=  = = ; 

2. 2s = , ( ) ( )5 5131 24 423f fR R c=  =  = ; 

3. 3s = , ( ) ( )3 3423 234 202f fR=  =  = ; ( ) ( )f f =    = 1 . 

8 Hacking Problems of Galois PRN 

Generators 
Its knowns that the classic Galois LFSR generators 
have lower crypto stability; the reason for which is 
that they quickly hacked using the Berlekamp-
Massey (BM) algorithm [9]. This algorithm uses the 
known elements of the sequence  1 2 2, , , nx x x=X  
produced by a n − discharge oscillator to calculate 
the PrP nf  in the feedback circuit of a linear register 
of minimum length n . It should note that all 
primitive Galois matrices, both classical and 
generalized, can serve as generators of PRN length 
sequences 2 1nL = − . Each of these sequences, 
removed from the output of an arbitrary discharge 
LFSR, satisfies all three postulates of Golomb [10]. 
For this reason, it may seem that the generalized 
Galois generators do not bring any new properties to 
the PRN formed by classical generators. But this is 
not entirely true. As established in [6], generators of 
PRN built based on generalized Galois matrices are 
free from the BM attack. The noted feature of the 

generators appears due to the following reason. The 
classical generators by mean of BM algorithm are 
successfully determining only one unknown – 
primitive polynomial nf . For generalized 
generators, besides the polynomial nf , the primitive 
FE   of the Galois matrix is also unknown. But the 
classical algorithm of the BM is not intended for 
calculating two unknown parameters and therefore 
becomes unsuccessful in attacking the generalized 
generators. That, for one thing. And secondly, in any 
case (whether the conditions of applicability of the 
BM algorithm are satisfied or not) the processor 
implements the Berlekamp-Massey algorithm 
outputs as a solution that or the value of degree n 
primitive polynomial.  

Below it will show that the transition from 
classical LFSR-generators of PRN to generators 
based on generalized matrixes of Galois and 
Fibonacci leads to the fact that the algorithm of BM 
loses the ability to determine the IP is produces the 
generator of PRN.  The noted feature of such 
generators is that the series of bits formed by them 
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depends not only on the chosen IP f  but also on the 
primitive element   involved in the formation of the 
feedback chain of the generator.  

For experimental confirmation of the stated 
statement and the basic theoretical positions 
concerning properties of matrixes of feedback, we 

shall address to results of computer modeling 
(reduced in Table 8) of the generalized eight-digit 
Galois generator of PRN. The PrP 100011101f =  
was chosen as the polynomial forming the feedback 
loop of the generator.  

Table 8. BM tester solutions on many primitive elements  
of the field generated by the PrP 100011101f =  

№ 
IP: 

100011101 
Forming element 

PrP 1 2 3 4 5 6 7 8 
1 100011101 002 004 020 035 114 137 205 235 
2 100101011 006 015 024 121 207 302 321 332 
3 100101101 113 033 210 130 220 227 300 336 
4 101001101 112 123 211 233 307 313 322 325 
5 101011111 037 122 110 232 306 312 323 324 
6 101100011 036 102 111 133 215 225 237 311 
7 101100101 022 103 030 132 214 224 236 310 
8 101101001 022 023 030 031 134 135 200 201 
9 101110001 011 036 101 107 203 216 314 330 
10 110000111 050 064 071 074 077 171 273 345 
11 110001101 052 060 143 151 242 274 367 370 
12 110101001 043 161 166 172 245 252 260 340 
13 111000011 042 160 167 173 244 253 261 341 
14 111001111 157 176 262 267 354 360 363 372 
15 111100111 062 155 257 343 350 352 356 376 
16 111110101 053 061 142 150 243 275 366 371 

According to Table 8, the eight forming elements 
located in the top row of the table are such that each 
of them leads to the correct solution produced by the 
BM tester. We will call such forming elements 
"weak keys" of the flow code, the encrypting gamma 
formed by the analyzed PRN generator. It is quite 
easy to eliminate weak keys. For this purpose, it is 
enough to choose a polynomial f  that is not 
primitive while keeping the forming element 
primitive  . 

9 Conclusion  
The main results are as follows: 

1. Different variants of construction of binary 
PRN generators based on the so-called generalized 
Galois and Fibonacci matrices developed. The 
transition from classical to generalized matrix 
generators PSF is accompanied by an expansion of 
diversity of generators and leads to a significant 
increase in their cryptographic strength. This effect 
is achieved by increasing the number of form 
elements and by the polynomials generating Galois 
matrices, which are not necessarily primitive. 

2. It is shown that PRN generators based on 
generalized Galois matrices are not subject to BM 
attacks. The noted property is a consequence of this 
feature of the BM algorithm. The classical BM 
algorithm solves the problem of computing one 
unknown parameter: the minimal primitive 
polynomial f  in the LFSR feedback circuit of the 
PRN generator. In the generalized matrix generators, 
two unknown parameters have to be determined: an 
irreducible polynomial f  and a generating element 
 , jointly forming Galois matrices. This problem 
becomes unsolvable for the BM algorithm. 

3. Recurrence estimates of the states of classical 
matrix Galois generators of PRN have been 
proposed, significantly increasing the computational 
speed. 

4. The developed algorithms of synthesis of 
generalized Galois and Fibonacci matrices allow to 
build cryptographically secure information 
protection systems and be useful in other 
applications. 
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