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Abstract: - As an extension of the linear robust recursive least-squares Wiener fixed-point smoother and filter,
this paper originally designs the robust extended recursive Wiener fixed-point smoother and filter for
estimating the signal in discrete-time wide-sense stationary stochastic systems. It is a characteristic in this paper
that the signal is modulated with the nonlinear mechanism. As a step to the estimation problem for the
observation mechanism with the nonlinear modulation, the robust signal estimators are proposed for the
observation equation with the linear amplitude modulation of the signal. The observation noise is additional
white noise. The system matrix in the state equation contains uncertain parameters. The robust extended
recursive Wiener estimators are derived from the Wiener-Hopf equation. In the simulation example, it is shown
that the proposed robust extended recursive Wiener fixed-point smoother and filter are superior in estimation

accuracy to the extended recursive Wiener estimators.
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1 Introduction

In [1], the extended recursive Wiener fixed-point
smoother and filter are presented in discrete-time
stochastic systems with the nonlinear observation
mechanism of the signal. Fang et. al. [2] introduce
the Bayesian state estimation framework and review
various techniques, from the standard Kalman filter
for linear systems to extended Kalman filter,
unscented Kalman filter and ensemble Kalman filter
for nonlinear stochastic systems. Bayesian
estimation methods include the Gaussian filtering,
Gaussian-sum filtering, particle filtering and moving

horizon estimation. The discussion of state
estimation is extended to more complicated
problems such as simultaneous state and

parameter/input estimations. In [3], two algorithms
of the extended unbiased finite impulse response
(FIR) filtering of nonlinear discrete-time state-space
models are discussed. Unlike the extended Kalman
filter, both extended FIR algorithms demonstrate
better robustness against model uncertainties. In [4],
the robust Kalman filter is designed for systems
involving unknown parameter perturbations with
norm-bounded uncertainties. In [5], the robust
recursive least-squares (RLS) Wiener fixed-point
smoother and filter are designed in the signal
estimation problem for the linear discrete-time
stochastic systems with uncertain parameters in the
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system and observation matrices. In [6], the robust
RLS Wiener FIR filter is proposed in linear discrete-
time stochastic systems with uncertain parameters in
the system and observation matrices. In [7], the
robust extended Kalman filter is designed in
discrete-time stochastic systems. The algorithm is
applied to the pulsar positioning system. In [8], the
robust filter is designed for discrete time nonlinear
systems including uncertainties. The nonlinear
functions are assumed to be uncertain but belonging
to a conic region. The design method also allows
dynamic and measurement noises having unknown
time-varying expected values, covariances and
cross-covariances. In [9], the robust extended
Kalman filter is designed to estimate the rotor
angles and the rotor speeds of synchronous
generators of a multi-machine power system.

As an extension of the linear robust RLS Wiener
fixed-point smoother and filter [5] in linear discrete-
time stochastic systems, this paper, in Theorem 2,
originally proposes the robust extended recursive
Wiener fixed-point smoothing and filtering
algorithms for estimating the signal for discrete-time
wide-sense stationary stochastic systems. As a first
step to the robust extended recursive Wiener
estimators, Theorem 1 proposes the robust RLS
Wiener fixed-point smoothing and filtering
algorithms for estimating the signal in the stochastic
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systems with the linear amplitude modulation of the
observation mechanism. It is assumed that the
system matrix in the state equation contains
uncertain parameters. It is a characteristic in this
paper that the signal is modulated with the nonlinear
mechanism of the signal. The observation noise is
additional white noise. The robust extended
recursive Wiener estimators are derived based on
the robust RLS Wiener estimators in Theorem 1.

In the simulation example, the phase
demodulation of the signal is dealt with. The phase
demodulation from the phase modulated signal is
important in the analog and digital communication
systems [10]. The estimation accuracy of the
proposed robust extended recursive Wiener
estimators is compared with the extended recursive
Wiener estimators [1].

2 Robust least-squares fixed-point
smoothing  problem  for linear
amplitude modulation of signal

Let the state-space model in linear discrete-time
stochastic systems be described by

y(k) = H(k)z(k) + v(k), z(k) = Cx(k),
x(k +1) = @x(k) + Tw(k),

E[v(k)v(s)] = Rk (k — s), 1)
Ew(k)w™ (s)] = @8k (k — 5).

