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Abstract: We study the problem of the optimal temperature regulation in industrial greenhouses. We consider a
model based on the one-dimensional heat equation having a non-constant coefficient on a bounded interval with
quadratic cost functional, prove the existence and uniqueness of a control function from a prescribed set, and study
the structure of the set of accessible temperature functions.
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1 Introduction
When growing plants in industrial greenhouses, some
temperature conditions are needed at some fixed
height corresponding to the growth point of the plants.
These conditions should be maintained according to
a circadian schedule with small deviations admitted.
One can make the temperature to rise by heating the
floor of the greenhouse and to fall by opening ventila-
tor windows at the ceil. A greenhouse can be treated
as an elongated parallelepiped. Consider its cross-
sections that are perpendicular to its longer side. Now
we can propose a mathematical model to solve the
task.

2 Mathematical model based on the
heat equation

The model is based on the heat equation. The first re-
sults concerning this model are published in [1], [2],
[3]. Some methods of proof of the main results are
contained in [4] and [5]. Similar extremum problems
for integral functionals were considered by different
authors (see [6], [7], [8], [10]). The review of early
results in this problematic is contained in [9], bibliog-
raphy of later works is contained in [11]. The problem
of minimization of functional with final observation

and the problem of optimal time of control were con-
sidered in [6], [7], [8], [9], [11]. See also [12], [13].

3 Boundary Value Problem
Let us consider the mixed problem for the heat equa-
tion

ut = (a(x)ux)x, 0 < x < l, t > 0, (1)

with a sufficiently smooth coefficienta(x) satisfying
the condition

0 < a0 ≤ a(x), x ∈ [0, 1], (2)

with the boundary conditions

u(0, t) = φ(t), ux(l, t) = ψ(t), t > 0, (3)

and the initial condition

u(x, 0) = 0, 0 < x < l, (4)

with φ ∈W 1
2 (0, T ), ψ ∈W 1

2 (0, T ) for anyT > 0. In
this article we mean thatψ(t) is a fixed function and
φ(t) is a control function to be found.

PutQT = (0, l) × (0, T ). Just as in [14], p. 15,
byV 1,0

2 (QT ) we denote the Banach space of functions
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u ∈W 1,0
2 (QT ) having the finite norm

‖u‖
V 1,0
2 (QT )

= sup
0<t<T

(∫ l

0
u(x, t)2 dx

)1/2

+
(∫

QT

ux(x, t)2 dx dt
)1/2

(5)

and such thatt 7→ u(·, t) is a continuous mapping
[0, T ] → L2(0, l).

By W̃ 1
2 (QT ) denote the space of allη ∈W 1

2 (QT )
such thatη(x, T ) = 0, η(0, t) = 0.

We will consider the energy class of weak so-
lutions to problem (1)–(4), i. e. the set of func-
tionsu ∈ V 1,0

2 (QT ) satisfying the boundary condition
u(0, t) = φ(t) and the integral identity∫

QT

(a(x)uxηx − uηt) dx dt

=
∫ T

0
ψ(t) η(l, t) dt (6)

for any functionη(x, t) ∈ W̃ 1
2 (QT ).

Lemma 1 There exists a unique weak solution to
problem (1)–(4) belonging toV 1,0

2 (QT ).

Proof: To prove the uniqueness of such solution, we
can use the same considerations as in [14]. To prove
the existence we represent the solution to problem
(1)–(4) as the sum of functions

u(x, t) = v(x, t) + φ(t) + xψ(t). (7)

Then, by (1)–(4), (7) we have the following problem
on the functionv :

vt = (a(x)vx)x + g(x, t), (8)

0 < x < l, t > 0,
v(0, t) = 0, vx(l, t) = 0, t > 0, (9)

v(x, 0) = h(x), 0 < x < l, (10)

where

h(x) = −φ(0)− xψ(0),
g(x, t) = a′(x)ψ(t)− φ′(t)− xψ′(t).

Denote by{yn(x)}∞n=1 the sequence of normalized in
L2(0, l) eigenfunctions of the self-adjoint boundary
value problem

(a(x)y′)′ + λy = 0,
y(0) = 0, y′(l) = 0,

by {λn}∞n=1 we denote the corresponding se-
quence of positive eigenvalues.

