
A complex-valued encoding seeker optimization algorithm for 

constrained engineering problems 

 
Abstract: - This article comes up with a complex-valued encoding seeker optimization algorithm (CSOA) base 
on the multi-chain method for the constrained engineering optimization problems. The complex value encoding 
and a multi-link strategy are leaded by the seeker optimization algorithm (SOA). The complex value encoding 
method is an influential global optimization strategy, and the multi-link is an enhanced local search strategy. 
These strategies enhance the individuals’ diversity and avert fall into the local optimum. This article chose 
fifteen benchmark functions, four PID control parameter models, and six constrained engineering problems to 
test. According to the experimental results, the CSOA algorithm can be used in the benchmark functions, PID 
control parameters optimization, and optimization constrained engineering problems. Compared to particle 
swarm optimization (PSO), simulated annealing base on genetic algorithm (SA_GA), gravitational search 
algorithm (GSA), sine cosine algorithm (SCA), multi-verse optimizer (MVO), and seeker optimization 
algorithm (SOA), the optimization ability and robustness of CSOA are better. 
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1 Introduction 
Recently, the heuristic algorithm has received a lot 
of attention. Such algorithms create random 
methods for many optimization problems. As we all 
know, since the No Free Lunch (NFL) theorem, no 
one optimization solution can optimize overall 
questions [1]. Therefore, researchers to pose new 
algorithms or enhance the current algorithms to deal 
with optimization problems. The current algorithms 
are genetic algorithm (GA) [2], particle swarm 
optimization (PSO) [3], simulated annealing (SA) 
[4], harmony search (HS) [5], gravitational search 
algorithm (GSA) [6], Moth-flame optimization 
(MFO) [7], sine cosine algorithm (SCA) [8], multi-
verse optimizer (MVO) [9], seeker optimization 
algorithm (SOA) [10]. 
However, some optimization algorithms are still not 
very successful in many optimization problems, 
such as low optimization precision, premature, only 
local optimal solution, slow convergence speed, 
insufficient robustness, etc. To better overcome the 
issues of common optimization precision, premature, 
only local optimal solution, slow convergence rate, 
poor robustness ， the complex-valued encoding 
heuristic algorithms have been proposed according 
to the characteristics of some algorithms, which 

enhance the algorithms. These complex-valued 
encoding intelligent optimization algorithms have 
been proved to be feasible optimization algorithms 
and have been used in many practical engineering. 
For instance, the plural encoding dragonfly 
algorithm optimizes the power systems [11]. A gray 
wolf optimization based on plural encoding 
optimizes the filter model [12]. The plural encoding 
satin bowerbird optimization algorithm solves 
benchmark functions [13]. The plural encoding 
driven optimization optimizes the 0-1 knapsack 
problem [14]. The plural encoding symbiotic 
organisms search algorithm is proposed for overall 
optimization [15]. The plural encoding flower 
pollination algorithm optimizes constrained 
engineering optimization problems [16]. A 
comprehensive survey is offered for plural encoding 
metaheuristic optimization algorithm [17].  
Dai et al. propose the SOA algorithm in 2006 [18]; 
the goal is to mimic the behavior of seekers and the 
way they exchange information, solving practical 
application optimization problems. The recent 
decade, the SOA algorithm has been used in many 
fields, such as unconstrained optimization problems 
[19], optimal reactive power dispatch [20], a 
challenging set of benchmark problems [21], the 
design of digital filter [22], optimizing parameters 
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of artificial neural networks [23], the optimizing 
model and structures of fuel cell [24], the novel 
human group optimizer algorithm [25], and several 
practical applications [26].  
However, in the initial stage of dealing with 
optimization problems, SOA converges faster than 
others; When all individuals are near to the best 
individual for solving the optimization problem, the 
individuals will lose diversity and fall into 
premature. 
To overcome the shortcomings of SOA, in this 
article, complex number coding and a multi-link 
strategy are used to enhance global optimization and 
local search. The CSOA has been tested on nine 
unimodal functions, six multimodal functions, four 
PID control parameters optimizations, and six 
engineering optimizations taken from the literature. 
In comparison with the PSO, SA_GA, GSA, SCA, 
MVO, and SOA, the CSOA can find better values to 
solving the questions, the precision and robustness 
of the CSOA algorithm are better. The complex 
value encoding and multi-link methods enhance the 
diversity of the individuals and avert premature. Our 
CSOA algorithm overcomes the premature of SOA. 
The advantages of CSOA are summed up as follows. 
A CSOA algorithm is raised to enhance the 
precision and robustness in the optimization process. 
With the multi-chain strategy, in complex-valued 
coding, the real part, imaginary part, and real 
number are used as parallel individual variables to 
solve the objective function problem. The multi-
chain strategy can improve the diversity of 
individuals and boost partial scouting. 
Introduce the stochastic multi-chain strategy. 
According to the initial solution generation rule of 
complex number coding, the real part, imaginary 
part, and real number are randomly generated as 
parallel individual variables to solve the objective 
function. It can avert premature. 
The rest of the article structure is as follows. Part 2 
presentations the SOA. Part 3 describes the CSOA. 
Part 4 shows algorithms optimization experiments 
and results in analyses. At last, Part 5 gives some 
conclusions. 
2 Basic SOA Algorithm 
The SOA algorithm carries out in-depth research on 
human search behavior. It considers optimization as 
search for an optimal solution by a search team in 
search space, taking search team as population and 
the site of the searcher as task method. Using 
"experience gradient" to determine the search 
direction, using uncertain reasoning to resolve the 
search step measurement, through the scout 
direction and search step size to complete the 

searcher's position in the search interspace update, 
to attain the optimization of the solution. 
2.1 Search direction 
The forward orientation of search is defined by the 
experience gradient obtained from the individuals' 
movement and the evaluation of other individuals' 
search historical position. The egoistic direction

,e ( )if t , altruistic direction ,a ( )if t  and preemptive 

direction ,p ( )if t  of the ith individual in any 
dimension can be obtained, i.e. 

,best,e ( ) ( )= −i iif t p x t                          (1) 

,best, ( ) ( )= −i ii af t g x t                           (2) 

1 2,p ( ) ( ) ( )= −i iif t x t x t                           (3) 
The searcher uses the method of random weighted 
average to obtain the search orientation, i.e. 

1 2,p ,e ,a( ) sign( ( ) ( ) ( ))= + +i i i if t f t f t f t        (4) 
Where:  1 2, , 1, 2 − −t t t t t ， 1( )ix t  and 2( )ix t  are 

the best advantages of  ( -2) ( -1) ( )， ，i i ix t x t x t  
separately; ,bestig is the historical optimal location in 
the neighborhood where the ith search factor is 
located; ,bestip is the optimal locality from the ith 
search factor to the current locality; and 1  are 2

random numbers in [0,1].  is the weight of inertia. 
2.2 Search step size 
The SOA algorithm refer to the reasoning 
approximation ability of the fuzzy system. The SOA 
algorithm through the computer language describe 
some of the human natural language which can 
simulate human intelligence reasoning search 
behavior. If the algorithm expresses in a simple 
fuzzy rule, adapts to the best approximation of the 
objective optimization problems. The greater the 
search step length is more significant, on the 
contrary, the smaller the fitness, step length and the 
corresponding smaller. The gaussian distribution 
function is adopted to describe the search step 
measurement, namely 

2

22( ) e



 
−

=                             (5) 
Where,   and   are parameters of membership 
function. 
According to equation (5), the probability of the 
output variable exceeding  [-3 3 ] ,  is less than 
0.0111. Therefore, min 0.0111 = . Under normal 
circumstances, the optimal position of an individual 
has max 1.0 =  and the worst place is 0.0111. 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2021.20.21 Shaomi Duan, Huilong Luo, Haipeng Liu

E-ISSN: 2224-266X 174 Volume 20, 2021



However, to accelerate the convergence speed and 
get the optimal individual to have uncertain step size, 

max  is set as 0.9 in this paper. Select the following 
function as the fuzzy variable with a "small" target 
function value: 

max max min( ), 1,2, ,i
i

s I
i s

s I
   

−
= − − = 

−  (6) 
rand( ,1), 1,2, ,= = ij i j D                  (7) 

Where: 
ij  is determined by equations (6) and (7), 

and 
iI  is the count of the sequence ( )ix t  of the 

current individuals arranged from high to low by 
function value. And the function ( ,1)irand   is the 
real number in any partition [ ,1]i . 
It can be seen from equation (6) that it simulates the 
random search behavior of human beings. Step 
measurement of j-dimensional search interspace is 
determined by equation (8): 

ij ln( )= − −ij ij  
                       (8) 

Where, 
ij is a parameter of Gaussian distribution 

function, which is defined by equation (9): 
min max= *abs( - )ij x x x                       (9) 