Here, z(k) represents the scalar signal to be
estimated. H (k) is the linear amplitude modulating
function for z(k) and x(k) is an n x 1 state vector
with the wide-sense stationarity. € is a 1Xn
observation vector transforming x(k) to the signal
z(k). v(k) is the additional white observation noise.
Also, ® denotes the state transition matrix in the
state equation and w(k) is the white noise input. It
is assumed that the signal and the observation noise
are mutually independent and have zero means. I is
the n by [ input matrix. The auto-covariance
functions of the observation noise and the input
noise are shown in (1). Let the signal process be
expressed by the autoregressive (AR) model of the
finite order M.

z(k) = —ayz(k — 1) — ayz(k — 2) -+
—ayz(k — M) +e(k), @)
Ele(k)e(s)] = Q6 (k —s)
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It is assumed that the system matrix @ in (1) has the
general form and is not necessarily limited to the
controllable canonical form. For the signal process
expressed by the AR model of (2), let the signal
z(k) be expressed in terms of the newly introduced
state vector x(k) as follows.

z(ky=Hx(k),H=[1 0 0 -- 0 0],
x1 (k) z(k)
x5 (k) z(k + 1)
x(k) = _2? = : )
-1 (k)| fz(k+M —2)

x| lzk+M—1)

Then the state equation, corresponding to the AR
model (2), is described by

x(k +1) = Qx(k) + Lw(k),

Elw(k)wT(s)] = Qb (k —s),
[ 0 1 0 0 ]

o~ D oL@
| oo il
l-ay —au-1 —au_s ~a,]

w(k) = e(k + N).

The system matrix @ in (4) has the controllable
canonical form. By introducing the auto-covariance
function of the signal z(k) , K,(k,s) =
E[z(k)z(s)]=K,(i), i=k—s, 0<i< N, the
Yule-Walker equation for the AR parameters a;,
1<i<M,isqgiven by

[ a, 1 K,(1)
= K,(2)
K(k k)| [ = : :
a- 1J k-1
K,(M)
K(k, k)
K,(0) K,(1)

KO K0 -
K,(M—2) K,M—3)

lk,(M—1) K,M-2)

K,(M—2) K,(M—1)

K,(M—3) K,(M—2)

K,0) K1)
K1) K(0)

Here, we consider to develop the robust estimation
technique for the signal z(k) with the degraded
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measurement data y(k), which is generated by the
state-space model (6) in actual environments.

y(k) = H(k)Z(k) + v(k), Z(k) = Hx(k),
Xk + 1) = ®(k)x(k) + T{k), (6)
d(k) = ® + Ad(k)

In (6) the system matrix ®(k) contains the uncertain
matrix A® (k) additionally to the system matrix &,
in comparison with the state-space model (1). Due
to the uncertain quantity A®(k), the trajectory of
the state vector X(k) strays out of the nominal
trajectory of x(k) . Z(k) is the scalar degraded
signal.

Let the sequence of the degraded signal Z(k) be
fitted to the AR model of the N-th order.

Z(k) = —a,2(k — 1) — d2(k — 2) -+
—ayZ(k — N) + &(k), )
E[E(k)é(s)] = Qb (k —s)

Z(k) is expressed in terms of the state vector X(k)
as

J(ky=Hx(k),H=[1 0 0 - 0],
X1 (k) Z(k)
%, (k) Ak + 1)
s =| 1 |= : .8
vl 2+ N=2)
| 5,0 | Lge+nv-1)

Hence, the state equation for the state vector X(k) is
described by

¥(k + 1) = $x(k) + F¢(k),

E[{(k)(" ()] = Qb (k = 5),
0 1 0 =0
0 0 1 =0
=] : : : oo,
0 0 0 w1
—dy —lyey —dyp o —@d )

[9]
0
=10 )
1
{(k) =é(k + N).
The auto-covariance function K(k,s) of the state

vector X(k) is assumed to have the semi-degenerate
kernel form of
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- __[A()BT(s),0 <s <k,
Kk, s) = {B(k)AT(s) 0<k<s, (10)
A(k) = ®%,BT(s) = d~SK(s, s).

In terms of the auto-covariance function K;(k,s) =
E[Z(k)Z(s)] of the degraded signal Z(k) in wide
sense stationary stochastic systems, the auto-
variance function K (k, k) of the state vector ¥(k) is
expressed as follows.

