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Abstract: We investigate different concepts related to the controllability of linear constant coefficient differential-
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real-life problems are given to illustrate the presented theory.
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1 Introduction
Many physical phenomena are modeled by differ-
ential equations, but sometimes this mathematical
model contains algebraic equations. Systems contain-
ing two types of differential and algebraic equations
are called differential-algebraic equations (DAEs)
[also known as singular systems, implicit systems,
descriptor systems]. These systems have become a
model of a wide variety of problems in economics,
demography, mechanical systems [11], the simula-
tion of the dynamics of multi-body systems [18], [19],
electrical networks [8], [20], fluid mechanics [22] and
chemistry [17], which often cannot be modeled by
standard ODE systems.

In this paper, we consider linear differential-
algebraic control systems of the form

Eẋ(t) = Ax(t) +Bu(t) (1)

whereE,A ∈ Rm×n, B ∈ Rm×r and rankE = r0 ≤
min{m,n}. The unknown x(t) ∈ Rn is the dynamic
state and u(t) ∈ Rr is the control. The system (1) will
be a classic linear system if E and A are are square
matrices and E = I . If m = n and there exists a
λ ∈ C such that the matrix pencil (λE − A) is in-
vertible, then the system (1) is called regular descrip-
tor system; otherwise, it is called irregular descriptor
system. Note that rectangular descriptor systems are
irregular descriptor systems.
A trajectory (x, u) : R −→ Rn × Rr is said to be a
solution of (1) if, and only if, it belongs to the behav-

ior:

B[E,A,B] := {(x, u) ∈ W 1,1
loc (R,R

n)× L1
loc(R,Rr) :

(x, u) satisfies (1) for almost all

t ∈ R},

where
L1
loc(R,Rr) := Locally Lebesgue integrable func-

tions u : R −→ Rr, and

W 1,1
loc (R,R

n) := {x : R −→ Rn : x, ẋ ∈ L1
loc(R,Rn)}.

Contrary to the theory of controllability of ordi-
nary systems, there are various concepts of controlla-
bility for DAEs: C-controllability, R-controllability,
I-controllability, infinite controllability, ..., etc. These
concepts were well established first in the work of
Luenberger (1978) [12], Verghese et al. (1979)
[21], Pandolfi (1980) [16], Campbell (1980) [3],
Yip and Sincovec (1981) [23], Cobb (1984) [6],
Christodoulou and Paraskevopoulos (1985) [4] , and
then studied for various applications in the design
of control systems in the works of Dai (1989) [5],
Hou and Müller (1995) [10], Darouach and Boutayeb
(1995) [7], Hou (2004 ) [9], Zhang et al. (2012) [24],
Mishra et al. (2016) [15] and its references.

The paper is organized as follows. In Section 2,
we present the basic theoretic results for the control-
lability of singular systems, and we give an equiva-
lent form of these systems. In Section 3, by using
an equivalent form for linear time-invariant singular
systems, we give necessary and sufficient conditions
for impulse controllability, controllability at infinity,
strong and complete controllability. We prove that I-
controllability for these system is equivalent to the
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controllability at infinity for another descriptor sys-
tem obtained by an equivalent form for a singular sys-
tem. Finally, in Section 4, some real-life examples are
also provided for illustrating our ideas.

2 Preliminary results
In this section, we will present some findings regard-
ing controllability for descriptor systems which we
will need in the next sections. All these results are
extracted from [1], [14] and [15].

Definition 1. The system (1) is called controllable at
infinity if and only if

∀x0 ∈ Rn, ∃(x, u) ∈ B[E,A,B] : x(0) = x0.

The system (1) is controllable at infinity if and only
if ν = Rn, where ν is the set of all consistent initial
conditions for the system (1) and is defined as follows

ν = {x0 ∈ Rn, ∃(x, u) ∈ B[E,A,B] : x(0) = x0}.

Definition 2. The system (1) is called impulse con-
trollable (I-controllable) if and only if

∀x0 ∈ Rn, ∃(x, u) ∈ B[E,A,B] : Ex(0) = Ex0.

The system (1) is I-controllable if and only if νω =
Rn, where νω = Rn is the set of all weakly consistent
initial conditions for the system (1) and is defined as
follows

ν = {x0 ∈ Rn, ∃(x, u) ∈ B[E,A,B] : Ex(0) = Ex0}.

Definition 3. The system (1) is called completely
controllable (C-controllable) if and only if

∃T > 0,∀x0, xf ∈ Rn, ∃(x, u) ∈ B[E,A,B] :

x(0) = x0 and x(T ) = xf .

