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Abstract: Dynamic modeling and stability domain analysis of a system consisting of a synchronous generator sup-
plying an induction motor load through a series compensated weak network has been carried out in this paper. The
impact ofX/R ratio of the feeder and generation control system parameters on the stability domain with respect to
series compensation has been examined through eigenvalue calculations and time domain simulations. From the
studies conducted, it was observed that the stability domain of the system with respect to series compensation
depends on the grid strength in addition to the excitation system parameters. Eigenvalue analysis shows that there is
a strong correlation between the exciter gain, time constants of the measurement transducer and exciter, and the
series compensation level. The main contribution of this work is to reveal new bifurcations which arise in these
systems which has been studied through eigenvalue analysis and time domain simulations for various combinations
ofsystemparameters.
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1 Introduction
Utilizing series capacitors is an inexpensive way of
improving the power transfer capability of the existing
transmission infrastructure while simultaneously im-
proving the short circuit capacity and thereby increas-
ing grid strength. However, one of the well-known
factors limiting the amount of series compensation is
subsynchronous resonance (SSR) which has known to
cause excessive voltages and currents due to induction
generator effect and torsional oscillations as a result
of the interaction between the mechanical system of
the synchronous machine and the series compensated
network ([1], [2], [3], [4]).

The influence of large dynamic loads on power
system stability has been studied in [5]. Although the
exciter gain and direct axis time constant of the in-
duction motor has been found to impact stability, the
influence of time constants of the measurement trans-
ducer and the exciter has not been modeled. In this
paper, it is shown that the time constants of the ex-
citer and measurement transducer has a strong influ-
ence on the stability of the system especially when a
series compensated network is considered.

Traditionally, studies on SSR are performed on
systems consisting of a generator or a set of genera-
tors feeding power to an infinite bus through a series
compensated network by applying bifurcation theory
to the IEEE First Benchmark Model ([6], [7], [8], [9]).

Bifurcation theory has been applied to study SSR in
the IEEE Second Benchmark Model in [10]) where
the influence on exciter gain on SSR has been ana-
lyzed. However, the time constant of the exciter is
assumed to be fixed, and its influence on SSR has not
been addressed. Global bifurcations have been stud-
ied in the IEEE First Benchmark Model due to vari-
ations in damping and mechanical power of the syn-
chronous generator ([11], [12]). Also, ferroresonance
in single and three-phase transformers has been in-
vestigated using bifurcation theory ([13], [14]). Few
studies have also been performed on induction motor
loads fed through a series compensated feeder from a
substation which is modeled as an infinite bus ([15],
[16], [17]).

In all the references stated so far, there is an as-
sumption of a stiff voltage source namely the infi-
nite bus which maybe equivalent to a substation in
real time. However, the impact of generator voltage
controller parameters on loads supplied from the sub-
station has not been studied so far. Hence, the goal
of this work is to analyze the impact of the genera-
tion system on induction motor load operation when
the network is series compensated. This work is im-
portant because existing transmission systems are get-
ting weaker due to increased distance between gener-
ation and load centers resulting in power being trans-
mitted through long feeders of high impedance which
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Figure 2: Block diagram of AVR control system

makes series compensation an economical and sim-
ple method to increase power flow through the system.
The applications of this work would help identify the
cause of instability in a series compensated network
as instability maybe triggered due to exciter system
crossing certain bounds depending on the series com-
pensation level in addition to SSR.

This paper is organized as follows: the system un-
der study and eigenvalue analysis of the system for
various combinations of parameters are presented in
Sections 2 and 3 respectively. Section 4 describes time
domain simulation results for some combinations of
system parameters. Finally, conclusions drawn from
the studies conducted are summarized in Section 5.

2 System under study
The single line diagram of the system under study is
shown in Fig. 1. It consists of a synchronous genera-
tor (SG) supplying power to a substation (SS) through
a transformer and a short line. The substation is con-
nected to an induction motor load through a series
compensated feeder.