Z(k)
Z(k+1)
K(k,k) =E l :
Z(k+N-2)
Z(k+N-1)

x [2(k) Z(k + 1)
Z(k+N—-2) Z(k+N-1)]
K»(0) K;(=1) -
LCO I IO N G

K;(N—2) Ky(N—3)

K,(N—-1) Ky(N-—2)
Ko(=N +2) Kz(=N + 1)
Ky(— N+3) Ky(— N+2)

K(0) K;(-1)
Kz (1) Kz(0)

Here, K;(i) = Ky(—i),1 <i < N. By using K;(i),
0 <i <N, the Yule-Walker equation for the AR
parameters d;, 1 < i < N, is formulated as

[al ] [ K:(D
R a; K. (2)
Rk : |=- : ,
El%_l KZ(N - 1)
ak K,(N)
K (0) Ky(=1)
Ky(1) K;(0) -
Rk k) = : : ~ o (12)

K;(N=2) K;(N-3)
K;(N=1) K;(N—2)
K;(—N +2) Ky(—N+1)
Ky(— N+3) Ky(— N+2)

K5(0) Ky(—1)
K»(1) K0 |

Let Kyx(k,s) = E[x(k)XT (s)] represent the cross-
covariance function of the state vector x(k) with
X(s). Let Kyx(k, s) have the functional form of
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Kye(k,s) = a(l)BT(s),0 < s < k,

a(k) = %, B7(s) = 2~ Kyx(s,5) &)

with the system matrix @ for the state vector x (k).

Let the fixed-point smoothing estimate X(k,L) of
the state vector x (k) at the fixed point k be given by

L
2(k1)= ) hOaiy® (1)
i=1

as a sum of the products of the impulse response
function h(k, i, L) and the observed values y(i),1 <
i < L. Let us consider the least-squares estimation
problem, which minimizes the mean-square value
(MSV)

J = E[llx(k) — £(k, L)]1°] (15)

of the fixed-point smoothing error x(k) — X(k,L).
From an orthogonal projection lemma [11]

L
x(0 = D h (L LLYD LIG), g
1<s SFLl,

we obtain the Wiener-Hopf equation

E[x(K)¥" ()]

L S (17)
= Z h (k,i, YE[F (D (s)],
i=1

which the optimal impulse response function
satisfies. In (16), ‘L’ represents the notation of the
orthogonality. From (6), (8) and (17), and taking
into account of the relationship E[x(k)y¥7(s)] =
Kz (k, $)HT = Kyz(k, 5),

h(k,s,L)R = Kyz(k,s)H"H” (s)

\ SR (18)
- Z h (k, i, L)H () AR i, s)HTHT (s)

i=1

is obtained. Here, K,z(k,s) represents the cross-
covariance function of the state vector x (k) with the
degraded state X(s) as E[x(k)XT (s)].
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3 Robust RLS W.iener fixed-point
smoothing and filtering algorithms

Based on the assumptions, in section 2, on the
robust estimation problem for the observation
equation with the linear amplitude modulation for
the signal z(k), Theorem 1 presents the robust RLS
Wiener fixed-point smoothing and filtering
algorithms.

Theorem 1 Let the observation equation, concerned
with the linear amplitude modulation for the signal
z(k), be given by (1). Then the robust RLS Wiener
fixed-point smoothing and filtering algorithms
consist of (19)-(29) in linear discrete-time stochastic
systems with the wide-sense stationarity. Here, the
following information is used. The observation
vector H in (3) and the system matrix & in (4). The
linear modulating function H(k). The observation
matrix H in (8) and the system matrix ® in (9). The
cross-variance function K,z (k, k) of x(k) with X (k).
The variance K (k, k) of ¥(k). The variance R of the
observation noise. The degraded observed value
y (k).

Fixed-point smoothing estimate of the signal z(k) at
the fixed point k: Z(k,L) = Hx(k,L)

Fixed-point smoothing estimate of the state vector
x(k) at the fixed point k: £(k, L)

~H(L)ADZ(L —1,L — 1)) (19)

Smoother gain: h(k,L,L)

h(k,L,L) = (Kyz(k, k)(®T):"*HTHT (L)
—q(k,L — D)®THTHT (L))

X (R+ H(L)HK(L,L)

—®Sy(L — 1DPTHATH(L)) ™!

(20)

q(k,L) = q(k, L — 1)®T
+h(k,L,L)H(L)H(K(L,L)
—®Sy(L — PN,

q(k, k) = S(k)

(21)

Filtering estimate of the signal z(k): Z(k, k) =
HR(k, k)
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Filtering estimate of the state vector x(k): £(k, k)

Xk, k) = Dx(k -1,k =1) + G(k)(Y (k)

—H(O)H®R(k — 1,k — 1)), £(0,0) =0 22)

Filtering estimate of the state vector ¥(k): ¥(k, k)

X(k, k) = ®X(k — 1,k — 1) + g(k) (¥ (k)

. - (23)
—H(H®R(k — 1,k — 1)), £(0,0) =0

One-step ahead prediction estimate of the signal
z(k): 2(k,k — 1)