Definition 4. The system (1) is called strongly con-
trollable (S-controllable) if and only if

∃T > 0,∀x0, xf ∈ Rn, ∃(x, u) ∈ B[E,A,B] :

Ex(0) = Ex0 and Ex(T ) = Exf .

Proposition 1. The system (1) is controllable at in-
finity if and only if

rank[E,B] = rank[E,A,B] (2)

Proposition 2. The system (1) is C-controllable if and
only if condition (2) is satisfied together with

rank[λE−A,B] = rank[E,A,B], ∀λ ∈ C. (3)

Proposition 3. The system (1) is I-controllable if and
only if

rank

[
E 0 0
A E B

]
= rank[E,A,B]+rankE. (4)

Proposition 4. The system (1) is S-controllable if and
only if both the conditions (3) and (4) are satisfied.

Remark 1. For regular descriptor systems, the above
Propositions can be found in Dai (1989b) where
rank[E,A,B] is replaced by n which is the order of
the matrix E or A.

Remark 2. We have the following implications:

C-controllability =⇒ S-controllability
⇓ ⇓

Controllability at infinity =⇒ I-controllability

Now, we're going to give an equivalent form of
a singular system (1). For that, we assume that
rank(E) = r0 ≤ min{m,n}. From matrix the-
ory, we know that there exist nonsingular matrices
P ∈ Rm×m and Q ∈ Rn×n such that

PEQ =

[
Ir0 0
0 0

]
. (5)

By taking the coordinate transformation

x = Q

(
x1
x2

)
, x1 ∈ Rr0 , x2 ∈ Rn−r0 ,

system (1) is equivalent to

(EF )

{
ẋ1(t) = A11x1(t) +A12x2 +B1u(t)
0 = A21x1(t) +A22x2 +B2u(t)

(6)
where

PAQ =

[
A11 A12

A21 A22

]
, PB =

[
B1

B2

]
. (7)

where A11 ∈ Rr0×r0 , A12 ∈ Rr0×(n−r0), A21 ∈
R(m−r0)×r0 , A22 ∈ R(m−r0)×(n−r0), B1 ∈ Rr0×r and
B2 ∈ R(m−r0)×r. The system (6) is an equivalent
form (EF ) of (1), and it clearly reflects the physical
meaning of the singular systems. In this transforma-
tion, matrices U and V are not unique. The first equa-
tion in (6) is a differential one composed of dynamic
subsystems, and the second equation is an algebraic
equation that represents the connection between sub-
systems. Thus, singular systems may be viewed as
composite systems formed by several interconnected
subsystems. Furthermore, sub-states x1 and x2 re-
flect a layer property in some singular systems: one
layer has a dynamic property (described by the dif-
ferential equation); the other has an interconnection,
constraint, and administration properties (described
by the algebraic equation).
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3 Main results
Theorem 1. The system (1) is controllable at infinity
if and only if the system (6) satisfies

rank B2 = rank [A21 A22 B2] . (8)

Proof. The controllability at infinity for the system
(1) is equivalent to

rank[E,B] = rank[E,A,B],

then
rank

(
P [E B]

[
Q 0
0 Ir

])
=

rank

(
P [E A B]

[
Q 0 0
0 Q 0
0 0 Ir

])
.

this is equivalent to

rank [PEQ PB] = rank [PEQ PAQ PB] ,

applying the decomposition (5) and (7), the above
condition is equivalent to

rank

[
Ir0 0 B1

0 0 B2

]
= rank

[
Ir0 0 A11 A12 B1

0 0 A21 A22 B2

]
,

then

r0 + rankB2 = r0 + rank [A21 A22 B2] ,

therefore

rankB2 = rank [A21 A22 B2] .

Theorem 2. The system (1) is I-controllable if and
only if

rank [A22 B2] = rank [A21 A22 B2] . (9)

Proof. From (4), I-controllability for the system (1)
is equivalent to

rank

([
P 0
0 P

] [
E 0 0
A E B

][Q 0 0
0 Q 0
0 0 Ir

])
=

rank

(
P [E,A,B]

[
Q 0 0
0 Q 0
0 0 Ir

])
+ rankE.

Then

rank

 Ir0 0 0 0 0
0 0 0 0 0

A11 A12 Ir0 0 B1

A21 A22 0 0 B2

 =

rank

[
Ir0 0 A11 A12 B1

0 0 A21 A22 B2

]
+ rankE.

Therefore
2r0 + rank [A22 B2] =

r0 + rank [A21 A22 B2] + rankE.
This is equivalent to

rank [A22 B2] = rank [A21 A22 B2] .