Where,   is the weight of inertia. As the 
evolutionary algebra increases,   decreases 
linearly from 0.9 to 0.1. minx  and maxx are 
respectively the variate of the minimum value and 
maximum value of the function. 
2.3 Individual location updates 
After obtaining the scout direction and scout step 
measurement of individual, the location update is 
represented by (10): 

( 1) ( ) ( ) ( ), 1,2, , ; 1,2, ,+ = + =  = ij ij ij ijx t x t t f t i s j D

                         (10) 
Where, i is the ith searcher individual, j represents 
the individual dimension; ij( )f t  and ij( )t  
respectively represent the searcher's search direction 
and search step size at time t, xij(t) and xij(t+1) 
respectively represent the searchers' site at time t 
and (t+1). 
3 CSOA Algorithm 
The chromosomes of complex organisms are 
double-stranded or multi-stranded construction. 
Since the two-dimensional structure of complex-
valued encoding [14, 27-29], it is represented as a 
two-chain. An individual consists of double chains 
of an identical length, and the real and imaginary 
parts of a plural can be used to represent a 
chromosome pair. The two-body framework 
enhances the variety of individuals and makes the 

algorithm have better searching and calculation 
capacity. 
3.1 Initial population generation 
In the light of the variable interval [Ak, Bk], k=1, 
2, ···,2M-1, 2M, modules ρk, phase angles θk and 
plural are produced [30] as following formula (11)-
(13). 

, ,= *rand [0, ], 1,2, , 2 1,2
2 2

 =  −k k k k
k

A B A B
k M M

                                       (11)
=4 (rand-0.5) [ 2 ,2 ], 1,2, ,2 1,2 − =  −k k M M   

                                        (12) 
i (cos sin ), 1,2, ,2 1,2+ = + =  −Rk Ik k k kX X i k M M  

                                    (13) 
The real parts XRk and imaginary parts XIk update by 
section 3.2. 
3.2 Individual location updates 
The real part is updated by formula (14): 

( 1) ( ) ( ) ( )+ = +R R R Rx t x t t f t           (14) 
Where, αR represents the scout direction of the real 
parts, and fR is the scout step measurement of the 
real parts. XR represents the location of the real 
number parts, t represents time t, and (t+1) 
represents time (t+1). 
The imaginary part is updated by formula (15): 

( 1) ( ) ( ) ( )+ = +I I I Ix t x t t f t            (15) 
Where, αI represents the scout direction of the 
imaginary part, fI is the scout step measurement of 
the imaginary part, XI represents the location of the 
imaginary number part, t represents time t, and (t+1) 
represents time (t+1). 
3.3 Fitness evaluation method 
When calculating fitness values using SOA 
algorithms, we convert plural to real numbers. The 
formula is as follows: 
(1) Take the plural mathematical module as real 
number: 

2 2
k , 1,2, , 1,= + =  −Rk IkX X k M M    (16) 

(2) Define the sign according to the phase angle: 

k
k

k    sgn(sin( )) , 1,2, 1,
2

,+
= =  −k kIkX

X k
A

M
B

M


                               (17) 
Xk is the real number. 
3.4 Multi-chain strategy 
The multi-chain strategy includes taking the real and 
imaginary part of the plural as separate parallel 
solutions, and randomly generating parallel 
solutions according to the complex number coding 
law. 
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CSOA individual variables

SOA individual variable

X

 XI 

XR

XK 

XR_Random 

XI_Random

XK_Random  
Fig. 1 Multi-chain strategy of CSOA 

In this paper, the meaning of the multi-chain 
strategy is that a single individual variable in the 
original SOA algorithm is converted into six parallel 
individual parameters when the CSOA optimize a 
problem. In complex-valued coding, there are real 
part XR, imaginary part XI, and real number XK. In 
each iterative loop optimization, XR, XI and XK are 
adjusted to variables that meet the scope of X 
(Xmin=Ak, Xmax =Bk). XR, XI, and XK were taken as 
the relative optimal solution variables respectively 
to solve the objective function problem. Secondly, a 
group of variables that randomly generate XR_Random, 
XI_Random, and XK_Random according to formulas (11), 
(12), (13) and meet the scope of X (Xmin=Ak, Xmax 
=Bk) should be added in each cycle optimization, 
and taken as the relative optimal solution variable to 
solve the objective function respectively. At the end 
individual of the single solution, the respective 
optimal solutions are saved, and the global optimal 
value is saved as the current optimal value after the 
comparison of each optimal solution. The optimal 
solution variables of the next generation of XR, XI, 
and XK are changed according to formulas (15), 
(16), and (17). The next generation optimal solution 
variables of XR_Random, XI_Random, and XK_Random are 
generated randomly according to formulas (11), (12), 
and (13). In other words, a single individual variable 
X in the original SOA algorithm is converted to six 
individual variables XR, XI, XK, XR_Random, XI_Random, 
and XK_Random when solved by the CSOA algorithm, 
and this is shown in Fig. 1. So instead of solving for 
one main chain, we are solving for six parallel 
chains. CSOA algorithm uses a multi-chain strategy, 
which adds the variety of the individual enhance 
local scout, and averts premature convergence. 
3.5 CSOA algorithm process 
The complex-valued encoding seeker optimization 
algorithm (CSOA) is based on a multiple population 
evolution model, three populations evolved by SOA, 
and three other populations evolved from random 
generation. Individual groups use information-
sharing mechanisms to realize coevolution. 
Algorithm 1 is the primary process of CSOA. 
Algorithm 1: CSOA 

1. t←0 

2. Initialization Generate initial species group based on 
formula (11), (12), and (13). 

3. Convert plural into real numbers based on the 
formulas (16) and (17). 

4. Determine the range of XR_CSOA,G, XI_CSOA,G, and 

XCSOA,G to satisfy the range of X. 
5. Evaluate each seeker. Computing the fitness. 
6. While stopping condition is not satisfied  

6.1 Running process of the CSOA algorithm 
6.1.1 Renew the real parts by formula (14), 

XR_CSOA,G.  
6.1.2 Renew the imaginary parts based on formula 

(15), XI_CSOA,G.  
6.1.3 Convert plural into real number based on 

formula (16) and (17), XCSOA,G. 
6.1.4 Determine the range of XR_CSOA,G, XI_CSOA,G, 

and XCSOA,G to satisfy the range of X. 
6.1.5 Scout strategy giving scout direction and 

scout range. 
6.1.6 Calculate the fitness 𝑓(XR_CSOA,𝐺), 
𝑓(XI_CSOA,𝐺), 𝑓(XCSOA,𝐺). 

6.1.7 Identify the best solution XCSOAbest,G 
FCSOA,G=min[𝑓(XR_CSOA,𝐺)  𝑓(XI_CSOA,𝐺)  𝑓(XCSOA,𝐺)] 
XCSOAbest,G = min(FCSOA,G) 

6.2 Random generation and calculation 
6.2.1 Generate Initial population according to 

formula (11), (12), and (13). 
6.2.2 Convert complex numbers into real numbers 

according to formulas (16) and (17). 
6.2.3 Determine the range of XR_Random,𝐺, XI_Random,𝐺, 

and XRandom,𝐺 to satisfy the range of X. 
6.2.4 Calculate the fitness 𝑓(XR_Random,𝐺), 
𝑓(XI_Random,𝐺), 𝑓(XRandom,𝐺). 

6.2.5 Identify the best value XRandombest,G 
FRandom,G=min[𝑓(XR_Random,𝐺)  𝑓(XI_Random,𝐺)  

𝑓(XRandom,𝐺)] 
XRandombest,G = min(FRandom,G) 

6.3 Confirm the global best value Xbest 

If 𝑓(XCSOAbest,𝐺) ≤ 𝑓(XRandombest,𝐺) 
Xbest = XCSOAbest,𝐺 

else  Xbest = XRandombest,𝐺 
end if 

7. t=t+1 
8. if t<Tmax, then jump to 3; Else Stop. 
4 Experimental Results 
4.1 Experimental setup 
All algorithms used in the experiment in this paper 
were running under MATLAB R2016a. The 
computer is configured as Intel (R) Core (TM) i7-
7500U CPU @2.7GHz 2.9 GHz processor with 8 
GB of memory, the operating system is Windows 10. 
4.2 Parameters Setting 
In the subsection, the parameters setting of PSO 
[31], SA_GA [32], GSA [6], SCA [8], MVO [9], 
SOA [18] and CSOA algorithm are presented. 
According to the references [6] [8] [11] [18] [31] 
[32], we did a lot of practice tests and comparative 
studies about the parameters. The parameters of the 
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seven algorithms depend on the real experience to 
take the right value. Tab. 1 lists the parameters in 
the test. To ensure the comparison is fair, the seven 
algorithms the population number is 30, and the 
evolutionary algebra is 1000. At the same time, for 
further ensuring the fairness of algorithm 
comparison and reducing the effect of randomness, 
the results of the seven algorithms after 30 
independent runs were selected for comparison. 