2(k,k—1) = He(k,k — 1) (24)

One-step ahead prediction estimate of the state
vector x(k): x(k,k — 1)

2 k—1)=d2(k—1,k—1)  (25)

Cross-variance function of %(k, k) with ¥(k, k) :
S(k)

S(k) = ¢Sk — 1)®T
+G(k)H(k)H(K (k, k)
—®Sy(k—1)®T), S0)=0

(26)

Auto-variance function of ¥(k, k): So (k)

So(k) = ®Sy(k — 1)DT
+g(k)H (k) H (K (k, k)
—®Sy(k — 1D)DT), 5,(0)=0

27)
Filter gain for X(k, k): G (k)

G(k) = (Kyz(k, K)HTH" (k)
—dS(k —1)®THTHT (k))

x (R + H(k)HK (k, k)
—PS,(k — 1)PTHTHT (k)L

(28)

Filter gain for X¥(k, k): g(k)
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g(k) = (R(k, KYATH" (k)
—®Sy(k — DPTHTHT (k)

x (R+ H(k)HK (k, k)
—BSy(k — 1)PTYHTHT (k))~*

(29)

Proof of Theorem 1 is deferred to the appendix.

4 Robust extended recursive Wiener
estimation algorithms for observation
mechanism with nonlinear modulation

Let an observation equation with the nonlinear
modulation of the signal z(k) be given by

y(k) = f(z(k), k) + v(k),
z(k) = Cx(k),

(30)

where the signal z(k) and the observation noise
v(k) have the same stochastic properties as those in
section 2.

Likewise the design method of the extended
Kalman filter, in the design of the robust extended

recursive  Wiener estimators, the modulating
function is put as H(k) = 97y k) in
0z(k) 1, (k)y=2(k,k-1)
Theorem 1 after expanding the nonlinear
observation function in a first-order Taylor series
about Z(k,k—1) [1]. Here, 2(k,k—1)=
H®x(k — 1,k — 1) represents the one-step ahead
prediction estimate of the signal z(k) . Also,
H(L)H®X(L —1,L — 1) and H(k)H®X(k — 1,k —
1) in Theorem 1 are replaced with f(HPX(L —
1,L—1),L) and fHDX(k -1,k —1),k)
respectively.

Consequently, the robust extended recursive
Wiener fixed-point smoothing and filtering
algorithms in the case of the observation equation,
with the nonlinear modulation of the signal z(k), is
summarized in Theorem 2. It is noted that the
proposed robust extended recursive Wiener
estimators are sub-optimal because of the Taylor
series approximation of the nonlinear modulating
function f(z(k), k) of the signal z(k).

Theorem 2 Let the observation equation, with the

nonlinear modulating function f(z(k),k) of the
signal z(k), be given by (30). Then the robust
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extended recursive Wiener fixed-point smoothing
and filtering algorithms consist of (31)-(42) in
discrete-time  wide-sense  stationary  stochastic
systems. Here, the following information is used.
The observation vector H in (3) and the system
matrix @ in (4). The nonlinear modulating function
f(z(k),k) and the function H(k) given by (42).
The observation vector H in (8) and the system
matrix @ in (9). The cross-variance function
Kyz(k, k) of x(k) with X¥(k). The variance K (k, k)
of X¥(k). The variance R of the observation noise.
The degraded observed value y (k).

Fixed-point smoothing estimate of the signal z(k) at
the fixed point k: Z(k,L) = Hx(k, L)

Fixed-point smoothing estimate of the state vector
x(k) at the fixed point k: £(k, L)

—x o (31)
—f(HBPR(L - 1,L - 1),L))

Smoother gain: h(k,L, L)

h(k,L,L) = (Kyz(k, k)(®T)-"*HTH" (L)
—q(k,L — 1)®THTHT (L))

x (R +HL)AK(L,L)

—®Sy(L — DPTYHTHT (L))

(32)

q(k,L) = q(k, L — 1)®"
+h(k,L,L)H(L)H(K(L,L)
—®S,(L — 13",

q(k, k) = S(k)

Filtering estimate of the signal z(k): 2
HZ(k, k)

Filtering estimate of the state vector x(k): X(k, k)

X(k k) = @x(k =1Lk =1) + G(k)(Y(k)

H$3 £(0,0)=0

—f(H®x(k — 1,k — 1),k)), (34)

Filtering estimate of the state vector ¥(k): ¥(k, k)

X(k, k) = ®X(k — 1,k — 1) + g(k) (¥ (k)