Finding the solution to problem (8)–(10) by the
Fourier method, we obtain the following formal rep-
resentation:

u(x, t) = φ(t) + xψ(t)

−
∞∑

n=0

e−λntyn(x)

×
(∫ l

0
(φ(0) + zψ(0))yn(z)dz

+
∫ t

0
eλnτ

∫ l

0
(φ′(τ) + zψ′(τ)

− a′(z)ψ(τ))yn(z)dzdτ

)
. (11)

Series (11) can be proved to converge in the space
V 1,0

2 (QT ) and to satisfy the integral identity (6). So,
it gives a weak solution to problem (1)–(4). Lemma 1
is proved. ut

4 Existence and uniqueness of solu-
tion to extremum problem

Now we raise the problem to maintain the tempera-
turez(t) at some given heightc during the whole time
interval0 ≤ t ≤ T. Consider the problem

ut = (a(x)ux)x, (12)

0 < x < l, t > 0,
u(0, t) = φ(t), ux(l, t) = ψ(t), (13)

t > 0,
u(x, 0) = 0, 0 < x < l, (14)

with φ(t) ∈ W 1
2 (0, T ), ψ(t) ∈ W 1

2 (0, T ) for any
T > 0.

Hereafter denote byuφ its unique solution exist-
ing according to Lemma 1. In this notationψ and l
are not mentioned because they are fixed throughout
the paper.

SupposeT > 0, z ∈ L2(0, T ). By ΦM with
M > 0 denote the set of functions

ΦM =
{
φ ∈W 1

2 (0, T ) : ‖φ‖W 1
2 (0,T ) ≤M

}
.

For somec ∈ (0, l] define the functional

J [φ] =
∫ T

0
(uφ(c, t)− z(t))2dt.

Consider the minimization problem for this functional
and put

m = inf
φ∈ΦM

J [φ].
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Physically, at one endpoint of an infinitely thin rod,
the temperatureφ(t) (the control function) is main-
tained during the time T, and the heat flowψ(t) is
given at another endpoint. The problem consists in
finding the control functionφ0(t) making the temper-
ature at some pointcmaximally close to the given one
z(t). The quality of the control is estimated by the
functionalJ [φ].

We investigate the existence and uniqueness of
the control functionφ0(t) ∈ ΦM (the minimizer) giv-
ing the minimum of the functionalJ [φ]. The proofs of
results on the existence and uniqueness are based on
the following Lemma concerning the best approxima-
tion in Hilbert spaces.

Lemma 2 LetA be a convex closed set in a Hilbert
spaceH. Then for anyx ∈ H there exists a unique
elementy ∈ A such that

‖x− y‖ = inf
z∈A

‖x− z‖.

Proof: Denoted = inf
z∈A

‖x−z‖. By the parallelogram

property for anyx ∈ H andy1, y2 ∈ A we have

2
(
‖x− y1‖2 + ‖x− y2‖2

)
= ‖y1 − y2‖2 + 4

∥∥∥x− y1 + y2

2

∥∥∥2
.

By the convexity of the setAwe have1
2(y1+y2) ∈ A,

whence ∥∥∥x− y1 + y2

2

∥∥∥ ≥ d.

Therefore,

‖y1 − y2‖2 ≤ 2
(
‖x− y1‖2 + ‖x− y2‖2

)
− 4d2,

which invokes uniqueness of the minimizer.
To prove the existence of the minimizer, consider

a sequence of elementsyk ∈ A such that

lim
k→∞

‖x− yk‖ = d.

The sequence{yk} is a fundamental one since

‖yk − yl‖2

≤ 2
(
‖x− yk‖2 + ‖x− yl‖2

)
− 4d2 → 0,

k, l→∞.

Supposelim
k→∞

yk = y ∈ H. Then‖x − y‖ = d and

y ∈ A due to the closeness of the setA. Lemma 2 is
proved. ut

Theorem 3 There exists a unique functionφ0(t) ∈
ΦM such thatm = J [φ0].

Proof: Denote

BM = {y = uφ(c, ·) : φ ∈ ΦM} ⊂ L2(0, T ).

Let us prove that the setBM is a convex closed sub-
set inL2(0, T ). Supposey1, y2 ∈ BM with yj =
uφj

(c, ·). Then‖φj‖W 1
2 (0,T ) ≤ M, j ∈ {1, 2}, and

for anyα ∈ (0, 1) we have

‖αφ1 + (1− α)φ2‖W 1
2 (0,T )

≤ α‖φ1‖W 1
2 (0,T ) + (1− α)‖φ2‖W 1

2 (0,T ) ≤M,

whenceαy1 + (1 − α)y2 ∈ BM and the setBM is
convex.