Tab. 1 The parameters set of algorithms 

4.3 Algorithm performance comparison in 

benchmark functions 
Using fifteen benchmark functions [7,10,33-35] to 
test the capability of the CSOA algorithm, the 
functions have been widely used in the test. CSOA 
compares with the PSO, SA-GA, GSA, SCA, MVO, 
and SOA algorithms. 
4.3.1 Algorithm performance comparison in 

unimodal benchmark functions 

In this field, it is common to base the capability of 
algorithms on mathematic functions that are known 
to be globally optimal. Nine unimodal reference 
functions in the literature were used as the 
comparative test platform [7,10,33-35]. 
4.3.1.1 Unimodal benchmark functions 

Tab. 2 has shown the unimodal functions in the 
experiment. Variables are set to one thousand. 

Tab. 2 Description of unimodal functions 

Functions Range Minimum 

2
1

1

f ( )
n

i

i

x x
=

=
  [-100,100] 0 

2
11

f ( )
n n

i i

ii

x x x
==

= +
 [-10,10] 0 

2
3

1 j 1

f ( )
n i

j

i

x x
= =

=
 [-100,100] 0 

4f ( ) max{ ,1 }i
i

x x i n=    [-100,100] 0 
-1

2 2 2
5 1

1

f ( ) [100( ) ( 1) ]
n

i i i

i

x x x x+

=

= − + −
 [-30,30] 0 

2
6 i

1

f ( ) ( 0.5 )
n

i

x x
=

= +
 [-100,100] 0 

4
7

1

f ( ) i m[0,1)
n

i

i

x x rand
=

= +
 [-1.28,1.28] 0 

2
8

1

f ( ) i
n

i

i

x x
=

=
 [-10,10] 0 

( )
n

1
9

1

f ( ) i

i

i

x x
+

=

=
 [-1.28,1.28] 0 

4.3.1.2 Results comparison of algorithms in 

unimodal benchmark functions 

The mean values, standard deviation (Std.) values, 
best values, and best values rank between the 
algorithms of 30 all alone runs; the results of the 
functions 𝑓1-𝑓9 are displayed in Tab. 3. The 
underline and boldface indicate that the optimal 
result is better.  
For the unimodal functions, based on Tab. 3, except 
𝑓4, 𝑓7, and 𝑓9, the optimal value of the CSOA 
algorithm is better than others. To 𝑓9, the optimal 
value of CSOA has reached the theoretical best 
value, although the optimal fitness value of CSOA 
is worse than PSO and GSA, it the optimal fitness 
value result of CSOA to 𝑓7 function is only worse 
than PSO algorithm, the optimal fitness value result 
of CSOA to 𝑓4 is worse than PSO, GSA, and SOA 
algorithm. Except 𝑓2, 𝑓3, 𝑓4, 𝑓7, and 𝑓9, the 
standard deviation results of the CSOA algorithm 
are better than others. The standard deviation results 
of CSOA to 𝑓9 is only worse than PSO algorithm, 
the result of CSOA to 𝑓7 is worse than PSO, GSA, 
and SOA, the result of CSOA to 𝑓4 is worse than 
SCA, GSA, SA_GA, PSO, and MVO, the result of 
CSOA to 𝑓3 is worse than MVO and SOA, the 
result of CSOA to 𝑓2 is only worse than SOA. The 
standard deviation results of CSOA to 𝑓2 function 
of PSO, SA_GA, and SCA algorithm have no 
solution, the GSA and MVO algorithm have an 
infinite standard deviation. Except 𝑓3, 𝑓4, 𝑓7, and 
𝑓9, the mean values of CSOA are better than others. 
To 𝑓9, the mean test results of CSOA has reached 
the theoretical best value, although the mean test 
result of CSOA is worse than PSO, the result of 
CSOA to 𝑓4 is worse than PSO, GSA, and SOA, the 
result of CSOA to 𝑓3 is only worse than GSA and 
SOA. According to the optimal fitness value mean 
rank and all rank results from Tab. 3, the CSOA has 
strong optimization ability and strong robustness to 
unimodal function.

Algorithm Parameters and Value 
PSO [31] Constant inertia: 0.9~0.4, The two 

acceleration coefficients: 1.4962. 
SA_GA [32] Select probability:0.6, Crossover 

probability:0.7, Mutation scale 
factor:0.05, Original temperature:100, 
Temperature reduction parameter:0.98. 

GSA [6]  The gravitational constant: G0=100, 
alfa=20. 

SCA [8] The random numbers: r1=0~2, r2=0~2π, 
r3=0~2, r4=0~1. 

MVO [9] Probability of wormhole existence: 
WEP_Max =1, WEP_Min=0.2, 
travelling distance rate: TDR=0~1, the 
random numbers: r1=0~1, r2=0~1, 
r3=0~1. 

SOA [18] The membership degree value: 
MDV_Max =0.95, MDV_Min =0.0111, 
The inertia weight value: IWV_Max 
=0.9, IWV_Min=0.1. 

CSOA The membership degree value: 
MDV_Max =0.95, MDV_Min =0.0111, 
The inertia weight value: IWV_Max 
=0.9, IWV_Min=0.1. 
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Tab. 3 Performance comparison of algorithms for unimodal functions 

Functions Result 
Algorithm 

PSO SA_GA GSA SCA MVO SOA CSOA 

 
𝑓1 

(𝐷=1000) 

Mean 9.7477e+3 2.5731e+6 9.7519e+4 3.5105e+5 3.5977e+5 1.1631e+3 2.7677e+2 

Std. 1.6106e+3 5.6740e+4 4.9089e+3 1.3646e+5 1.6121e+4 2.1241e+3 1.1208e+3 

Best 6.9495e+3 2.4536e+6 8.7230e+4 4.0211e+4 3.3044e+5 69.63801 13.41123 

Rank 3 7 5 4 6 2 1 

 
𝑓2 

(𝐷=1000) 

Mean Inf Inf 1.8010e+281 Inf 1.3436e+273 1.3642e+2 84.4833 

Std. NaN NaN Inf NaN Inf 5.69798 6.8676 
Best 2.9025e+2 Inf 4.6083e+244 Inf 2.3145e+209 1.2392e+2 74.4520 

Rank 3 6 5 6 4 2 1 

 
𝑓3 

(𝐷=1000) 

Mean 3.3245e+6 3.3451e+7 1.9611e+6 2.4026e+7  6.1928e+6 1.3029e+6 2.0443e+6 
Std. 1.4068e+6 1.1343e+7 8.1529e+5 4.7320e+6 4.3229e+5 4.9041e+5 7.7353e+5 
Best 1.6748e+6 1.9532e+7 9.5585e+5 1.3982e+7 5.5268e+6 1.8272e+5 1.7429e+4 

Rank 4 7 3 6 5 2 1 

 
𝑓4 

(𝐷=1000) 

Mean 18.3429 99.5440 28.7444 99.5223 97.4126 28.6012 61.3865 
Std. 1.3182 0.1918 1.7962 0.1313 0.7405 10.4316 3.1861 
Best 16.3774 98.9588 25.8834 99.1965 95.6086 2.3434 53.9155 
Rank 2 6 3 7 5 1 4 

 
𝑓5 

(𝐷=1000) 

Mean 2.7249e+5 1.119e+10 1.6750e+7 3.2676e+9 6.7902e+8 2.2675e+5 4.8206e+4 

Std. 1.4792e+5 3.343e+8 1.7268e+6 7.0048e+8 7.3930e+7 1.2833e+5 2.7505e+4 

Best 1.2499e+5 1.057e+10 1.4932e+7 2.0841e+9 5.4843e+8 2.8880e+4 1.1542e+4 

Rank 3 7 4 6 5 2 1 

 
𝑓6 
(𝐷=1000) 

Mean 1.0284e+4 2.5635e+6 9.8733e+4 4.1315e+5 3.5579e5 1.3438e+3 2.7896e+2 

Std. 1.3817e+3 4.0795e+4 4.9212e+3 1.2787e+5 1.7687e+4 2.2562e+3 66.6179 

Best 6.1887e+3 2.4668e+6 9.0772e+4 1.6278e+5 3.1703e+5 2.5694e+2 2.1193e+2 

Rank 3 7 4 5 6 2 1 

 
𝑓7 

(𝐷=1000) 

Mean 1.1474e+2 1.7871e+5 5.2986e+3 4.7647e+4 8.7236e+3 5.1827e+3 2.2353e+3 
Std. 22.2657 6.0811e+3 5.8169e+2 1.1048e+4 771.5517 6.5217e+2 7.6850e+2 
Best 80.9849 1.6720e+5 4.37029e+3 2.6553e+4 7.2739e+3 3.7872e+3 1.0774e+3 
Rank 1 7 4 6 5 3 2 