The synchronous machine is represented using
4 differential equations which describe d and q axis
components of the stator currents (Id and Iq) and the
induced emfs in the field (E′

q) and damper winding
(E′

d) on the rotor. The stator of the synchronous
machine is directly connected to the network which
means the stator currents of the synchronous machine
are the same as the network currents. Electromechan-
ical transients of the synchronous generator are ex-
pressed using 2 differential equations which describe
the rotor speed (ω) and the rotor position (δ). The de-
tailed dynamic model of the synchronous machine can
be found in [18].

The electromagnetic transients of the induction

motor are represented using 4 differential equations
which govern the behavior of d and q components
of stator (Ids, Iqs) and rotor currents (Idr, Iqr).
Electromechanical transients are computed using the
swing equation which determines the slip (sm) of the
induction motor. The detailed dynamic model is based
on [19].

The block diagram of the Automatic Voltage Reg-
ulator (AVR) of the SG is shown in Fig. 2. The termi-
nal voltage magnitude (Vt) of the SG is measured by
a transducer of time constant Tx seconds and is com-
pared with the reference voltage Vref . The AVR is
represented using a first order transfer function con-
sisting of a gain Ka and time constant Ta seconds.
The speed governor dynamics are modeled using a
first order differential equation which determines the
mechanical torque input (Tm) to the rotor of the SG.
The differential equations which govern the dynamics
of the AVR and the speed governor are given below:

TxV̇x = −Vx + Vt (1)

TaĖfd = −Efd +Ka(Vref − Vx) (2)

TgṪm = −Tm + Pc − (1/Rd)(ω − 1) (3)

In the above equations (1) to (3), Vx is the output
of the measurement transducer described previously,
Efd is the input voltage applied to the field winding
on the rotor of the SG, Pc is the control input which is
fixed and Rd is the droop of the speed governor. The
values of Tg and Rd are assumed to be 50 ms and 5%
respectively.

3 Eigenvalue analysis

The state-space model of the system is developed
for the system and is linearized and cast in the form
∆Ẋ = [J ]∆X where X is the vector of system state
variables and ∆X is the linearized state variable vec-
tor. The state variables considered in this system are
the d and q axis components of stator and rotor cur-
rents, terminal voltage and slip of the induction motor,
field and damper winding emfs, mechanical torque,
rotor angle and speed of the synchronous generator,
d and q axis components of the line current and se-
ries capacitor voltage and variables Vx and Efd asso-
ciated with the AVR as explained in the previous sec-
tion. The eigenvalues of the linearized mathematical
model of the system are calculated and analyzed for
various values of system parameters and the results
are presented in the subsections that follow:
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Table 1: Parameters of synchronous generator

Hg Ra Xd Xq X ′
d X ′

q T ′
do T ′

qo

4 s 0.001 pu 1.75 pu 1.65 pu 0.3 pu 0.75 pu 5 s 1 s

Table 2: Parameters of induction motor

Hm Rs Rr Xls Xlr Xm

1 s 0.02 pu 0.025 pu 0.08 pu 0.08 pu 4 pu

𝜆𝜆1

𝜆𝜆1

𝜆𝜆2

𝜆𝜆2

𝜆𝜆3

𝜆𝜆4

Hopf bifurcation
due to SSR

𝜆𝜆5

𝜆𝜆5

𝜆𝜆6

𝜆𝜆6

Figure 3: Eigenvalue trajectory for base case

3.1 Eigenvalues of base case

In this section, eigenvalues of the system are com-
puted for the following operating conditions: the in-
duction motor slip is at 2% and the X/R ratio of the
line is assumed to be 20, exciter of the SG has a gain
and time constant of 500 and 25 ms respectively and
the measurement transducer time constant of the AVR
is 10 ms. The series compensation level of the system
(Kc = XC/Xnet,Xnet = XT1+XL1+XT2+XL2+
XT3) is varied from 1% to 95%.

