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1 Introduction 
DC/DC converters, which have a quadratic term of 
the duty cycle, are useful, when wide voltage 
transformation ratios have to be obtained. The 
classical paper concerning this topic is [1]. One 
interesting fact is that these converters need only 
one active switch and the other three necessary 
switches are realized by diodes. It should be 
mentioned that one could substitute these diodes by 
active switches for low voltages to reduce losses, 
but this increases the cost because of the necessary 
drivers and the additional control expense.  
Basic information about DC/DC converters can be 
found in the textbooks e.g. [2-4]. Other topologies 
can be found in the topology studies [5-7]. 
Quadratic converters with coupled coils are treated 
especially in [8-11]. In this paper we explain the 
function, the modelling and the feedforward control 
of a quadratic converter for an example. Simulation 
results are shown also for two other converters to 
show the effectivity of the feedforward concept. 
 
2 Function of the D-Square Step-
Down Converter  
In this chapter we explain the operation of the d-
square step-down converter according to the circuit 
diagram shown in Fig. 1. The converter is shown 
with a resistive load. This converter is also useful as 
a driver for a permanent magnet DC machine, as 
battery charger or as a converter for supplying 
LEDs. Two modes exist in the continuous inductor 
current mode (CICM). In mode M1 the active 
switch S and the diode D1 are conducting and mode 
M2 starts, when the active switch S1 is turned off. 

Now also D1 turns off and the current through L1 
commutates into D2 and the current through L2 
commutates into D3.  

 
Fig. 1. D-square converter 
 
The best way to get to know a converter is to take a 
sheet of chequered paper, a pencil and an eraser and 
draw the signals of the converter. Idealized devices, 
steady state, CICM and appropriate large capacitors, 
so that the voltage across them stays constant within 
one switching period, are assumed. The best way to 
start with are the voltages across the inductors. With 
a duty cycle of one third, we get the voltages across 
the inductors according to Fig. 2. 

 
Fig. 2. Voltages across the coils 
 
From the voltage-time balance across the inductors 
(the voltage across the inductors must be zero in the 
steady state mode) one gets 
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This leads to the voltage transformation ratio 
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Now one can start to draw the voltages across the 
semiconductors. With Kirchhoff’s voltage law one 
gets the signals according to Fig. 3. Now one knows 
the necessary voltages for the active and the passive 
switches. 

 

 

Fig. 3. Voltages across the semiconductors  
 
Starting from the output current (Fig. 4) and using 
the charge balance across the capacitors (the current 
through the capacitors must be zero in the steady 
state mode), the connections between the currents 
can be found.  

 

Fig. 4. Currents through the load and through the 
inductor L2 

Starting from the fact that all charge transported 
through L2 must be transferred into the load, the 
mean value of the inductor current must be equal to 
the load current. The ripple of the inductor current 
must be equalized by capacitor C2.  
With the charge balance of C1, one can also find the 
mean value of the current through L1. The current 
through L1 increases, when the active switch is on 
and therefore a positive voltage is across L1 and 
decreases, when the active switch is turned off and a 
negative voltage is across L1. The drawings are 
shown in Fig. 5. 

 

Fig. 5. Currents through C1 and L1 
 
The current through the active switch is the current 
through L2 when the switch is on and zero when it is 
off, the current through D1 is the difference between 
the current through L2 and L1, when the diode is 
conducting during M1. D2 has to conduct the current 
through L1 and D3 has to conduct the current 
through L2, when the active switch is off. The 
sketches are shown in Fig. 6. The constant current 
through D1 is caused by the fact that the value of the 
current ripples through the inductors are chosen the 
same. This means that in these diagrams the value of 
L2 is a third of that of L1.  

 

 

Fig. 6. Currents through the semiconductors 
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For the connection of the mean values of the 
inductor currents one gets from Fig. 5 and the 
charge balance 
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3 Model of the D-square step-down 
converter 
 
3.1 State equations 
The active switch S and the passive switch D1 are 
conducting during mode M1 (Fig. 7). 

 

Fig. 7. Equivalent circuit of mode M1 
 
Kirchhoff’s voltage law (KVL) and sorting 
according to the state and input variables leads for 
the derivation of the current through L1 according to 
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KVL results for the derivative of the current through 
the output inductor to 
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The current through C2 is neither a state nor an input 
variable. Therefore, it must be substituted by 
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For the derivatives of the voltages across the 
capacitors one can write  
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For mode M2 (Fig. 8) one gets  
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The differential equation for C2 is the same one as in 
mode M1.  