 
𝑓8 
(𝐷=1000) 

Mean 4.7291e+4 1.2547e+7 3.8862e+5 1.8012e+6 1.5454e+6 2.6560e+4 7.9139e+3  

Std. 6.6212e+3 3.5539e+5 2.2329e+4 5.5949e+5 6.4511e+4 3.9984e+3 1.4647e+3 

Best 3.6574e+4 1.1381e+7 3.5017e+5 4.5453e+5 1.4470e+6 1.8651e+4 4.4462e+3 

Rank 3 7 4 5 6 2 1 

 
𝑓9 
(𝐷=1000) 

Mean 9.7670e-9 1.5616e+92 7.6578e-5 9.1116e+83 1.0103e+56 0.3859 2.2868e-6 
Std. 3.3014e-8 7.3622e+92 2.5647e-4 4.6589e+84 5.5321e+56 0.6475 1.7299e-6 
Best 5.497e-16 1.1184e+7 1.9892e-9 9.2943e+69 5.6083e+38 2.0490e-5 4.4192e-7 
Rank 1 5 2 7 6 4 3 

Average Rank 2.555556 6.555556 3.777777778 5.777778 5.333333 2.222222 1.666667 

Overall Rank 3 7 4 6 5 2 1 

 
4.3.1.3 Convergence curves comparison of 

algorithms in unimodal benchmark functions 

Fig. 2 is the fitness curves of the best fitness for 
unimodal benchmark functions 𝑓1-𝑓9 (𝐷 =1000). 
As seen from Fig. 2, compared to the other six 
algorithms, the convergence of CSOA is faster, the 
precision of CSOA is better, except 𝑓4, 𝑓7, and 𝑓9. 

Although CSOA to 𝑓9 is worse than PSO in 
convergence and precision, CSOA has reached the 
theoretical best value, to 𝑓7 CSOA is only worse 
than PSO, to 𝑓4 CSOA is worse than PSO and SOA. 
Because the CSOA uses the multi-chain strategy to 
augment the individuals’ diversity and local scout 
intensity, CSOA reveals better optimization 
property in unimodal functions.
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Fig. 2 Convergence curves for unimodal functions 𝑓1-𝑓9(𝐷 =1000) 

4.3.1.4 ANOVA tests comparison of algorithms in 

unimodal benchmark functions 

Fig. 3 is the ANOVA of the global best values to 
unimodal functions 𝑓1-𝑓9 (𝐷 =1000). As seen from 
Fig. 3, CSOA is the most robust, except 𝑓3, 𝑓4, and 
𝑓7. The ANOVA test results of CSOA to 𝑓7 
function is only worse than PSO algorithm, the 

result of CSOA to 𝑓4 is worse than PSO, GSA, and 
SOA, the result of CSOA to 𝑓3 function is only 
worse than GSA and SOA algorithm. The CSOA 
algorithm showed better robustness and improved 
SOA. Therefore, CSOA is an effective and feasible 
solution in the optimization of unimodal functions. 

 

 

 
Fig. 3 ANOVA tests for unimodal functions 𝑓1-𝑓9 (𝐷 =1000) 

4.3.2 Algorithm performance comparison in 

multimodal benchmark functions 

Same as above, it is common to base the capability 
of algorithms on mathematic functions that are 
known to be globally optimal. Following the same 
process, six multimodal reference functions were 

used as the comparative test platform [7,10,33-35]. 
4.3.2.1 Multimodal benchmark functions 

Tab. 4 has shown the multimodal benchmark 
functions used in our experiment. The multimodal 
functions f10-f15 have many partly optimal values, 
which is useful for the algorithm to check, explore 
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and avoid local optimal solutions. A thousand 
variables are considered for multimodal test 

functions for further improving their difficulties.  

Tab. 4 Description of multimodal functions 

Functions Range Minimum 

10
1

f ( ) - sin( )
n

i i

i

x x x
=

= 
 [-500,500] -418.9829* number 

of dimensions 
2

11
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f ( ) [ 10cos(2 ) 10]
n

i i
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0 

1
0.2 2
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4.3.2.2 Results comparison of algorithms in 

multimodal benchmark functions 

Same as unimodal benchmark functions, the mean 
values, standard deviation, best fitness, and best 
fitness rank between the algorithms of 30 all alone 
runs, the multimodal functions 𝑓10-𝑓15 are 
displayed in Tab. 5. The underline and boldface 
indicate that the optimal result is better. 
For the multimodal benchmark functions, according 
to Tab. 5, except 𝑓10, 𝑓11, 𝑓14, and 𝑓15, to the 
optimal fitness, CSOA is better than others. The 
optimal fitness value results of CSOA to 𝑓15 
function is only worse than PSO algorithm, the 
optimal fitness value result of CSOA to 𝑓14 
function is worse than PSO and SOA algorithm, the 
optimal fitness value result of CSOA to 𝑓11 
function is worse only than SCA algorithm, the 

result of CSOA to 𝑓10 is worse than SOA and MVO. 
Except 𝑓10, 𝑓11, 𝑓12, and 𝑓14, to the standard 
deviation results, CSOA are better than others, to 
𝑓14 CSOA is worse than PSO and GSA, to 𝑓11 and 
𝑓12 CSOA are worse than PSO, SA_GA, GSA, 
MVO, and SOA, the standard deviation results of 
CSOA to 𝑓10 function is worse than PSO, SA_GA, 
GSA, SCA, and MVO algorithm. Except 𝑓10 and 
𝑓14, To the mean results, CSOA are better than 
others, to 𝑓10 CSOA is worse than MVO, and SOA, 
to 𝑓14 CSOA is only worse than PSO algorithm. 
According to the optimal fitness value mean rank 
and all rank results from Tab. 5, CSOA can find 
solutions, and the robustness is strong for 
multimodal benchmark functions. 

Tab. 5 Algorithms performance is compared of in multimodal functions 

Function
s 

 
Result 

Algorithm 
PSO SA_GA GSA SCA MVO SOA CSOA 

 
𝑓10 
(𝐷= 
1000) 

Mean -1.7007e+4 -5.8434e+4 -1.474e+4 -2.2849e+4 -1.339e+5 -1.181e+5 -7.995e+4 

Std. 2.5847e+3 3.4159e+3 2.3262e+3 1.3757e+3 5.9809e+3 3.0107e+4 1.5591e+4 

Best -2.155e+4 -6.7056e+4 -1.844e+4 -2.665e+4 -1.467e+5 -2.157e+5 -1.178e+5 

Rank 6 4 7 5 2 1 3 

 
𝑓11 
(𝐷 
=1000) 

Mean 2.8217e+3 1.5245e+4 5.7869e+3 1.8362e+3 1.3788e+4 6.3358e+3 1.7847e+3 

Std. 1.7027e+2 1.3944e+2 1.5766e+2 874.1338 300.8269 5.0727e+2 5.5996e+2 
Best 2.5372e+3 1.4955e+4 5.4142e+3 502.646 1.3250e+4 5.1713e+3 1.0788e+3 
Rank 3 7 5 1 6 4 2 

 
𝑓12 

Mean 4.4947 20.7977 10.3286 18.8639 20.9497 3.1246 1.5427 

Std. 0.1746 0.0267 0.1538 4.0427 0.0222 0.3837 0.9780 
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(𝐷 = 
1000) 

Best 4.2442 20.7492 9.9359 8.4914 20.8992 2.3556 0.9571 

Rank 3 6 5 4 7 2 1 

 
𝑓13 
(𝐷 = 
1000) 

Mean 1.0210e+3 2.3100e+4 1.3996e+4 3.1433e+3 3.2496e+3 16.2019 1.6504 

Std. 32.8774 5.1266e+2 2.1571e+2 1.0529e+3 169.9815 27.1817 5.2240 

Best 9.5388e+2 2.1976e+4 1.3539e+4 1.1471e+3 2.8639e+3 0.19051 0.0449 

Rank 3 7 6 4 5 2 1 

 
𝑓14 
(𝐷 = 
1000) 

Mean 3.5824 2.6235e+10 3.8689e+4 9.5072e+9 9.0076e+8 2.0865e+4 2.0766e+4  
Std. 0.4677 9.4178e+8 2.4728e+4 2.0642e+9 1.0468e+8 4.1982e+4 3.6384e+4 
Best 2.7478 2.4014e+10 5.6569e+3 5.1822e+9 7.1553e+8 1.3229 44.7877 
Rank 2 7 4 6 5 1 3 

 
𝑓15 
(𝐷 = 
1000) 