The eigenvalues of the system along with the cor-
responding dominant state variables for each mode are
presented in Table 3. for a series compensation of
60%. There are 6 oscillatory modes (λ1 to λ6) and 5
non-oscillatory modes (λ7 to λ11). The system starts
out to be stable as the series compensation is at 1%
and remains stable up to 62%. As the compensation is
increased beyond 62%, the system becomes unstable
due to SSR as the oscillatory mode λ4 crosses over
to the right half of the complex plane resulting in an
unstable system. The same analysis when repeated
for a lower X/R ratio of the system (X/R = 10)
revealed a Hopf bifurcation due to SSR at a higher
value of critical series compensation (Kcr = 74%,
λcr = 0.0522 ± j192.07) and for a higher X/R ra-
tio of 30, the critical value of series compensation is

HB

HB

RHB

HB – Hopf bifurcation due to 
subsynchronous resonance

RHB – Reverse Hopf bifurcation due 
to exciter

𝝀𝝀𝒄𝒄𝒄𝒄

𝝀𝝀𝒄𝒄𝒄𝒄

𝝀𝝀𝒄𝒄𝒄𝒄

𝝀𝝀𝒄𝒄𝒄𝒄

Figure 4: Eigenvalue trajectory for Ka = 2000

Kcr = 56% with λcr = 0.0792 ± j189.43.

3.2 Influence of AVR parameters on stability
domain

The influence of exciter parameters on the stability
domain of the system with respect to series compen-
sation level is explored in this section through eigen-
value analysis. The parameters under study are the
gain of the exciter and the time constants of the AVR
and measurement transducer.

3.2.1 Influence of exciter gain

Eigenvalues of the system are computed for the fol-
lowing operating conditions: the induction motor slip
is at 2% and the X/R ratio of the line is assumed to
be 25, exciter of the DG has a gain and time constant
of 2000 and 25 ms respectively and the measurement
transducer time constant of the AVR of the DG is 10
ms. The eigenvalue trajectory of the system are pre-
sented in Fig. 3 as the degree of series compensation
Kc is varied from 1% to 98%. The non-oscillatory
modes are stable for the entire range of series com-
pensation considered. When Kc is at 1%, there is
an oscillatory mode on the right half of the complex
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Table 3: Eigenvalues for base case

λi −σ ± jω Dominant states
λ1 −40.188 ± j2086.8 ∆IdL, ∆IdL, ∆IqL, ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆Vdm, ∆Vqm
λ2 −51.454 ± j1330 ∆IdL, ∆IdL, ∆IqL, ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆Vdm, ∆Vqm
λ3 −7.4056 ± j557.92 ∆IdL, ∆IdL, ∆IqL, ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆Vdc, ∆Vqc
λ4 −0.2358 ± j194.8 ∆IdL, ∆IdL, ∆IqL, ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆Vdc, ∆Vqc
λ5 −7.1786 ± j28.759 ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆E′

q, ∆Vx, ∆Efd

λ6 −10.157 ± j20.166 ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆E′
q, ∆sm

λ7 −106.99 ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆E′
q, ∆Vx, ∆Efd

λ8 −24.485 ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆Efd

λ9 −17.112 ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆Tm, ∆ω

λ10 −2.7822 ∆Tm, ∆ω

λ11 −1.4834 ∆Ids, ∆Iqs, ∆Idr, ∆Iqr, ∆E′
d

Table 4: Critical eigenvalues for different X/R ratios

X/R ratio Kc λcr Dominant states
10 74% 0.0522 ± j192.07

∆IdL,∆IqL,∆Ids,∆Iqs,∆Idr,∆Iqr,∆Vdc,∆Vqc30 56% 0.0792 ± j189.43
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Figure 5: Hopf bifurcation points for varying exciter
gains

plane (λc1 = 2.2759 ± j76.585) making the system
unstable. As the compensation increases, λc1 moves
toward the left half of the complex plane and whenKc

exceeds 24%, λc1 moves into the left half of the com-
plex plane which results in a stable system as a con-
sequence of a reverse Hopf bifurcation. As Kc further
increases, the system becomes unstable once again as
another oscillatory mode moves to the right half of the
complex plane when Kc exceeds 49%. The critical
eigenvalues at this point are λc2 = 0.1471 ± j205.38.
Instability in this case is a result of a Hopf bifurcation
occurring due to SSR. Critical eigenvalues and par-
ticipation factors of the system for 2 different series

compensation levels of 15% and 50% are presented in
Table 3.