 
Fig. 8 Equivalent circuit of mode M2 
 
3.2 Large signal model 
Combining these equations (state space averaging: 
the equations for mode M1 are weighted by the duty 
cycle d, the equations for mode M2 are multiplied 
by 1 -  d and added) leads to the large signal model 
according to the result shown in appendix A1. 
 
3.3 Small signal model 
Using the perturbation concept (each variable in the 
large signal model is written as the value at the 
working point, marked as capital letters and a zero 
in the index, added by a small disturbance, written 
with small letters with a roof on top. To get a 
linearized equation the products of disturbances are 
omitted) one gets the small signal model around the 
working point described by U10, IL10, IL20, UC10, UC20 
according to the equation given in appendix A2. 
When simplified with abbreviations the model can 
be written as (15) 
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Laplace transformation leads to (16) 
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3.4 Transfer functions 
From (16) one can calculate eight transfer functions. 
For a DC/DC converter the output voltage in 
dependence of the duty cycle (for the control) and in 
dependence on the input voltage (for the 
disturbance) are the most important ones. In our 
case (when the parasitic resistances are included in 
the model) also the transfer functions for the current 
through L2 are necessary. The easiest way to achieve 
the numerators and the denominator is to use 
Crammer’s law. The denominator is the same for all 
cases and results in the equation given in appendix 
A3. 
The numerators for 

        

)(
_

)(
)(,

)(
_

)(
)(

,
)(

_
)(
)(,

)(
_

)(
)(

1

12

1

222

1

12

1

222

sU
UIN

sU
sI

sD
DUN

sD
sI

sU
UUN

sU
sU

sD
DUN

sD
sU

LLLL

CCCC




    (17) 

are (18) 



























123123322113

223113322311
42

2211

12213223
422242

2
2_

BAABAA
BAABAA

A

BA
BABA

sABAsDUN C

          (18) 

 312321421112_ AAsAABUUN C                (19) 

 


















































322311

223113322113123123
44

12231221221144

122311

223113322113123123

2244

3223122122112
22

3
2_

BAA
BAABAABAA

A

BABABAA
BAA

BAABAABAA
s

BA
BABABA

sBsDIN L

 (20) 

 
11443123

1144211131231121
2

12 __
BAAA

BAABAAsBAsUIN L


  ,   (21) 

respectively. 

3.5 Stationary case 
Starting from the large-signal model (A1) and 
substituting for all variables the value of the 

working point F0 and a small disturbance 

f  in the 

form 


 fFf 0 , one can calculate the connections 

between the working point values IL10, IL20, UC10, 
UC20 in relation to the input values U10, D0. The 
derivative of the functions on the left side of (A1) 
shows that for the equations for the working point 
values the left side is zero and on the right side only 
elements marked by a zero have to be taken into 
account 
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These four linear equations result in  
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The equations for the voltages across the capacitors 
are given because of their largeness in appendix 4. 
Calculation of the output voltage leads to 
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Fig. 9 shows a Bode plot and Fig. 10 shows the step 
response to a duty cycle step (the parameters are 
L1=L2=47 µH, C1=C2=330 µF, RL1=RL2=4 mΩ, 
RC1=RC2=80 mΩ, RS=10 mΩ, RD=0,1 Ω, VD=1 V 
U10=24 V, R=0,5 Ω). The converter is a phase-
minimum system and has two zeros (19) and four 
poles (A3).  

 
Fig 9. Bode plot voltage across C2 in dependence of 
the duty cycle 
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Fig. 10 depicts the step response. On the left 
diagram, calculated with the transfer function, one 
can see only the change of the output voltage 
referred to starting working point. To get the real 
value one has to add the initial value. The result on 
the right side, achieved by circuit simulation, shows 
the actual value. The ripple is caused by the series 
resistor of the output capacitor C2. 

 
Fig. 10. Duty cycle step response, left: linearized 
around the working point, right: circuit oriented 
simulation. 
 
4 Feedforward control 
 
4.1 Control law 
From the idealized voltage transformation ratio (3) 
one can, with Uref as the command, obtain the 
control law  
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With the approximations for an ε much smaller than 
one  
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one can write  
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Multiplying and omitting the quadratic term, one 
gets for the linearized duty cycle (35) 
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Now we can include, with abbreviations for the 
disturbance terms G1 and G2, the perturbation of the 
duty cycle 
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into (15) and obtain the small signal model of the 
feed-forward controlled d-square converter  
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This leads to the small signal model of the feed-
forward controlled d-square converter according to  
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(38) describes the system to be controlled by an 
additional feed-back controller. This controller has 
only to compensate the error of the not exact control 
law. Fig. 11 shows this concept. The abbreviations 
are: CL control law, FBC feedback controller, 
DC/DC represents the converter which has to be 
controlled. 
 