Mean 1.4226e+4 4.9243e+10 6.1049e+6 1.6105e+10 2.2732e+9 9.6850e+4 8.6561e+3 

Std. 2.2790e+4 1.6004e+9 1.2137e+6 3.5103e+9 2.8365e+8 1.7378e+5 1.2465e+4 

Best 4.0719e+2 4.6279e+10 4.2910e+6 8.3903e+9 1.8130e+9 4.2437e+2 1.2094e+3 
Rank 1 7 4 6 5 3 2 

Average Rank 3 6.333333 5.1666667 4.333333 5 2.166667 2 
Overall Rank 3 7 6 4 5 2 1 

4.3.2.3 Convergence curves comparison of 

algorithms in multimodal functions 

Fig. 4 is the fitness curves of the global minimum 
values for multimodal benchmark functions 𝑓10-
𝑓15 (𝐷 =1000). As seen from Fig. 4, compared to 
the other six algorithms, the convergence of CSOA 
is faster, the precision of CSOA is better, except 

𝑓10, 𝑓14 and 𝑓15. CSOA to 𝑓15 is only worse than 
SOA in convergence and precision aspect, to 𝑓14 
CSOA function is worse than SOA and PSO, to 𝑓10 
CSOA function is worse than MVO and SOA. 
CSOA reveals better optimization property in 
multimodal functions. 
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Fig. 4 Convergence curves for multimodal 

functions 𝑓10-𝑓15 (𝐷 =1000) 

4.3.2.4 ANOVA tests comparison of algorithms in 

multimodal benchmark functions 

Fig. 5 is the ANOVA of the global best values to 
multimodal functions 𝑓10-𝑓15 (𝐷 =1000). As seen 
from Fig. 5, CSOA is the most robust, except 𝑓10, 

𝑓12 and 𝑓14. The ANOVA test results of CSOA to 
𝑓10 function are only worse than the MVO 
algorithm, the results of 𝑓12 and 𝑓14 functions are 
worse than PSO and SOA algorithm. This CSOA 
algorithm showed better robustness and improves 
SOA. Therefore, CSOA is an effective and feasible 
solution in the optimization of multimodal functions. 

 

 
Fig. 5 ANOVA tests for multimodal functions 𝑓10-𝑓15 (𝐷 =1000) 

4.3.3 Complexity analysis 

The calculational complexity of the basic SOA is O 
(N.D.M), N is the total individual count, D is the 
dimension count, M is the maximum count of 
algebras. The computational complexity of the first 
phase of the SOA stage is O (N.D.M). The complex 
coding strategy is introduced to calculate the O 
((N.D.M) value. The introduced multi-chain strategy 
the calculational complexity value of O (N.D.M). So, 
the overall complexity of CSOA is O (N.D.M + 
N.D.M + N.D.M). Based on the principle of Big-O 
representation [36], if the count of algebras is high 
(M≫N, D), the calculational complexity is O 
((N.D.M). Therefore, the overall calculational 
complexity of the CSOA is almost the same as the 
basic SOA. 

4.3.4 Run time comparison of algorithms in 

benchmark functions 

In the subsection, the running time of the algorithm 
for each function is recorded under the same 
conditions: population number 30, evolution algebra 
1000, and 30 independent runs of the above fifteen 
benchmark functions 𝑓1-𝑓15 (d=1000). Then, the 
running time of the fifteen functions was summed 
up to obtain the sum of the 30 independent running 
times of each algorithm for the fifteen functions 
listed in this paper. And rank the total time, as 
shown in Tab. 6. As can be seen from Tab. 6, the 
PSO algorithm has the most minor program running 
time, followed by the SCA algorithm, which has 
more minor program running time, and the CSOA 
algorithm ranks sixth, which has relatively more 
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program running time. At the bottom of the list is 
the SA_GA algorithm, which takes the most running 

time. 

Tab. 6 Run time comparison of 30 independent runs for benchmark functions 𝑓10-𝑓15 (𝐷 =1000) 

Functions 
(𝐷= 1000) 

Run time of algorithms 
PSO SA_GA GSA SCA MVO SOA CSOA 

𝑓1 100.719730 880.039134 1238.641454 123.011947 291.672145 151.787862 1240.526227 
𝑓2 68.229668 848.231807 1319.453189 158.694010 120.413171 201.005115 1120.092672 
𝑓3 2083.966419 59198.227940 3001.030713 1813.227548 1978.830114 6464.103793 19353.182034 
𝑓4 55.090061 763.100004 1182.766535 148.610507 282.693611 127.111629 991.587944 
𝑓5 59.726643 907.492580 1190.101594 133.724941 347.492206 171.346819 1036.987842 
𝑓6 60.136433 768.869660 1321.559282 127.490008 283.733081 137.581005 1054.889547 
𝑓7 171.086743 2893.833975 1345.984756 203.877433 366.515217 378.499704 1809.255687 
𝑓8 56.468720 824.393464 1361.309649 131.849271 296.880364 141.850056 1226.496492 
𝑓9 119.475367 2814.347692 1338.479782 202.890012 270.227397 373.595086 1727.571955 
𝑓10 96.665578 1331.028369 1207.890758 162.894968 163.620252 300.359964 1248.552418 
𝑓11 67.987998 1166.055564 1200.353798 147.172828 321.039558 243.508636 1135.691572 
𝑓12 85.468484 1298.972295 1504.250466 168.363508 421.893238 329.211669 1409.548409 
𝑓13 105.918299 1489.631271 1217.56270 147.627982 330.277401 224.838827 1231.581318 
𝑓14 227.567551 5817.019363 1364.117264 381.158993 485.116503 782.243419 2873.449473 
𝑓15 252.124024 5953.028083 1367.575562 320.156020 494.213399 1149.480076 2800.126364 

The total time 3610.632 86954.27 21161.08 4370.74998 6454.6177 11176.52 40259.54 
Overall Rank 1 7 5 2 3 4 6 

 
Fig. 6 The total time of 30 independent runs of 7 

algorithms on 15 benchmark functions 

To learn more about the program running time of 
the seven algorithms in the fifteen functions, a bar 
chart Fig. 6 was made for the total time of each 
algorithm after 30 independent runs. From Fig. 6, 
the program running time of PSO is the least, while 
that of SA_GA algorithm is the most, the program 
running time of CSOA is less than half of that of 
SA_GA algorithm, which is relatively large. 
4.3.5 Performance profiles of algorithms in 

benchmark functions 
The average fitness was selected as the capability 
index. The algorithmic capability is expressed in 
performance profiles, which are calculated by the 
formulas (18)(19).  

rf ,g = μf ,g / min{μf ,g : g ∈ G}             (18) 

ρg(τ ) = size{ f∈F : rf ,g ≤ τ } / nf        (19) 
Where, g represents an algorithm, G is the 
algorithms set, f means a function, F is the function 
set, ng is the number of algorithms in the experiment, 
nf is the number of functions in the experiment, μf,g 
is the average fitness after algorithm g solving 
function f, rf,g is the capability ratio, ρg is the 
algorithmic capability, τ is a factor of the best 
probability [37]. 

 
Fig. 7 Performance profile of 7 algorithms on 15 

benchmark functions 

Fig. 7 shows the capability ratios of the mean fitness 
for the seven algorithms on the benchmark functions 
𝑓1- 𝑓15 (𝐷 =1000). The results are displayed by a 
log scale 2. As shown in Fig. 7, CSOA has the 
highest probability. When τ = 1 CSOA is about 0.6, 
which is better than others. When τ = 4 CSOA is 
about 0.87, PSO is 0.53, SOA is 0.40, GSA is 0.067, 
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MVO is 0.067, SCA is 0.067, SA_GA is 0.067. 
When τ = 12 CSOA is 0.87, PSO is 0.73, SOA is 
0.80, GSA is 0.33, MVO is 0.33, SCA is 0.27, 
SA_GA is 0.2. The capability curve of CSOA lies 
above others, and CSOA can achieve about 87% 
when τ ≥ 4. CSOA performs obviously better than 
other algorithms. 
4.4 Algorithm performance comparison in 

PID controller parameter optimization 

problems 
This subsection, using four test control system 
models optimizing PID parameters to test the 
capability of the CSOA algorithm. For g1∼g3, 
population number of all algorithms is 20, the max 
number of algebras is 20, g1∼g2 step response time 
set 10s, g3 step response time set 30s. For g4 
population number of all algorithms is 50, the max 
number of algebras is 50, step response time is set at 
50s. 
4.4.1 Control system models 

Start

End

Generate initial  population in the 
form of complex code，convert 

complex number into real number

Is the termination 
condition satisfied?