The eigenvalues of the system were further com-
puted for various exciter gains for X/R ratios of 10
and 30. In Fig. 5, the variation of Hopf bifurcation
points with respect to exciter gain and series compen-
sation levels are shown. For an AVR gain of 100, the
system with X/R ratios of 10 and 30 loses stability
through a Hopf bifurcation due to SSR when the se-
ries compensation level is 80% and 60% respectively.
As the AVR gain increases, the percentage series com-
pensation at which SSR occurs decreases resulting in
smaller stability domains.

As the AVR gain was increased to 1600 for an
X/R ratio of 30, the system was unstable for Kc of
1% to 3% and when Kc is increased beyond 4%, the
system becomes stable causing a reverse Hopf bifur-
cation. The system remains stable for values of Kc up
to 47% and as Kc ≥ 48%, the system loses stability
due to SSR. As the AVR gain is increased to 1800, the
system experiences a reverse Hopf bifurcation (RHB)
and a Hopf bifurcation (HB) at Kc values of 16% and
47% respectively. Similar phenomenon was observed
for the system with X/R ratio of 10, however the sta-
bility domains were found to be much higher. For ex-
ample, for an AVR gain of 1800 in the system with
X/R = 10, the RHB and HB points correspond toKc

values of 5% and 62% respectively. Hence, from this
it can be inferred that for higher AVR gains, value of
Kc at which the reverse Hopf bifurcation occurs in-
creases which further reduces the size of the stability
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Table 5: Critical eigenvalues for AVR gain of 2500

Kc λcr Dominant states
15% 0.9597 ± j75.013 ∆Ids,∆Iqs,∆Idr,∆Iqr,∆E′

q,∆Vx,∆Efd

50% 0.094 ± j170.26 ∆IdL,∆IqL,∆Ids,∆Iqs,∆Idr,∆Iqr,∆Vdc,∆Vqc

domain. Overall, the size of the stability domain with
respect to Kc is much smaller for a weaker system es-
pecially for high AVR gains.

3.3 Influence of exciter time constant

The time constant of the AVR has a significant impact
on the stability domain of the system with respect to
series compensation which would be described in this
section. Eigenvalues of the system were analyzed as
the series compensation is varied from 1% to 98% for
various values of exciter time constant. This was done
for systems with X/R ratios of 10 and 30. This anal-
ysis was performed for AVR gains of 500 and 1000
and the results are presented in Tables 6 and 7 respec-
tively. Stability domain of the system with respect to
Kc is increased as the AVR time constant is increased
from 1 ms to 40 ms as the Hopf bifurcation point due
to SSR is moved from Kc = 51% to Kc = 77% for
the system with X/R = 10. When the time constant
is increased to 42 ms, instability due to a Hopf bifurca-
tion occurs due to a mode corresponding to the exciter
at Kc = 75%. As the time constant increases further
to 70 ms, the stability domain shrinks further as the
Hopf bifurcation point due to the exciter is shifted to
Kc = 6%. When Ta ≥ 80 ms, the stable operation of
the system is not possible for any level of Kc as the
system is unstable for Kc starting at 1%.