 
Fig. 11. Combined feedforward and feedback 
control 

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS 
DOI: 10.37394/23201.2021.20.18 Felix Α. Himmelstoss, Helmut L. Votzi

E-ISSN: 2224-266X 151 Volume 20, 2021



Fig. 12 shows the start-up and the reaction to an 
input voltage of the converter step after 15 ms using 
the simple control law. At the beginning the 
converter is in discontinuous mode. This is visible 
by the fact that the output voltage is higher than the 
reference value. The steady-state error is caused by 
the parasitic resistances of the converter. 

 
Fig. 12. input voltage (blue), reference value (red), 
output voltage (green) 
 
The input voltage step is immediately compensated 
by the control low, only a small ringing occurs. 
 
4.3 More precise control law 
For a more precise control law with included 
parasitics we start from  

20
2

20220 // C
C

LC U
RR

RIRRU 


            (39) 

and including (27) and (A4.2) one can write  

   

   

  































2

22
0

11
1

1111
2

001
2
02

010
2
0

2

//

C

CLD

SDDCSC

LDCLDC

DD
refC

RR
R

R
RRRRa

R
RR

R
RRRRa

R
R

R
RRRRRa

aDaDa
VDVUDU

  (40) 

Rearranging leads to the control law  
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This concept has to be implemented in a digital way. 
Fig. 13 shows the results for the precise control law. 
The improvement can be seen easily. Now only 
changes in the parasitic resistors (influence of the 
temperature and tolerances) lead to an imprecise 
output voltage. 

 
Fig. 13 input voltage (blue), reference value (red), 
output voltage (green) 
 
5 Examples of other Quadratic 
Converters 
 
In this chapter some other quadratic converters are 
shown to prove the efficiency of the simple 
feedforward control. 
 
5.1 Quadratic step-down converter II 
Fig. 14 shows another possibility to realize a 
quadratic step-down converter. 

 

Fig. 14. Quadratic step-down converter II 
 
From the voltage transformation ratio 
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one gets the quadratic equation 
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Solving this equation leads to the control law 
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It should be mentioned, that the output voltage must 
be lower than the input voltage, therefore the 
converter is only a step-down converter with a 
quadratic step-up-down transformation rate! This 
effect can also be found, when one calculates the 
voltage across D1, but cannot be seen, when one 
considers the voltage transformation ratio alone! 
The maximum duty cycle can be calculated 
according to 5.0max d .   
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Fig. 15 shows the start-up and the reaction of the 
feedforward controlled converter to an input voltage 
step. 

 
Fig. 15. Input voltage (red), reference value (blue), 
output voltage (green) 
 
5.2 Inverting quadratic step-up-down 
converter  
Fig. 16 shows the circuit diagram of an inverting 
quadratic step-up-down converter. 

 
Fig. 16. Inverting quadratic step-up-down converter 
 
The voltage transformation ratio of this converter  
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leads to a quadratic equation in d 
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This leads to the idealized control law 
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Fig. 17. duty cycle (turquoise); input voltage (blue); 
output voltage (green), reference voltage (red) 
 
Fig. 17 shows the signal which generates the duty 
cycle, and the input voltage, the reference value and 

the obtained output voltage. The control law leads to 
a stable output voltage with small error. 
 
4 Conclusion 
Quadratic converters are interesting alternative 
topologies, when wide transformation ratios have to 
be achieved. A feedforward control with a control 
law, which is derived from the voltage 
transformation ratio, leads to a stable design and to 
an output voltage with only small error. To avoid 
this error one can calculate a more precise control 
law by including the parasitic resistors of the 
devices. This will lead still to a (small) error, 
because of the tolerances and the temperature 
dependence on the parasitics. Another way to get a 
correct output voltage is to include the control law 
into the model of the converter and design a 
feedback controller for this system. This feedback 
controller contributes only with about 5 % of the 
necessary duty cycle. 
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Appendix 
 
Appendix 1: Large signal model of the quadratic Buck converter 
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Appendix 2: Small signal model of the quadratic Buck converter 
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Appendix 3: Denominator of the transfer functions of the quadratic Buck converter 
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Appendix 4: Stationary values for the voltages across the capacitors 
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