Now we prove thatBM is a closed subset in
L2(0, T ). Let {yk(t)}∞k=1 ⊂ BM be a fundamental
sequence inL2(0, T ) having the limity ∈ L2(0, T ).
The corresponding sequence{φk} ⊂ ΦM is a weakly
precompact set inW 1

2 (0, T ). Hence, some subse-
quenceφkj

tends weakly, asj →∞, to a function
φ ∈ W 1

2 (0, T ). By the properties of weakly con-
vergent sequences in Hilbert spaces ([15], Chapter 1,
Section 1, Theorem 1.1) we obtain

‖φ‖W 1
2 (0,T ) ≤ lim sup

j→∞
‖φkj

‖W 1
2 (0,T ) ≤M, (15)

whenceφ ∈ ΦM .
Next, by the Banach-Saks Theorem ([16], Chap-

ter 2, Section 3) there exists a subsequencekjn such
that

lim
n→∞

‖φ̃n − φ‖W 1
2 (0,T ) = 0, (16)

where

φ̃n =
1
n

n∑
l=1

φkjl
. (17)

Therefore,

‖φ̃n‖W 1
2 (0,T ) ≤

1
n

n∑
l=1

‖φkjl
‖W 1

2 (0,T ) ≤M

and by (15) we obtain

ỹn =
1
n

n∑
l=1

ykjl
∈ BM .

By standard technique (see [14], [15]) we can ob-
tain the following estimate for the solution to problem
(1)–(4):

‖uφ‖V 1,0
2 (QT )

≤ C1(‖φ‖W 1
2 (0,T ) + ‖ψ‖W 1

2 (0,T )),

where the constantC1 is independent ofφ and ψ.
Therefore, for the corresponding sequence of solu-
tions

ũn =
1
n

n∑
l=1

ukjl
,

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Irina Astashova, Alexey Filinovskiy, Dmitriy Lashin

E-ISSN: 2224-266X 200 Volume 15, 2016



we obtain the inequalities

‖ũm − ũn‖V 1,0
2 (QT )

≤ C1‖φ̃m − φ̃n‖W 1
2 (0,T ) → 0, (18)

m,n→∞,

wheneverũn = uφ̃n
. This means that̃un(0, t) =

φ̃n(t) and the integral identity∫
QT

(a(x)(ũn)xηx − (ũn)ηt) dx dt

=
∫ T

0
ψ(t) η(l, t) dt (19)

holds for any functionη(x, t) ∈ W̃ 1
2 (QT ). Taking into

account relations (16), (18), and (19), we see that there
exists the limit functionu ∈ V 1,0

2 (QT ), which is a
weak solution to problem (1)–(4) with the boundary
functionφ, and

‖u− ũn‖V 1,0
2 (QT )

≤ C1‖φ− φ̃n‖W 1
2 (0,T ).

So, by the embedding estimate (see [15], Chapter 1,
Section 6, Formula 6.15) we obtain

‖u(c, ·)− ũn(c, ·)‖L2(0,T )

≤ C2‖u− ũn‖V 1,0
2 (QT )

≤ C1C2‖φ− φ̃n‖W 1
2 (0,T ),

whencey = u(c, ·) ∈ BM andBM is a closed subset
in L2(0, T ).

Therefore, by Lemma 2, there exists a unique
function y = u(c, ·), whereu ∈ V 1,0

2 (QT ) is a so-
lution to problem (1)–(4) with someφ0 ∈ ΦM such
that

inf
φ∈ΦM

J [φ] = J [φ0].