The same phenomenon occurs for the system with
X/R = 30, however, the stability domain starts de-
creasing when Ta ≥ 59 ms which is higher compared
to the previous case withX/R = 10. Stable operation
of the system is impossible for Ta ≥ 100 ms which
is also higher compared to the previous case. Also,
when the time constant Ta = 59 ms, as Kc changes
from 58% to 59%, 2 pairs of complex eigenvalues
(λc1 = 0.0277 ± j184.7, λc2 = 0.0194 ± j23.495
at Kc = 59%) crossover from the left to the right half
of the complex plane resulting in a Hopf-Hopf bifur-
cation.

The exciter gain is increased to 1000 and the same
analysis was performed on the systems with X/R ra-
tios of 10 and 30 and the results are presented in Ta-
ble 7. The stability domain with respect to Kc is
greater for the system with X/R = 10 up to a value
of Ta close to 40 ms compared to the system with
X/R = 30. When Ta = 50 ms, the system with
X/R = 10 has a much smaller stability domain as the

system loses stability due to a Hopf bifurcation with
the exciter mode causing instability at Kc = 36%.
This is much smaller compared to the Hopf bifurca-
tion point which corresponds to Kc = 56% due to
SSR for the system with X/R = 30. Also note that
as Ta varies from 1 to 40 ms, the stability domain in-
creases as the critical value of Kc causing a Hopf bi-
furcation due to SSR increases for each of the systems
with X/R ratios of 10 and 30 respectively. Further-
more, the system also undergoes a reverse Hopf bi-
furcation for Ta ≥ 64 ms at smaller values of Kc in
addition to the Hopf bifurcation which occurs due to
SSR as Kc is increased. This shows that for it may be
impossible to operate a weak system in a stable man-
ner without a minimum level of series compensation.

3.4 Influence of time constant of measure-
ment transducer

Eigenvalue analysis was conducted for the system
with X/R ratios of 10 and 30 for various values of
time constant of the measurement transducer. Just as
it was described in the previous section with respect
to Ta, here, the stability domain increases for both the
systems with X/R ratios of 10 and 30 as Tx increases
up to 20 ms. Beyond that, as Tx ≥ 25, the system with
X/R = 10 becomes unstable at lower values of Kc

due to the exciter mode. This phenomenon is observed
in the system with X/R = 30 as well, however, at a
higher value of Tx at 35 ms. Hence, up to a certain
value of Tx, the stability domain of the stronger sys-
tem is bigger than that of the weaker system. How-
ever, beyond a certain value of Tx, the weaker system
has a larger stability domain. As the AVR gain is in-
creased to 1000, the system shows similar behavior. In
addition to Hopf bifurcations due to SSR and exciter
mode destabilization, reverse Hopf bifurcations occur
as well at small values of Kc. Hence, systems using
AVRs with high gains need a minimum level of Kc in
order to have stable operation. Depending on the val-
ues of Tx and Ta, the upper limit of Kc is determined
either by SSR or exciter mode destabilization.

4 Time domain simulation results

The nonlinear dynamic model of the system is pro-
grammed in SIMULINK and the results generated are
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Ta (ms)
X/R = 10 X/R = 30

Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 51 0.0203 ± j224.79 38 0.0609 ± j223.53

5 57 0.0423 ± j214.73 43 0.0962 ± j212.61

10 65 0.0473 ± j203.49 49 0.0689 ± j201.35

20 72 0.0279 ± j194.52 54 0.0034 ± j192.75

30 75 0.027 ± j190.88 57 0.0831 ± j187.81

40 77 0.0644 ± j188.5 58 0.0547 ± j186.24

50 54 0.0019 ± j24.798 59 0.0783 ± j184.65

60 30 0.0292 ± j23.87 58 0.0428 ± j23.408

70 6 0.0012 ± j23.116 45 0.0469 ± j22.703

80 1 0.4935 ± j22.09 32 0.0189 ± j22.111

Table 6: Critical eigenvalues for various AVR time constants at an AVR gain of 500

Ta (ms)
X/R = 10 X/R = 30

Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 37 0.1122 ± j247.35 27 0.1024 ± j247.53