Hdx %(0,0) =0

- (35)
—f(H®X(k - 1,k — 1),k)),

One-step ahead prediction estimate of the signal
z(k): 2(k,k — 1)
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2(k,k—1) = He(k, k — 1) (36)

One-step ahead prediction estimate of the state
vector x(k): x(k,k — 1)

2 k-1 =02k -1,k—1)  (37)

Cross-variance function of %(k, k) with ¥(k, k) :
S(k)

S(k) = ¢Sk — 1)PT
+G(k)H(K)H(K (k, k) — ®So(k — 1)®T), (38)
S(0)=0

Auto-variance function of ¥(k, k): Sy (k)
So(k) = ®Sy(k — 1)PT

+g()HO)HK (k, k) — ®Sy(k — D),
Sp(0) =0

(39)
Filter gain for X(k, k): G (k)

G(k) = (Kyz(k, k)HT H (k)
—®S(k —1)®THTHT (k))

X (R+ H(k)HK (k, k)
—®&Sy(k — 1)PTYHTHT (k)1

(40)

Filter gain for X¥(k, k): g(k)

g() = (K(k, k)H"H (k)
—®Sy(k — DPTHTHT (k)

X (R+ H(k)H(K (k, k)
—PSy(k — 1)®T)HTHT (k))~?

(41)

Here, the function H (k) is given by

of (z(k), k)
0z(k) 1,00y =200k-1)
2k, k — 1) = HoR(k — 1,k — 1).

Hl) = (42)

A necessary condition for the stability of the robust
extended recursive Wiener estimators is given by
R+ HK)HK (k, k) — ®Sy(k — 1)PTYHTHT (k) >
0.
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5 A numerical simulation example
Let a scalar observation equation with the nonlinear
mechanism of the signal z(k) be given by

y(k) = f(z(k), k) + v(k), z(k) = Cx(k),
f(z(k), k) = cos (2rf kA + myz(k)),

fo =1,000(Hz),A = 0.000090703,

my = 1.2.

(43)

The nonlinear function in (43) appears in the phase
modulation of analogue communication systems [1].
Here, f., A and m, represent the carrier frequency,
the sampling period of the signal z(k) and the phase
sensitivity respectively. The function H(k) in (42)
becomes

af (z(k), k)

0z(k) 1, 0=20kk-1)
= —my sin (2nf kA + myZ2(k|k — 1)).

Hk) = (44)

Let v(k) be the white Gaussian observation noise
with the mean zero and the variance R, i. e. N(0, R).
Let the signal process be expressed in terms of the
AR model of the order 2.

z(k) = —a1z(k — 1) — apz(k — 2)
+e(k), E[e(k)e(s)] = Qb (k — s),
Q=0. 52,

(45)

Let z(k) be expressed in terms of the state vector
x(k) as follows.

z(k) = Hx(k),H=1[1 0],
[ T ozk) (46)
x() = [&2 (k)] = [z(k t 1)]

Then the state equation, corresponding to the AR
model (45), is described by

x(k +1) = @x(k) + Lw(k),
Elw(w" ()] = @8k (k — ),

o= o |r=[

w(k) =e(k+2),a; =-0.1,a, = —-0.8.

(47)

Let the degraded measurement data y(k) be
generated by the state-space model.
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y(k) = H(k)Z(k) + v(k), (k) = Hx(k),
X(k + 1) = $x(k) + I¢(k),
(k) = @ + AD(k),

Ad (k) =

(48)

[0.08 0.05] '

In (48) the system matrix ®(k) contains the
uncertain matrix Ad® (k) additionally to the system
matrix &, in comparison with the state-space model
(47). Z(k) is the degraded signal. Due to the
uncertain quantity Ad(k), the trajectory of the state
vector X(k) strays out of the nominal trajectory of
x (k).

Let the sequence of the degraded signal Z(k) be
fitted to the 5-th order AR model.

Z(k) = —a, 2(k — 1) — a2k — 2) -+
—ayZ(k — N) + &é(k),
E[e(k)é(s)] = Qbg(k —s),N =5

Z(k) is expressed in terms of the state vector X (k)
as

(49)

#(k)y=Hx(k),H=[1 0 0 0 0]

X1 (k) Z(k)
Ll |z +1D
x(k) = xi | =z + 2. (50)
(| |2tk +3)
() Lk +4)

Hence, the state equation for the state vector ¥(k) is
described by

X¥(k +1) = ®x(k) + I'¢(k),

E[{(k){T(s)] = Qb (k — s),
o 1 0 0 0
o o 1 0 0
d=| 0 0 0 1 0 |,
o o o0 0 1
|l—a; -4, -a; -a, —aJ 1)

C(k

Substituting H, H, @, ®, H(k), y(k), Kyz(k, k),
K(k,k) and f(H®X(k—1,k—1),k) into the
robust extended recursive Wiener filtering and
fixed-point smoothing algorithms of Theorem 2, the

é(k +5).
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filtering and fixed-point smoothing estimates of the
signal z(k) are calculated recursively.