Let us prove that suchφ0 ∈ ΦM is unique. If
not, consider a pair of such functionsφ1, φ2 and the
corresponding pair of solutionsu1, u2. The function
ũ = u1 − u2 is a solution to the problem

ũt = (a(x)ũx)x, (20)

0 < t < T, 0 < x < l,

ũ(0, t) = φ̃(t), 0 < t < T, (21)

φ̃(t) = φ1(t)− φ2(t),
ũ(c, t) = 0, 0 < t < T, (22)

ũx(l, t) = 0, 0 < t < T, (23)

ũ(x, 0) = 0, 0 < x < l. (24)

Taking into account the integral identity (6) with the
functionη(x, t) equal to 0 on[0, c]× [0, T ], we obtain

that the functioñu on the rectangleQ(c)
T = (c, l) ×

(0, T ) equals the solution to the problem

ût = (a(x)ûx)x, (25)

0 < t < T, c < x < l,

û(c, t) = 0, 0 < t < T, (26)

ûx(l, t) = 0, 0 < t < T, (27)

û(x, 0) = 0, c < x < l. (28)

But the solution to problem (25)–(28) vanishes on
[c, l]× [0, T ], whence we have

ũ(x, t) = 0, c < x < l, 0 < t < T. (29)

Now we will prove that

ũ(x, t) = 0, 0 < x < l, 0 < t < T. (30)

Note that by Theorem 2 from [18], Section 11, the
weak solutioñu is a classical solution to equation (20)
in QT . Now we use Theorem 5 from [17], Section 3.
It establishes the following.

Consider a functionu(x, t) ∈ C2,1(Ω), Ω ⊂ R2,
such thatut = (a(x)ux)x on Ω. SupposeG0 is a
connected component of the setΩ ∩ {t = t0}, andG̃
is a connected open subset ofG0. If u|

G̃
= 0, then

u|G0 = 0.
Applying this theorem to the solutioñu of prob-

lem (20)–(24) for anyt0 ∈ (0, T ) with G0 = (0, l)×
{t0} andG̃ = (c, l)×{t0},we obtain that (30) follows
from (29). Therefore,̃u(x, t) = 0 for anyx ∈ (0, l)
andt ∈ (0, T ). This means that̃φ(t) = ũ(0, t) = 0.
The proof of Theorem 3 is complete. ut

By similar considerations we can obtain the ex-
istence and uniqueness theorems for other practically
important classes of control functions.

By Φ0
M denote the class of control functions

Φ0
M = {φ ∈W 1

2 (0, T ), ‖φ‖W 1
2 (0,T ) ≤M, φ(0) = 0}.

Theorem 4 There exists a unique functionφ0(t) ∈
Φ0

M such that

inf
φ∈Φ0

M

J [φ] = J [φ0].

By Φ̄0
M denote the class of control functions

Φ̄0
M = {φ ∈W 1

2 (0, T ), ‖φ‖W 1
2 (0,T ) ≤M,

φ1 < φ(t) < φ2}

with some constantsφ1 andφ2.

Theorem 5 There exists a unique functionφ0(t) ∈
Φ̄0

M such that

inf
φ∈Φ̄0

M

J [φ] = J [φ0].
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5 On exact controllability

Besides the question of existence and uniqueness of
the solution to the extremum problem, another impor-
tant question concerns the exact controllability, which
means the ability to obtain, at some pointx = c, the
restrictionu(c, t) equal almost everywhere on[0, T ] to
a given functionz(t). Respectively, by the exact con-
trol we mean the functionφ0(t) ∈ Φ0

M making the
functionalJ [φ] to vanish:

J [φ0] =
∫ T

0
(uφ0(c, t)− z(t))2 dt = 0.

The next theorem shows that the set of functions
z(t) ∈ L2(0, T ) admitting exact controllability is suf-
ficiently ”small”.

Theorem 6 The set of all functionsz ∈ L2(0, T ) ad-
mitting exact control, i. e. such thatJ [φ] = 0 for some
φ(t) ∈ ΦM , is a first category subset inL2(0, T ).

Proof: Consider equation (1) for a functionu1(x, t) ∈
V 1,0

2 (QT ) with the boundary conditions

u1(0, t) = φ1(t),
(u1)x(l, t) = ψ(t),

and the same equation for a functionu2(x, t) ∈
V 1,0

2 (QT ) with the boundary conditions

u2(0, t) = φ2(t),
(u2)x(l, t) = ψ(t).