10 56 0.0463 ± j215.27 42 0.0250 ± j213.76

20 66 0.0725 ± j201.77 50 0.1073 ± j199.22

30 70 0.0172 ± j196.79 53 0.0520 ± j194.2

40 73 0.0694 ± j193.13 55 0.0609 ± j190.94

50 36 0.0147 ± j36.324 56 0.032 ± j189.36

Table 7: Critical eigenvalues for various AVR time constants at an AVR gain of 1000

presented in this section. The responses of the system
with respect to time are studied for AVR gain Ka of
500 and different values of time constants of the AVR
control system. The series compensation level for the
system is at 50% which is realistic for a weak system
with an X/R ratio of 30.

4.1 Exciter time constant Ta = 10 ms

The responses of induction motor speed and terminal
voltage are shown in Fig.6 for a disturbance in the
form of a 20% increase in the load torque on the in-
duction motor. In this case, the AVR limits have not
been modeled as a result of which, oscillations in the
voltage increase with time. This is a consequence of a
subcritical Hopf bifurcation as a result of SSR which
causes excessive voltages and currents.

Limits on the excitation system have been im-
posed and the simulations were repeated and the time
responses are presented in Fig. 7. Exciter limits im-
pose an upper and lower limit on the field voltage ap-
plied to the rotor winding of the synchronous machine
resulting in an arrest on the growth of oscillations in
the system states. The system now behaves as if the
nature of the bifurcation is supercritical resulting in
sustained oscillations of fixed amplitude with respect

to time. Phase plane trajectory of the induction motor
speed in Fig. 8 reveal an unstable system with grow-
ing oscillations if the AVR limits are neglected and a
system with oscillations bounded in magnitude if the
AVR limits are taken into account.

4.2 Exciter time constant Ta = 70 ms

Time traces of induction motor speed and terminal
voltage are presented in Fig. 9 when the AVR limits of
the synchronous machine are neglected. The system
shows an oscillatory response bounded in magnitude
characterizing a supercritical Hopf bifurcation. The
amplitude of oscillations appear to continually change
within a bound for the quantities presented. However,
with the AVR limits included, the oscillations appear
to be bounded with fixed amplitude characterizing a
supercritical bifurcation in this case as well. These
are evident from the time responses of induction mo-
tor speed and terminal voltage as shown in Fig. 10.

Phase-plane trajectories of induction motor speed
when the AVR time constant is set at 70 ms are pre-
sented in Fig. 11. In the case where the AVR limits are
neglected, a supercritical Hopf bifurcation is observed
in the system which appears to undergo repeated pe-
riod doublings. This is evident in the one to the left
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Tx (ms)
X/R = 10 X/R = 30

Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 64 0.052 ± j205.81 48 0.0699 ± j204

5 69 0.0862 ± j198.52 52 0.0973 ± j196.32

10 74 0.0522 ± j192.07 56 0.0792 ± j189.43

15 77 0.0866 ± j188.41 58 0.0713 ± j186.17

20 78 0.0426 ± j187.26 59 0.0583 ± j184.59

25 56 0.014 ± j26.955 60 0.0919 ± j183.01

30 30 0.0039 ± j26.951 60 0.0459 ± j183.06

35 1 0.0933 ± j27.902 47 0.0412 ± j26.127

Table 8: Critical eigenvalues for various measurement time constants at an AVR gain of 500