Fig.1 illustrates the signal z(k), the filtering
estimate Z(k,k) and the fixed-point smoothing
estimate Z(k, k + Lag), Lag = 5, vs. k for the white
Gaussian observation noise N(0,0.32%) . Fig.2
compares the mean-square values (MSVs) of the
estimation errors by the robust extended recursive
Wiener filter and fixed-point smoother with those
by the extended Wiener recursive filter and fixed-
point smoother [1] vs. Lag, 0 < Lag < 10, for the

Seiichi Nakamori

white Gaussian observation noises N(0,0.32%) ,
N(0,0.5%) and N(0,0.7%). From Fig.2, it is seen
that the estimation accuracy of the robust extended
recursive Wiener filter and fixed-point smoother is
superior to the extended recursive Wiener estimators
[1] for the respective observation noise. Here, the
MSVs of the estimation errors are calculated by

000 (z(k) — 2(k, k + Lag))?/600 , 1<Lag <
10, for the fixed-point smoothing errors and

000 (z(k) — 2(k, k))?/600 for the filtering errors.
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Fig.1 Signal z(k), filtering estimate Z(k, k) and fixed-point smoothing estimate Z(k, k + 5) for white Gaussian
observation noise N (0,0.32%) vs. k.
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for white Gaussian observation noises N (0,0.32), N(0,0.52%) and N(0,0.7%).
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6 Conclusion

This paper, as an extension of the linear robust RLS
Wiener filter and fixed-point smoother in linear
discrete-time  stochastic ~ systems,  originally
proposed the robust extended recursive Wiener filter
and fixed-point smoother for estimating the signal.
It is a characteristic in this paper that the signal is
modulated with the nonlinear mechanism. The
observation noise is additional white noise. The
system matrix in the state equation contains
uncertain parameters.

In the simulation example, it is shown that the
proposed robust extended recursive Wiener filter
and fixed-point smoother are superior in estimation
accuracy to the extended recursive Wiener
estimators.

Appendix: Proof of Theorem 1

From (18) the optimal impulse response function
satisfies

h(k,s,L)R = Kyz(k,s)H"H” (s)
- NS (A-1)
_ Z h(k, i, LYH)HR G, $)ATHT (s).
i=1

Subtracting h(k,s,L — 1)R from h(k,s,L)R, we
have
(h(k,s,L) — h(k,s,L — 1R =
—h(k,L,L)H(L)HK(L,s)HTHT (s)
L-1
= Ch(k 1) = bk, i, L = 1)
i=1
x H()HK (i, s)HATHT (s).
By introducing

Jo(s,L)R = ®SK(s,s)HTHT (s)
L
- > Jo L LHMOHAK(i,s)HTHT (s),

i=1

(A-2)

h(k,s,L) — h(k,s,L — 1)

= —h(k,L, LYH(L)A®J,(s,L — 1) (A-3)
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is obtained. Subtracting Jy(s,L —1)R from
Jo(s,L)R, we have

Jo(s, L) = Jo(s, L = 1)R

= —Jo(L, LYH(L)AK (L, s)ATHT (s)
L-1

= Uoli1) = Joli,L = 1))

i=1

x HHAK (i,s)ATHT (s).

(A-4)

From (A-2) and (A-4), we have

Jo(s,L) —Jo(s, L — 1)

= —Jo(L, LYH(L)H® ]y (s, L — 1). (A-5)

From (14) the filtering estimate of x(k) is given by

k
2(k, k) = Z h(k, i, k)7 (D). (A-6)
i=1

The optimal impulse response function h(k, s, k) in
the filtering problem satisfies

h(k, s, k)R = Kz (k, k)HTHT (k)

: USNS (A7)
_ Z h (k, i, k)HOBR G ) HTHT (k).
i=1
By introducing
J(s,k)R = @K, 5(s,s)H"H” (s)
(A-8)

k
_ Z J (G, k)H@OHAR, $)BTHT (s),
i=1

h(k,s, k) = a(k)] (s, k), a(k) = @*  (A-9)

is obtained. Subtracting J(s, k — 1)R from J(s, k)R,
we have

J(s, k) —J(s,k—1)R
= —J(k, k)H(k)HK (k, s)HTHT (s)

k
- Z(l(i, k) —J(i,j — 1)) (A-10)
i=1

x H()AK @i, s)ATHT (s).