Denoteũ = u1 − u2. The functionũ = u1 − u2 is a
solution of equation (1) with the boundary conditions

ũ(0, t) = φ̃(t) = φ1(t)− φ2(t), (31)

ũx(l, t) = 0, (32)

and the initial condition

ũ(x, 0) = 0. (33)

Now, in the rectangleQ(2l)
T = (0, 2l)×(0, T ) consider

the problem

ūt = (ā(x)ūx)x, (34)

0 < x < 2l, 0 < t < T,

ū(0, t) = φ̃(t), (35)

ū(2l, t) = φ̃(t), (36)

ū(x, 0) = 0, (37)

where ā(x) = a(2l − x), x ∈ (l, 2l). The
weak solution of problem (34) – (37) is a function

ū(x, t) ∈ V 1,0
2 (Q(2l)

T ) satisfying the boundary condi-
tionu(0, t) = u(2l, t) = φ̃(t) and the integral identity∫

Q
(2l)
T

(āūxηx − ūηt)dxdt = 0 (38)

for any function η(x, t) ∈ W 1
2 (QT ) such that

η(x, T ) = 0, η(0, t) = 0, η(2l, t) = 0. It follows
from equality (38) that

ū(x, t) = ũ(x, t), 0 < x < l, 0 < t < T. (39)

By the maximum principle for weak solutions ([14],
Ch. 3, Sec. 7, Th. 7.2), the solution̄u(x, t) satisfies
the inequalities

ess inf
t∈[0,T ]

φ̃(t) ≤ ū(x, t) ≤ ess sup
t∈[0,T ]

φ̃(t). (40)

From (40) therefore

ess sup
QT

|ũ| ≤ ess sup
0<t<T

|φ1(t)− φ2(t)|, (41)

and, consequently

ess sup
0<t<T

| ˜u(c, t)| ≤ ess sup
0<t<T

|φ1(t)−φ2(t)|. (42)

Integrating inequality (42), we obtain∫ T

0
ũ2(c, t)dt ≤ T ( sup

0<t<T
|φ1(t)− φ2(t)|)2. (43)

Suppose the functionsφ1(t) and φ2(t) are the ex-
act control functions for givenz1(t) andz2(t). This
means that

J [φ] =
∫ T

0
(u1(c, t)− z1(t))2dt = 0,

J [φ] =
∫ T

0
(u2(c, t)− z2(t))2dt = 0.

In this situation inequality (43) invokes the inequality∫ T

0
(z1(t)− z2(t))2dt (44)

≤ T (ess sup
0<t<T

|φ1(t)− φ2(t)|)2

for arbitrary functionsz1(t) andz2(t) admitting exact
controllability.

LetZ ⊂ L2(0, T ) be a set of exactly controllable
functions. We haveZ = ∪∞M=1ZM , whereZM ⊂
L2(0, T ) is the set of functions exactly controllable
with φ(t) ∈ ΦM . Consider an arbitrary sequence of
control functions{φk(t)} ⊂ ΦM , M = 1, 2, . . . and
the corresponding sequence{zk(t)} ⊂ ZM . The set

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Irina Astashova, Alexey Filinovskiy, Dmitriy Lashin

E-ISSN: 2224-266X 202 Volume 15, 2016



ΦM is a bounded set inW 1
2 (0, T ). By the embedding

theorem forW 1
2 (0, T ), we have

|φkl
− φkj

| → 0, l, j →∞, (45)

for some subsequenceφkj
. Therefore, by (44), (45)

we get for the sequence{zkj
(t)} ⊂ ZM the relation∫ T

0
(zkl

(t)− zkj
(t))2dt (46)

≤ T (ess sup
0<t<T

|φkl
(t)− φkj

(t)|)2 → 0,

j, l→∞.

It follows from (46) thatZM is a pre-compact set
in L2(0, T ). So,ZM is nowhere dense inL2(0, T ).
Thus, sinceZ = ∪∞M=1ZM , we conclude thatZ is a
first category set inL2(0, T ). Theorem 6 is proved.ut

The following statements show that the exact con-
trollability does not necessarily take place not only for
functionsz ∈ L2(0, T ), but also forz ∈ C([0, T ]).
Consider the exact controllability question for prob-

lem (12)–(14) withψ(t) = 0 (no heat flow through
the right endpoint).

ūt = (a(x)ūx)x, (47)

0 < x < l, 0 < t < T,

ū(0, t) = φ(t), ūx(l, t) = 0, (48)

0 < t < T,

ū(x, 0) = 0, 0 < x < l. (49)

Theorem 7 For anyM > 0 there exists a function
z ∈ C([0, T ]) such that for any functionφ(t) ∈ Φ0

M ,
the solution to problem (47)–(49) satisfies the inequal-
ity J [φ] > 0.

Now consider the more general case withψ(t) 6=
0, i. e. consider problem (12)–(14).