Determine egoistic 
direction, altruistic 

direction, 
premovement 

direction, experience 
gradient and search 

step size

The individual population was 
successively assigned to Kp、Ki、

Kd

Run the control system model

Output performance index

Y

N

CSOA optimization algorithm Control system model

Fig. 8 A process diagram for optimizing test 

control system PID parameters by CSOA 

Equations 20-23 have shown test control system 
models optimizing PID parameters used in our 
experiment. Fig. 8 have shown the process diagram 
for optimizing test control system PID parameters 
by CSOA. Fig. 9 have shown the optimization PID 
parameters model structure of the test control 
system. 
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×
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×
Test transfer 

function  
g1(s)~g4(s)

Step Output 

s

0.02s+1

Proportion integrals differential 
controller

Integrals 

Proportion

Differential

Optimization of PID parameters based on CSOA 
optimization algorithm

-

Fig. 9 Optimization PID parameters model 

structure of test control system 

4.4.2 Results comparison of algorithms in PID 

controller parameter optimization 

For testing the capability of the CSOA algorithm, 
CSOA has compared with PSO, SA-GA, GSA, SCA, 
MVO, and SOA in PID controller parameters 
optimization. The mean values, standard deviation 
values, best fitness values, and best fitness values 
rank between the algorithms of 30 all alone runs, for 
g1∼g4 are displayed in Tab. 7. The underline and 
boldface indicate that the optimal result is better. 
For the PID controller parameter optimization 
problems, according to Tab. 7, except g3, and g4, to 
the best fitness, CSOA is better than others. The 
optimal fitness value results of the CSOA to g3 
model are only worse than the SA_GA algorithm; 
the optimal fitness value result of the CSOA to g4 
model is only worse than the PSO algorithm. Except 
for g2, and g3, To the standard deviation results, 
CSOA is better than others, CSOA is only worse 
than SA_GA. To the mean, CSOA is better than 
others. According to the optimal fitness value mean 
rank and all rank results from Tab. 7, CSOA can 
find solutions and has very strong robustness for 
PID controller parameter optimization problems. 

Tab. 7 Performance comparison of algorithms in PID parameter optimization of 30 independent runs 

Test  Result 
Algorithm 

PSO SA_GA GSA SCA MVO SOA CSOA 

 
g1 

Mean 0.2267 0.3169 0.4571 0.0918 0.2501 0.1917 0.0539 

Std. 0.0877 0.0649 0.1569 0.0263 0.0532 0.11226 0.0127 

Best 0.0485 0.1002 0.2732 0.0483 0.0513 0.05774 0.0479 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2021.20.21 Shaomi Duan, Huilong Luo, Haipeng Liu

E-ISSN: 2224-266X 185 Volume 20, 2021



Rank 3 6 7 2 4 5 1 

 
g2 

Mean 58.4757 62.4599 60.7787 24.8454 59.5805 42.1538 0.8233 

Std. 7.75976 0.1216 5.3034 21.5239 7.6556 27.9025 0.6631 
Best 36.0409 62.0356 42.7711 0.4898 32.6095 0.39301 0.3299 

Rank 5 7 6 3 4 2 1 

 
g3 

Mean 1.8481e+2 2.7179e+2 2.7665e+2 29.0458 1.0848e+2 2.6269e+2 13.0293 

Std. 59.6434 0.62334 10.3088 11.9839 56.6750 44.8106 1.7189 
Best 32.5445 2.71191 2.7139e+2 14.5588 20.0492 26.5763 10.1561 
Rank 6 1 7 3 4 5 2 

 
g4 

Mean 1.7713e+2 55.3556 2.3413e+2 85.196656 35.721213 46.10528 34.63334 

Std. 4.2182e+2 36.00807 2.1754e+2 1.0050e+2 1.411226 26.992197 0.00686 

Best 34.625063 34.6294 58.321733 34.867448 34.643162 34.745734 34.625096 
Rank 1 3 7 6 4 5 2 

Average Rank 3.75 4.25 6.75 3.5 4 4.25 1.5 

Overall Rank 3 5 7 2 4 5 1 

 

 
Fig. 10 Convergence curves for PID controller parameter optimization g1 – g4 
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Fig. 11 The ANOVA tests for PID controller parameter optimization g1 - g4 

4.4.3 Convergence curves comparison of 

algorithms in PID controller parameter 

optimization 

Fig. 10 have shown the fitness curves PID controller 
parameter optimization for g1∼g4. As shown in Fig. 
10, compared to the other six algorithms, the 
convergence of the CSOA is fast, the precision of 
the CSOA is best. CSOA can find the optimal value. 
4.4.4 ANOVA tests comparison of algorithms in 

PID controller parameter optimization 

Fig. 11 is the ANOVA of the global best values PID 

controller parameter optimization for g1∼g4. As 
seen from Fig. 11, CSOA is the most robust than 
other algorithms. 
4.4.5 The unit step functions PID controller 

parameter optimization 

Fig. 12 have shown the unit step functions PID 
controller parameter optimization for g1∼g4. As 
seen from Fig. 12, by CSOA algorithm to 
optimization unit step models PID controller 
parameter for g1–g4, unit step functions tend to 
stabilize very quickly and accurately. 

 

 
Fig. 12 The unit step functions PID controller parameter optimization g1∼g4 

Therefore, CSOA is an effective and feasible 
solution in control system models optimizing PID 
parameters by algorithms. 
4.5 Algorithm performance comparison in 

constrained engineering optimization 

problems 
We are using six engineering problems to test the 
capability of the CSOA algorithm further. That 
engineering problems are very popular in the 
literature. The penalty function is used to calculate 
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the constrained problem. The parameters set for all 
heuristic algorithms still adopts the parameter 
setting of section 4.2. 
4.5.1 Welded beam design problem 

This is a lest fabrication cost problem, which has 
four parameters and seven constraints. The 
parameters of the structural system are shown in Fig. 
13[9]. The formulations of this problem are 
available in Appendix. 

 
Fig. 13 Design parameters of the welded beam 

Tab. 8 Comparison results of the welded beam design problem 

Algorithm Optimal values for variables Optimal cost Rank 
h l t b 

GSA [6] 0.182129  3.856979  10.0000  0.202376  1.87995 9 
MFO [7] 0.2057 3.4703 9.0364 0.2057 1.72452 5 
MVO [9] 0.205463  3.473193 9.044502 0.205695 1.72645 6 
CPSO [38] 0.202369  3.544214  9.048210  0.205723  1.72802 7 
HS [39] 0.2442 6.2231 8.2915 0.2443 2.3807 12 
PSO 0.20437461682 3.27746206207 9.03907307954 0.20573458497 1.69700648019 2 
SA-GA 0.26572876298 2.77789863579 7.63164040030 0.28853829376 1.99412873170 10 
GSA 0.12743403146 5.89076184871 8.05262845397 0.25908004232 2.10212926568 11 
SCA 0.20112344041 3.23948182622 9.40574225336 0.20795790595 1.76704865429 8 
MVO 0.20397627841 3.28970350716 9.03536739179 0.20582407425 1.69811381975 4 
SOA 0.19348578918        3.489546622637 9.027709656861 0.20615302629 1.69714450048 3 
CSOA 0.20568280035 3.25692824444 9.03941142183 0.20578118608 1.69655946036 1 

Some of the works comes from the literature: GSA 
[6], MFO [7], MVO [9], CPSO [38], and HS [39]. 
This paper, about the problem the CSOA compared 
to PSO, SA_GA, GSA, SCA, MVO, and SOA, and 
provided the best-obtained values in Tab. 8.  
From Tab. 8, compared with mathematical methods, 
this algorithm has the advantage of avoiding local 
optimality. For the problem, the CSOA algorithm is 
better than GSA, MFO, MVO, GA, CPSO, and HS 
algorithms in other kinds of literature. The CSOA is 
also better than PSO, SA_GA, GSA, SCA, MVO, 
and SOA. Therefore, CSOA is an effective and 
feasible solution to the problem. 
4.5.2 Pressure vessel design problem 

This is a lest fabrication cost problem of four 
parameters and four constraints. The parameters of 
the structural system are shown in Fig. 14 [9]. The 
formulations of this problem are available in 
Appendix. 
Some of the works comes from the literature: MFO 
[7], ES [40], DE [41], ACO [42], and GA [43]. In 

this paper, about the problem the CSOA compared 
to PSO, SA_GA, GSA, SCA, MVO, and SOA, and 
provided the best-obtained values in Tab. 9. 

 
Fig. 14 Pressure vessel design problem 

From Tab. 9, compared with mathematical methods, 
this algorithm has the advantage of avoiding local 
optimality. For the problem, the CSOA algorithm is 
better than MFO, ES, DE, ACO, and GA algorithms 
in other kinds of literature. The CSOA is also better 
than PSO, SA_GA, GSA, SCA, MVO, and SOA. 
Therefore, CSOA is an effective and feasible 
solution to the problem. 