From (A-2) and (A-10), it follows that
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J(s, k) = J(s,k—1)

= —J(k, K)H(K)HD*],(s, k — 1). (A-11)

From (A-8) J(k, k) is expressed as follows.

J(k, k)R = @K,z (k, k)HTH” (k)

k
- ; J G IOHOARGOATHT) ) 1)

= © K,z (k, k)HTH" (k)
—r(R)AT(K)HTHT (k).

Here, r(k) is given by

k
r(k) = Z J (i, K)H(OHB (). (A-13)
i=1

Subtracting r(k — 1) from r(k) and using (A-11), it
follows that

r(k)—r(k—1)

= J(k, k)H (k)HB (k)

—J(k, kK)H (k)H Dk
k-1

X ¥ Jo(i,k—DHG)HB(®) (A —14)

= J(k, k)H (k)H (B (k)
—dkry(k — 1)),
r(0) = 0.

Here, 1y (k) is given by

k
() = > Jo (LIOH@OHB(), (A-15)
i=1

From (A-12) and (A-14), we have

JUe k) = (@ Ky (k, k)H"H” (k)
—r(k — DAT()HTHT (k))

X (R+ H(k)HK (k, k)

—®kry(k = D(@T)HTHT (k)™
= (® ¥ Kyz (k, k)H"HT (k)

—r(k — DAT()HTHT (k))

x (R + H(k)HK (k, k)

—BSy(k — 1)PTYHTHT (k) 1.

(A-16)

after some manipulations. Here,
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So(k) = A(k)ro(k)AT (k), A(k)
= Pk, (A-17)

Subtracting ry(k — 1) from ry(k) and using (A-5),
we have

To(k) —1o(k — 1)
= Jo(k, k)H (k)HB (k)

i=1 (A-18)
—Jo(i k — D)H()HB(I)
= Jo(k, k)H (k)H (B (k)
—dkry(k — 1)),
15(0) = 0.

From (A-2) and (A-15), J,(k, k) satisfies

Jo(k, )R = ®*K (k, k)HTHT (k)

k
- ; Jo G IOHOARGOATHT () o

= %R (k, K)HATHT (k)
—1o(k)AT (k)HTHT (k).

From (A-18) and (A-19), after some manipulations,
we have

Jo(k, k)

= (& %K (k, K)HTHT (k)
—1o(k — DAT(K)HTHT (k)

x (R + H(k)A R (k, k)
—3Sy(k — DBTYATHT (k))~L.

(A — 20)

Substituting (A-18) into (A-17), we have

So(k) = A(k)ro(k)AT (k)
= ®*(ry(k— 1)

+Jo(k, k)H (k)H (B (k)

— k1o (k — 1)) (PT)k

= PSy(k — 1)DT
+g(K)H()HK (k, k)
—®S,(k — 1)PD),

S,(0) = 0.

(A4 —21)

Here, g(k) is given by

g(k) = @]y (k, k). (A-22)
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Substituting (A-20) into (A-22), g(k) is calculated
by

g(k) = (K(k,k)H"H" (k)
—®Sy(k — 1)PTHTHT (k)

x (R + H(k)HK(k, k)
—®Sy(k — 1)®THTHT (k).

(A-23)

From (A-6) and (A-9), the filtering estimate is
calculated by

k
20k, K) = @) ) ] G OF(D
i=1

(A-24)
= a(k)e(k)
= dke(k).
Here, e(k) is given by
k
e() = ) ] (L OF(D, (A-25)
i=1

Subtracting e(k — 1) from e(k) and using (A-11), it
follows that

e(k) —e(k—1) =J(k, )y (k)
k-1

+ U =Gk = 1)F0)
i=1

= J(k, k)y (k) — J (e, k) H (k) H " (A-26)

k-1
X D Jo i,k = DF(D)
i=1

= J(k, )G (k) —
H(k)H®*ey(k — 1)),e(0) = 0.

Here, e, (k) is given by
k
o) = D Jo (1, OF(D). (4-27)
i=1

Subtracting ey (k — 1) from ey (k) and using (A-5),
it follows that
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eo(k) —eg(k — 1) = Jo(k, K)y (k)
k-1

D Ul k) = JoCi ke = 1)F(D)
i=1

= otk (K a26)

—HOOHF ) Jo i,k = DY)
i=1

= Jolk, )F () -
H(k)H®*ey(k — 1)),e,(0) = 0.

From (A-24) and (A-26), the filtering estimate
X(k, k) is developed as follows.