Tx (ms)
X/R = 10 X/R = 30

Kcr (%) λcr = −σ ± jω Kcr (%) λcr = −σ ± jω

1 53 0.0661 ± j221.22 39 0.004 ± j221

5 61 0.1190 ± j208.75 46 0.0354 ± j206.65

10 68 0.0008 ± j199.28 52 0.1094 ± j195.83

15 73 0.1027 ± j192.97 55 0.084 ± j190.8

Table 9: Critical eigenvalues for various measurement time constants at an AVR gain of 1000

in Fig. 11. The amplitude of oscillations although
bounded appear to change continuously in a random
manner which is the characteristic of ’quasi-chaos’.
However, with the AVR limits modeled, the phase-
plane trajectory of induction motor speed shows a
well-defined limit cycle and the absence of a period
doubling bifurcation. This is due to the fact that with
AVR limits modeled, the voltage applied to the field
winding is allowed to vary only between ±3 pu. This
limit is much lower than the minimum amplitude of
oscillations in Efd when it varies in a random man-
ner when AVR limits are neglected. This imposes a
bound on the variations in the generator terminal volt-
age which is reflected at the motor terminal voltage
and impacts the speed of the motor which varies only
within a limit.

Further investigations were carried out with re-
gards to the period-doubling bifurcation observed in
the system when AVR limits were neglected. The sys-
tem was subject to different step increases in the in-
duction motor load torque and phase-plane trajecto-
ries of the induction motor speed are plotted and are
shown in Fig. 12. With the system subject to a 25%
increase in the load torque, the number of period dou-
blings are hard to count as the trajectories are so close
to each other. As the step change was increased to
30%, 2 period doublings can be observed. The num-
ber of period doublings reduced to 1 when the load
torque disturbance was increased to 35% and finally,
the period doubling bifurcation is found to be absent

when the load torque disturbance magnitude was in-
creased to 45%.

5 Conclusions
Influence of generator AVR parameters on the stabil-
ity domain of the system with respect to series com-
pensation has been studied in this paper and the fol-
lowing conclusions are drawn:

• The gain of the AVR determines the critical se-
ries compensation level at which SSR occurs. If
an AVR of large gain is used, the system tends
to lose stabilty due to SSR at a lower value of
series compensation. Furthermore, large AVR
gains also lead to a reverse Hopf bifurcation for a
certain level of series compensation which shows
that a certain minimum level of series compensa-
tion is required for stable operation.

• Time constants of the AVR and the voltage mea-
surement transducer are critical in determining
the stability domain of the system with respect
to series compensation. The upper limit of series
compensation is fixed by the Hopf bifurcation
point at which either the subsynchronous reso-
nant mode or the exciter mode becomes destabi-
lized.

• The upper limit of series compensation is de-
termined by the series compensation level at
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(a) Induction motor speed

(b) Motor terminal voltage

Figure 6: Time responses for the system without AVR
limits

which SSR occurs for a system with a fast act-
ing AVRs and measurement transducers. On the
other hand, in systems consisting of exciters with
larger time constants, the upper limit is deter-
mined by the series compensation level at which
the low frequency mode related to the excitation
system loses stability.

• Stability domain of the relatively stronger system
is larger if the upper limit of series compensation
is determined by the level at which SSR occurs.
However, the weaker system has a larger stability
domain if the upper limit of series compensation
is determined by the critical level at which the
exciter mode becomes unstable due to a Hopf bi-
furcation.

• Depending upon magnitude of disturbance ap-
plied at certain critical values of AVR parameters
and series compensation, the limit cycle gener-
ated as a result of the Hopf bifurcation may un-
dergo repeated bifurcations resulting in multiple
periodic orbits culminating in a form of chaos.

• There is a possibility of a Hopf-Hopf bifurcation
in the system for a certain combination of per-
centage series compensation and AVR time con-
stant. However, the occurrence of this maybe
only on a case-by-case basis.

(a) Induction motor speed

(b) Motor terminal voltage

Figure 7: Time responses for the system with AVR
limits

• This study emphasises the importance of prop-
erly selecting the parameters for the AVR of
the synchronous generator as bifurcations oc-
cur in the induction motor operation when pa-
rameters crosses certain limits especially in se-
ries compensated systems. As weak grids be-
come more common with decentralized genera-
tion, microgrids and isolated networks and with
the widespread use of induction motors as loads,
the importance of understanding and predicting
dynamic responses is vital to achieve safer, more
secure and more reliable operation.
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