Tab. 9 Comparison results for pressure vessel design problem 

Algorithm Optimal values for variables Optimal cost Rank 
Ts Th R L 

MFO [9] 0.8125 0.4375 42.098445 176.636596 6059.7143 8 
ES [40] 0.8125 0.4375 42.098087 176.640518 6059.7456 10 
DE [41] 0.8125 0.4375 42.098411 176.637690 6059.7340 9 
ACO [42] 0.8125 0.4375 42.103624 176.572656 6059.0888 7 
GA [43] 0.8125 0.4375 42.097398 176.654050 6059.9463 11 
PSO 0.93627266112 0.41391783346 47.19019859907 123.06285131625 6317.0167340514 12 
SA-GA 0.83804097369 0.41223740796 45.10610463950 142.64078515697 5931.2868373440 5 
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GSA 0.89533101776 0.43654377356 47.89640596198 115.96279725902 6057.9309555313 6 
SCA 0.71165237901 0.39215740603 40.39056304889 200.00000000000 5903.0036698882 4 
MVO 0.75462696023 0.37830685291 40.94839768196 191.64503059607 5764.4347452930 3 
SOA  0.76961590364   41.5284631287 0.388196715944   183.84147207932 5735.1355906012 2 
CSOA 0.74366609133 40.3200509108 0.366463323335 200.00000000000  5735.0844852589 1 

4.5.3 Cantilever beam design problem 

This is a problem that is determined by five 
parameters and applied only to the scope of 
variables of constraints. The parameters of the 
structural system are shown in Fig. 15 [7]. The 
formulations of this problem are available in 
Appendix. 
Some of the works comes from the literature: MFO 
[7] CS [44], GCA [45], MMA [45], and SOS [46]. 
In this paper, about the problem the CSOA 

compared to PSO, SA_GA, GSA, SCA, MVO, and 
SOA, and provided the best-obtained values in Tab. 
10. 
From Tab. 10, the CSOA algorithm is better than 
MFO, CS, GCA, MMA, and SOS algorithms in 
other kinds of literature. The CSOA is also better 
than PSO, SA_GA, GSA, SCA, MVO, and SOA. 
Therefore, CSOA is an effective and feasible 
solution to the problem. 

 
Fig. 15 Cantilever beam design problem 

Tab. 10 Comparison results for cantilever beam design problem 

Algorithm Optimal values for variables Optimum 
weight 

Rank 
x1 x2 x3 x4 x5 

MFO [7] 5.9848717732 5.3167269243 4.4973325858 3.5136164677 2.1616202934 1.339988086 6 
CS [44]  6.0089 5.3049 4.5023 3.5077 2.1504 1.33999 7 
GCA [45]  6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8 
MMA[45]  6.0100 5.3000 4.4900 3.4900 2.1500 1.3400 8 
SOS [46]  6.01878 5.30344 4.49587 3.49896 2.15564 1.33996 3 
PSO 6.007219438 5.311747232 4.505611438 3.4904346887 2.158626706 1.339963522 4 
SA-GA 6.251285023 5.460509756 4.149903306 3.8032391760 1.974102742 1.350285757 11 
GSA 6.020285873 5.305304583 4.512114944 3.4939372220 2.142187864 1.339969652 5 
SCA 5.801308754 5.589807963 4.497563735 3.4994713866 2.262668613 1.351011196 12 
MVO 6.017944991 5.336576175 4.493102726 3.4797461041 2.146292918 1.340024388 10 
SOA 6.014092415 5.315583298 4.484154000 3.5033360363 2.156331174 1.339957455 2 
CSOA 6.013067642 5.292274798 4.491025571 3.5095364396 2.167826747 1.339954592 1 

4.5.4 Gear train design problem 

This is a minimize the gear ratio problem, which has 
four variables and the scope of variables of 
constraints. Fig. 16 is the schematic diagram [47]. 
The formulations of this problem are available in 
Appendix. 
Some of the works comes from the literature: MFO 
[7], MVO [9], CS [44], ABC [48], MBA [48]. In 
this paper, about the problem the CSOA compared 
to PSO, SA_GA, GSA, SCA, MVO, and SOA, and 
provided the best obtained-values in Tab. 11. 
From Tab. 11, CSOA algorithm are better than 
MFO, MVO, CS, ABC, and MBA algorithms in 
other kinds of literature. Except for SA_GA, GSA, 
and PSO, the CSOA also better than SCA, MVO, 

and SOA. The optimal fitness value of CSOA has 
reached the theoretical best value, although the 
optimal fitness value of CSOA is worse than 
SA_GA, GSA, and PSO. CSOA finds a new value. 
Therefore, CSOA is an effective and feasible 
solution to the problem. 

 
Fig. 16 Gear train design problem 

Tab. 11 Comparison results of the gear train design problem 

Algorithm Optimal values for variables Optimal gear 
ratio 

Rank 
nA nB nC nD 

MFO [7] 43 19 16 49 2.7009e-012 7 
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MVO [9] 43 16 19 49 2.7009e-012 7 
CS [44] 43 16 19 49 2.7009e-012 7 
ABC [48] 49 16 19 43 2.7009e-012 7 
MBA [48] 43 16 19 49 2.7009e-012 7 
PSO 41.2676387267 12.0000000000 12.0000000000 24.1851491677 5.321647791e-20 3 
SA-GA 32.3132176916 21.0818982120 12.1649288759 55.0091556193 0 1 

GSA 54.7718113206 33.5951575204 12.0000000000 51.0148628266 1.358936169e-30 2 
SCA 52.6322252242 15.4114043064 23.1179418870 46.9168162381 5.431797718e-12 12 
MVO 60.0000000000 12.0000000000 41.8647883833 58.0329758032 2.334953506e-16 5 
SOA 60.0000000000 12.0000000000 43.2835302093 60.0000000000 2.567448245e-16 6 
CSOA 43.3821083557 31.2957045927 12.0000000000 60.0000000000 7.763414089e-17 4 
4.5.5 Three-bar truss design problem 

This is a minimize weight problem under stress, 
which has two variables and applying only to the 
scope of variables of constraints. The schematic 
diagram of components [47] is shown in Fig. 17[9]. 
The formulations of this problem are available in 
Appendix. 
Some of the works comes from the literatures: MFO 
[7], MVO [9], CS [44], MBA [48], DEDS [49]. In 
this paper, the problem is resolved by the CSOA and 
compared to PSO, SA_GA, GSA, SCA, MVO, and 

SOA. In this paper, about the problem the CSOA 
compared to PSO, SA_GA, GSA, SCA, MVO, and 
SOA, and provided the best-obtained values in Tab. 
12. 
From Tab. 12, except MVO, and PSO, the CSOA 
algorithm is better than others. The optimal fitness 
value of CSOA has reached the theoretical best 
value, although the optimal fitness value of CSOA 
is worse than MVO and PSO. Therefore, CSOA is 
an effective and feasible solution to the problem. 

 
Fig. 17 Three-bar truss design problem 

Tab. 12 Comparison results of the three-bar truss design problem 

Algorithm Optimal values for variables Optimum weight Rank 
x1 x2 

MFO [7] 0.788244770931922 0.409466905784741 263.895979682 10 
MVO [9] 0.78860276 0.40845307 263.8958499 8 
CS [44] 0.78867 0.40902 263.9716 11 
MBA [48] 0.7885650 0.4085597 263.8958522 9 
DEDS [49] 0.78867513 0.40824828 263.8958434 7 
PSO 0.788425434690935 0.408085596065985 263.8523465301364 2 
SA-GA 0.787321758816231 0.411216143996852 263.8532291023197 5 
GSA 0.761893501005708 0.493138841375638 264.8099085788021 12 
SCA 0.789922169365255 0.403817724788810 263.8541885386347 6 
MVO 0.788407496115311 0.408135122885127 263.8523464859033 1 

SOA 0.788530250484097 0.407914579681955 263.8523714388302 4 
CSOA 0.788444195859439 0.408029807190657 263.8523473086418 3 

4.5.6 I-beam design problem 

This is a minimize vertical deflection problem that 
has four variables and a constraint. Fig. 18 is the 
design diagram [7]. The formulations of this 
problem are available in Appendix. 
Some of the works comes from the literature: MFO 

[7], CS [44], SOS [46], IARSM [50], and ARSM 
[50]. In this paper, about the problem the CSOA 
compared to PSO, SA_GA, GSA, SCA, MVO, and 
SOA, and provided the best-obtained values in Tab. 
13. 
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Fig. 18 I-beam design problem 

 