Theorem 8 For anyM > 0 andM1 > 0 there ex-
ists a functionz ∈ C([0, T ]) such that for any func-
tion φ(t) ∈ Φ0

M and anyψ(t) ∈ W 1
2 (0, T ) such that

‖ψ(t)‖W 1
2 (0,T ) ≤ M1 the solutionu(x, t) to problem

(12)–(14) satisfies the inequality

J [φ] =
∫ T

0
(u(c, t)− z(t))2 dt > 0.

6 Conclusion
The results explained in the previous sections show
that the we can obtain the existence and uniqueness
of a control function in a prescribed class. Also we
prove that the set of functionsz(t) ∈ L2(0, T ) admit-
ting exact controllability is sufficiently ”small”. The

results of this investigation were used for the develop-
ment of control algorithms and software ([1], [3]). Af-
terwards this software was introduced to the climate
control process in greenhouse complexes in Russia.

References:

[1] D. A. Lashin, Strategy of management to micro-
climate in greenhouses,Gavrish.Moscow, 2005,
no. 1, pp. 33–35. (Russian)

[2] D. A. Lashin, On the optimal control of a tem-
perature regime,Differ. Equ.44, 2008, pp. 853.

[3] D. A. Lashin, On the existence of optimal con-
trol of temperature regimes,J. of Math. Sci.158,
2009, pp. 219–227.

[4] I. V. Astashova, A. V. Filinovskiy, V. A. Kon-
dratiev and L. A. Muravei, Some Problems in the
Qualitative Theory of Differential Equations,J.
of Natural Geometry.Jnan Bhawan, London. 23,
2003, pp. 1–126.

[5] Qualitative Properties of Solutions to Differen-
tial Equations and Related Topics of Spectral
Analysis,edited by I. V. Astashova, UNITY–
DANA, Moscow, 2012.

[6] A. G. Butkovsky, Optimal Control in the Sys-
tems with Distributed Parameters,Avtomatika i
Telemechanika,22, 1961, pp. 17–26.

[7] A. I. Egorov, Optimal Control by Heat and Dif-
fusion Processes,Nauka, Moscow, 1978. (Rus-
sian)

[8] Yu. V. Egorov, Some Problems of Theory of
Optimal Control, Zhurnal. Vych. Mat. i Mat.
Fiziki, 3, 1963, pp. 887–904.

[9] A. G. Butkovsky, A. I. Egorov, K. A. Lurie,
Optimal control of distributed systems,SIAM J.
Control,6, 1968, pp. 437–476.

[10] J. L. Lions, Optimal control of systems gov-
erned by partial differential equations, Berlin,
Springer, 1971.

[11] A. V. Fursikov, Optimal Control of Distributed
Systems. Theory and applications,Nauchnaya
Kniga, Novosibirsk, 1999.

[12] G. C. Goodwin, S. F. Graebe, M. E. Salgado,
Control system design,Pearson, London–New-
York, 2000.

[13] M. H. Farag, T. A. Talaat, E. M. Kamal, Ex-
istence and uniqueness solution of a class of
quasilinear parabolic boundary control prob-
lems,Cubo,15, 2013, pp. 111–119.

[14] O. A. Ladyzhenskaya, V. A. Solonnikov,
N. N. Ural’seva,Linear and quasi-linear equa-
tions of parabolic type,Translations of Mathe-
matical Monographs, 23, American Mathemati-
cal Society, Providence, RI, 1968.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Irina Astashova, Alexey Filinovskiy, Dmitriy Lashin

E-ISSN: 2224-266X 203 Volume 15, 2016



[15] O. A. Ladyzhenskaya,Boundary value problems
of mathematical physics,Fizmatlit, Moscow,
1973.

[16] F. Riesz, B. Sz̈okefalvi-Nagy,Functional Analy-
sis,Dover, New-York, 1990.

[17] A. M. Ilin, A. S. Kalashnikov, O. A. Oleinik,
Linear equations of second order of parabolic
type, Russ. Math. Surways,17, 1962, issue 3,
pp. 3–146.

[18] E. M. Landis, O. A. Oleinik, Generalized
analiticity and some connected properties of so-
lutions of elliptic and parabolic equations,Russ.
Math. Surways,29, 1974, issue 2, pp. 190–206.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS Irina Astashova, Alexey Filinovskiy, Dmitriy Lashin

E-ISSN: 2224-266X 204 Volume 15, 2016