Rk, k) = P*(e(k — 1)

+] (k, k) (F(k) — H(k)H® ey (k — 1))
= dR(k— 1,k —1)

+G (k) (¥ (k)

—H(K)HDZ(k — 1,k — 1)),

£(0,0) = 0.

(A-29)

Here, the filtering estimate ¥(k, k) of ¥(k) is given
by

X(k, k) = ®*eq (k). (A-30)
In (A-29) the filter gain G (k) is given by
G(k) = %] (k, k). (A-31)

Substituting (A-16) into (A-31), it follows that

G(k) = (Kyz(k, K)HTH" (k)
—dkr(k — 1)AT(K)HTHT (k))
X (R + H(k)H(K (k, k)

— Sy (k — 1)PT)ATHT (k))~?
= (Kyx(k, K)HTH™ (k)

—®S(k — 1)®THTHT (k))

x (R + H(k)HK (k, k)

— Sy (k — DOTATHT (k).

(A-32)

Here, S(k) is given by

S(k) = dkr (k) (PTY*. (A-33)

Substituting (A-28) into (A-30), it follows that
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2(k, k) = Brey(k — 1)
+®KJ, (k, k) (¥ (k)
—H(k)H®* ey (k — 1))

= ®x(k—1,k—1) (A-34)
+g9 (k) (Y (k)

~H(k)H®Z(k — 1,k — 1)),

%(0,0) = 0.

Substituting (A-14) into (A-33) and using (A-31), it
follows that

S(k) = @*(r(k - 1)
+J(k, k)H(k)H (B (k)
¥y (k — 1)) (PTH*
= dS(k — 1)PT
+G(k)H(K)H K (k, k)
—®S(k — 1)®7),
$(0) = 0.

(A-35)

From (A-1) h(k, L, L) satisfies

h(k,L,L)R = Kz(k, LY)A"H" (L)

L
— > h(k,i,L)H(OHAK(,L)ATHT (L)
; (A-36)
= Kyx(k, k) (®T)-"*H"HT (L)
—P(k,L)(®T)LHTHT (L).

Here, P(k, L) is given by
L
P(k,L) = Z h (k,i, LYH()HB(i). (A-37)
i=1

Subtracting P(k,L — 1) from P(k, L) and using (A-
3), it follows that
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P(k,L) — P(k,L —1)
= h(k,L,L)H(L)AB(L)
L-1
+ > (h(k,i,L)
)

—h(k,i,L — 1))H()HB()
= h(k,L,L)H(L)AB(L)

L-1
+ ) (h(k,i,L)
2

—h(k,i,L —1))H()HB()
= h(k,L,L)H(L)(HB(L)
—Hdlry(L - 1)).

(A —38)

Introducing

q(k,L) = P(k,L)(®T)%, (A—39)

From (A-38) q(k, L) satisfies

q(k,L) = p(k,L — 1)(dT)*
+h(k, L, L)H(L)(AB(L)
—H® 1o (L — 1)) (P7)*
=qk,L —1)PT
+h(k,L,LY)H(L)(HK(L, L)
—H®Sy(L — 1)D7).

(A — 40)

Hence, h(k, L, L) satisfies
h(k,L,L)R
= Kz (k, k)(®T)-"H"HT (L)
—q(k, LYATHT (L).

(A-41)

Substituting  (A-40) into (A-41),
manipulations, we obtain

after some

h(k,L,L)R

= (Kyx(k, k) (®T)"*HTHT (L)
—q(k,L — D)®THTHT (L))

x (R + H(k)H(K (k, k)

— Sy (k — 1)PTHTHT (k).

(A-42)

In the difference equation (A-40), from (A-13), (A-
33), (A-37) and (A-39), the initial value q(k, k) of
q(k,L) at L = k is calculated by
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q(k, k) = P(k, k) (®T)"

k
_ Z h (k, i, K)H()HB(i)(PT)*
i=1

k
a(l) ) J (L IOHOABO @
i=1

= oFr (k) (BT
= S(k).

From (14) the fixed-point smoothing estimate of
x(k) is given by

L
20,1 = ) h ki, Y.
i=1

Subtracting £(k, L — 1) from X(k, L), and using (A-
3) and (A-30), it follows that

X(k,L) — £(k,L = 1) = h(k, L, L)y (L)

L-1
2

= h(k,L,L)y(L)

L-1
kL YHWHAS: Y Jo (i1 = D)
i=1
= h(k,L,L)(F(L) — HL)HD®X(L — 1,L — 1)).
The initial value of X(k,L) at L = k is 2(k, k).

(QE.D.)
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