Tab. 13 Comparison results for I-beam design problem 

Algorithm Optimal values for variables Optimum 
vertical 
deflection 

Rank 
b h tw tf 

MFO [7] 50 80 1.7647 5.0000 0.0066259 1 
CS [44] 50 80 0.9 5 2.32167 0.0130747 9 
SOS [46] 50 80 0.9 2.32179 0.0130741 8 
IARSM[50] 48.42 79.99 0.90 2.40 0.131 11 
ARSM [50] 37.05 80 1.71 2.31 0.0157 10 
PSO 29.2349505988 77.7790428198 5.0000000000 3.5987373218 0.0114625520 12 
SA-GA 34.9999839459 79.9999646294 4.9999802368 4.9999823841 0.0078637302 4 
GSA 35.0000000001 80.0000000000 5.0000000000 5.0000000000 0.0078636959 2 
SCA 34.9878089422 80.0000000000 5.0000000000 5.0000000000 0.0078658199 7 
MVO 34.9998614894 80.0000000000 4.9997841775 5.0000000000 0.0078637964 6 
SOA 34.9999002914 80.0000000000 5.0000000000 5.0000000000 0.0078636963 3 
CSOA 34.9997858604 80.0000000000  5.00000000000 5.0000000000 0.0078637332 5 

In Tab. 13, except MFO, GSA, SOA, and SA-GA, 
the CSOA algorithm are better than others. The 
fitness of MFO is best. Although the most minor 
vertical deviation of the CSOA algorithm is not as 
good as that of GSA, SOA, and SA-GA algorithms, 
it is very close to other relative optimal values. 
Therefore, CSOA is an effective and feasible 
solution to the I-beam design optimization problem. 
In brief, the CSOA algorithm fulfills better than 
other algorithms in most actual studies. CSOA is an 
effective and feasible solution to the practical 
optimization problems. 
5 Conclusion 
A CSOA algorithm is presented, with a complex 
value encoding method and a multi-link strategy. 
According to four phases test to CSOA from 
different perspectives: unimodal benchmark 
functions, multimodal benchmark functions, PID 
control parameters, and constrained engineering. 
Besides, CSOA was compared to PSO, SA-GA, 
GSA, SCA, MVO, and SOA. 
In the first phase, CSOA was test in nine benchmark 
functions. The results are that the CSOA algorithm 
is very effective and feasible in unimodal functions. 
In the phase, we consider the ranking values of 30 
all alone running between CSOA mean values, 
standard deviation values, best fitness values, and 
best fitness values rank, convergence curves, and 
variance tests for global minimum values. 
In the scend test phase, six multimodal benchmark 
function optimization problems were used to test 
CSOA further. The CSOA algorithm is also very 

effective and feasible in multimodal functions. The 
second test phase also considered the ranking values 
of 30 all alone running between CSOA mean values, 
standard deviation values, best fitness values, and 
best fitness values rank, convergence curves, and 
variance tests for global minimum values.  
From the nine unimodal benchmark functions and 
six multimodal benchmark functions optimization 
problems, the overall calculational complexity of 
the CSOA is almost the same as the basic SOA; the 
run time comparison of seven algorithms in 
benchmark functions, CSOA algorithm has 
relatively more program running time, it is not 
optimal about running time; to the capability of 
seven algorithms, CSOA is the highest competitive 
algorithm. 
In the third test phase, four PID control parameter 
optimization was used to test CSOA in practice 
further. The problems were parameter optimization 
model of second-order PID controller without time 
delay, parameter optimization model of PID 
controller with first order micro-delay, parameter 
optimization model of first-order PID controller 
with significant time delay, and parameter 
optimization model of high order PID controller 
without time delay problems. The third test phase 
also considered CSOA mean values, standard 
deviation values, best fitness values, and best fitness 
values rank of 30 all alone runs, the convergence 
curves, and ANOVA. From the results of PID 
parameters optimization problems, compared to the 
other six algorithms, CSOA is effective and feasible 
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in practical problem. 
Eventually, in the last test phase, six engineering 
problems further tested CSOA. The CSOA was 
compared to various algorithms. The results 
displayed CSOA is the highest competitive 
algorithm in the practical optimization problems . 
According to comparative analysis of experiments, 
the conclusion is as follow: 

⚫ Using complex-valued encoding to each 
seeker increases the scout region and 
avoids convergence to local optimality. 

⚫ Using the randomly generated multi-chain 
strategy increases the search space. 

⚫ Multi-chain tends to generate in any seeker 
randomly, so increasing the diversity of 
seeker. 

⚫ CSOA optimization benchmark function 
has higher optimization capability. 

⚫ CSOA optimization benchmark function 
has almost the same calculational 
complexity as the SOA. 

⚫ The running time of the CSOA 
optimization benchmark function is 
relatively high. Among the seven 
algorithms compared, the running time is 
only better than that of the SA algorithm. 

⚫ The CSOA can solve real challenging 
problems, such as: PID control parameters 
optimization problems, and classical 
constrained engineering optimization 
problems. 

⚫ Further tuning and adjustments can be 
incorporated into future studies. 
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Appendix 

I – Welded beam design problem 
Consider      

1 2 3 4[ , , , ] [ , , , ]= =x x x x x h l t b , 
Minimize     2

1 2 3 4 2( ) 1.10471 0.04811 (14 )= + +f x x x x x x , 
Subject to     

1 maxg ( ) ( ) 0= − x x  , 

2 maxg ( ) ( ) 0= − x x  , 

3 1 4g ( ) 0= − x x x , 
2

4 1 3 4 2( ) 1.10471 0.04811 (14 ) 5 0= + + − g x x x x x , 

5 1g ( ) 0.125 0= − x x , 

6 maxg ( ) ( ) 0= − x x  , 

7g ( ) ( ) 0= − cx P P x , 
Variable range 

10.1 2 x , 
20.1 10 x , 

30.1 10 x , 

40.1 2 x , 

 Where       2 22( ) ( ) 2 ( )
2

   = + +
x

x
R

     , 

             
1 22

 =
P

x x


,  =
MP

J
 , 2( )

2
= +

x
M P L , 

             2
21 32 ( )

4 2
+

= +
x xx

R , 

2
21 32

1 22 2 ( )
4 2

  + 
= +  

   

x xx
J x x

, 

             
2

4 3

6( ) = PL
x

x x
 , 3

3
4 3

6( ) = PL
x

Ex x
 , 

2 6
3 4

3
2

4.013
36( ) 1

2 4
 

= −  
 

c

x x
E

x E
P x

L L G

, 

             P=6000 lb, L=14 in, E=30×106 psi, 
G=12×106 psi,  
τmax=136000 psi, σmax=30000 psi, δmax=0.25 in. 
 
II–Pressure vessel design problem 
Consider      

1 2 3[ , , ] [ , , , ]= = s hx x x x T T R L , 
Minimize     

2 2 2
1 3 4 2 3 1 4 1 3( ) 0.6224 1.7781 3.1661 19.84= + + +f x x x x x x x x x x , 

Subject to     
1 1 3g ( ) 0.0193 0= − + x x x , 

2 2 3g ( ) 0.00954 0= − + x x x , 
2 3

3 3 4 3
4g ( ) 1296000 0
3

= − − + x x x x  , 

4 4( ) 240 0= − g x x , 
Variable range 

10 99 x , 
20 99 x , 

310 200 x , 

410 200 x . 
 
III–Cantilever design problem 
Consider      

1 2 3 4 5[ , , , , ]=x x x x x x , 
Minimize     

1 2 3 4 5( ) 0.0624( )= + + + +f x x x x x x , 
Subject to    

3 3 3 3 3
1 2 3 4 5

61 37 19 7 1g( ) + + + + 1 0= − x
x x x x x

, 
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Variable range 
1 2 3 4 50.01 , , , , 100 x x x x x . 

 
IV –Gear train design problem 
Consider      

1 2 3 4[ , , , ] [ , , , ]= = A B C Dx x x x x n n n n , 
Minimize     23 2

1 4

1( ) ( )
6.931

= −
x x

f x
x x

, 

Variable range 
1 2 3 412 60 ， ， ，x x x x . 

 
V–Three-bar truss design problem 
Consider      

1 2 1 2[ , ] [ , ]= =x x x A A , 
Minimize     

1 2( ) (2 2 )*= +f x x x l , 
Subject to     1 2

1 2
1 1 2

2 +g ( ) - 0
2 +2

= 
x x

x P
x x x


, 

2
2 2

1 1 2

g ( ) - 0
2 +2

= 
x

x P
x x x


 

3
2 1

1g ( ) - 0
2 +

= x P
x x


 

Variable range 
1 20 1 ，x x , 100cm=l , 22KN / cm=P , 

22KN / cm= . 
 
VI–I-beam design problem 
Consider      

1 2 3 4[ , , , ] [ , , , ]= = w fx x x x x b h t t , 
Minimize     

23 3
3 2 4 1 4 2 4

1 4

5000( )
( 2 ) 2

12 6 2

=
− − 

+ +  
 

f x
x x x x x x x

x x

, 

Subject to     
1 3 3 2 4g( ) 2 ( 2 ) 0= − − x x x x x x , 

Variable range 
110 50 x , 

210 80 x , 
30.9 5 x , 

40.9 5 x . 
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