Hence, the theorem is proved.

Theorem 3. The system (1) is C-controllable if and
only if condition (8) is satisfied and

rank [λIr0 −A11 −A12 B1] = r0, ∀λ ∈ C.
(10)

Proof. From (3), C-controllability for the system (1)
is equivalent to

rank

(
P [E A B]

[
Q 0 0
0 Q 0
0 0 Ir

])

= rank

(
P [λE −A B]

[
Q 0
0 Ir

])
, ∀λ ∈ C.

Then

rank

[
Ir0 0 A11 A12 B1

0 0 A21 A22 B2

]
= rank

[
λ

[
Ir0 0
0 0

]
−
[
A11 A12

A21 A22

]
B1

B2

]
= rank

[
λIr0 −A11 −A12 B1

−A21 −A22 B2

]
.

Therefore

rank [λIr0 −A11 −A12 B1] = r0, ∀λ ∈ C.

Theorem 4. The system (1) is S-controllable if and
only if both the conditions (9) and (10) are satisfied.

Proof. The proof follows directly from Proposition 4.

4 Illustrating Examples
In this section, we present some numerical examples
which illustrate the effectiveness of the presented the-
ory.

Example 1. [5](page 33),[15](page 8) Consider the
circuit system is shown in Figure 1.

The voltage source ue is the control input. Choose
the state variable

x = [uC1
uC1

I1 I2]
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Figure 1: Electrical LCR Circuit

where uC1
and uC2

are the voltages of C1, C2, and the
amperage of tile currents flowing over them. Accord-
ing to Kirchoff's second law (Smith, 1966), we may
establish the following state equations

C1 ˙uC1
= I2,

C2 ˙uC2
= I1,

−Lİ1 = −uC1
+ uC2

,
0 = uC1

+RI2 − ue.

(11)

The above system of equations can be written asC1 0 0 0
0 C2 0 0
0 0 −L 0
0 0 0 0



u̇C1

u̇C1

İ1
İ2


=

 0 0 0 1
0 0 1 0
−1 1 0 0
1 0 0 R


uC1

uC1

I1
I2


+

 0
0
0
−1

ue(t). (12)

In this description equation, we take C1 = C2 = 1,
L = 1, and R = 1. We have rankE = 3. By us-
ing singular value decomposition of matrix E, we get
E = USV ⊤ with

U =

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

, S =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


and

V =

0 0 1 0
1 0 0 0
0 −1 0 0
0 0 0 1

 .

By taking P = U−1 and Q = V , we obtain

PEQ =

[
I3 0
0 0

]
, PAQ =

0 −1 0 0
1 0 −1 0
0 0 0 1
0 0 1 1

 ,

and

PB =

 0
0
0
−1

 .

In this system, we have

rankB2 = rank [A21 A22 B2] = 1, (13)

Therefore, by Theorem 1, the circuit network (12) is
controllable at infinity.

We have

rank [A22 B2] = rank [A21 A22 B2] = 1.
(14)

Hence, from Theorem 2, the system (12) is I-
controllable. We have

rank [λI3 −A11 −A12 B1] = 3, ∀λ ∈ C. (15)

Hence, from Theorem 3, the system (12) is C-
controllable.

Also, from (14), (15), and Theorem 4, the circuit
network (12) is S-controllable.

Example 2. [5] Consider a simple circuit network as
shown in 2, where voltage source vs(t) is the driver
(control input), R, L, and C stand for the resistor,
inductor, and capacity, respectively, as well as their
quantities, and their voltages are denoted by vR(t),
vL(t), vc(t), respectively. Then from Kirchoff's laws,

Figure 2: Electrical LCR Circuit

we have the following circuit equations (description
equations):

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2021.20.30 Abed Makreloufi, Mohammed Benharrat

E-ISSN: 2224-266X 267 Volume 20, 2021



L 0 0 0
0 0 C 0
0 0 0 0
0 0 0 0


 İ
v̇L
v̇C
v̇R



=

 0 1 0 0
1
R 0 0 0
−R 0 0 1
0 1 1 1


 I
vL
vC
vR



+

 0
0
0
−1

 vs. (16)

We take L = C = R = 1,

P = I4, and Q =

1 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 1

 .

The system (16) as required for (6) as

A11 =

[
0 0
1 0

]
, A12 =

[
−1 0
0 0

]
, A21 =[

−1 0
0 1

]
,

A22 =

[
0 1
−1 1

]
, B1 =

[
0
0

]
and B2 =[

0
−1

]
.

We have rankB2 = 1, but

rank [A21 A22 B2] = 2,

then system (16) is not controllable at infinity, and
therefore it is not C-controllable. We have

rank [A22 B2] = rank [A21 A22 B2] = 2.
(17)

Hence, from Theorem 2, the system (12) is I-
controllable. We have

rank [λI2 −A11 −A12 B1] = 2, ∀λ ∈ C.
(18)

then, these system is S-controllable.

Example 3. [14] Let the system (1) given by the fol-
lowing matrices

E =

[
0 1 0
0 0 0
1 0 0

]
, A =

[
0 0 0
0 1 0
0 0 0

]
, B =

[
0
1
1

]
.

(19)
By taking

P =

[−1 0 0
0 0 −1
0 1 0

]

and

Q =

[
0 −1 0
−1 0 0
0 0 1

]
,

we get

PEQ =

[
1 0 0
0 1 0
0 0 0

]
,

PAQ =

[
0 0 0
0 0 0
−1 0 0

]
,

and

PB =

[
0
−1
1

]
.

Then
A11 =

[
0 0
0 0

]
, A12 =

[
0
0

]
, A21 = [−1 0] ,

A22 = [0] , B1 =

[
0
−1

]
and B2 = [1] .

It can be checked that this system is controllable at
infinity and I-controllable, but not C-controllable (the
condition (10) is also not satisfied for λ = 0 ) and not
S-controllable.

Example 4. [15] A general constrained mechanical
system can be modeled as ẋ1(t) = x2(t),

ẋ2(t) = Cx1(t) +Dx2(t) +H⊤x3(t) +Gu1(t),
0 = Hx1(t) + u2(t);

(20)
The details of the above system can be found in
Bobinyec et al.[2]. The system (20) can be written
in the abstract form (1), if we take

E =

[
I 0 0
0 I 0
0 0 0

]
, A =

 0 I 0
C D H⊤

H 0 0

 ,

B =

[
0 0
G 0
0 I

]
, x(t) =

[
x1(t)
x2(t)
x3(t)

]
, u(t) =

[
u1(t)
u2(t)

]
.

For the numerical purposes, we take the matrices
C, D, H , and G as follows

C =

[
−2 1
1 −2

]
, D =

[
0.25 0
0 0.25

]
,

H = [1 −1] , E =

[
1
1

]
.

Then the matrices E, A, and B can be rewritten as

E =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 ,
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A =


0 0 1 0 0
0 0 0 1 0
−2 1 0.25 0 1
1 −2 0 0.25 −1
1 −1 0 0 0

 , B =


0 0
0 0
1 0
1 0
0 1

.

By taking

P =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1


and

Q =


0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

 ,

we get

PEQ =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

 =

[
I4 0
0 0

]
,

PAQ =


0 0 1 0 0
1 0.25 0 −2 1
−2 0 0.25 1 −1
0 1 0 0 0
−1 0 0 1 0

 ,

and

PB =


0 0
1 0
1 0
0 0
0 1

 .

Then

A11 =

 0 0 1 0
1 0.25 0 −2
−2 0 0.25 1
0 1 0 0

 , A12 =

 0
1
−1
0

 ,

A21 = [−1 0 0 1] , A22 = [0] , B1 =

0 0
1 0
1 0
0 0

 ,

B2 = [0 1] ,
It can be checked that this system is control-

lable at infinity, I-controllable, C-controllable, and S-
controllable.

All of the above can be summarized in the follow-
ing two tables:

(I) (II) (III) (IV) (V)
Example 1 3 1 1 1 3 (∀λ ∈ C)
Example2 2 1 2 2 2 (∀λ ∈ C)
Example3 2 1 2 2 1 (for λ = 0)
Example4 4 1 1 1 4 (∀λ ∈ C)

(I) rankE(r0), (II) rankB2,
(III) rank [A22 B2,],
(IV) rank [A21 A22 B2],
(V) rank [λIr0 −A11 −A12 B1].

(C1) (C2) (C3) (C4)
Example1 ✓ ✓ ✓ ✓
Example2 ✓ ✓
Example3 ✓ ✓
Example4 ✓ ✓ ✓ ✓

(C1) C-controllable; (C2) controllable at infinity,
(C3) S-controllable, (C4) I-controllable

5 Conclusion
In this paper, by using an equivalent form, we
have given necessary and sufficient conditions for
Different concepts related to the controllability of
differential-algebraic equations with constant coef-
ficients. The concepts of controllability at infin-
ity, complete controllability, impulse controllability,
 and strong controllability are described. Finally, we
have presented some examples for illustrating the pre-
sented theory.
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