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Abstract: This paper proposes a new processor array architecture for an optimized parallel sequence alignment
algorithm. This architecture is extracted by applying a nonlinear mapping methodology to the Stevens-Song opti-
mized algorithm after expressing it as Regular Iterative Algorithm (RIA). This methodology uses a data scheduling
and node projection techniques to explore the processor array architectures of the algorithm. The proposed archi-
tecture is one of the explored architectures and has the advantage that it can be modified to be reused for multiple
pass processing in order to increase the number of processing elements that can be packed into a single FPGA and
to increase the number of sequences that can be aligned in parallel in a single FPGA. This resolves the potential
problem of many FPGA resources left unused for designs that have large values of short read length when using
the previously published conventional hardware design. FPGA implementation results show that, for large values
of short read lengths (M > 128), the proposed design has a slightly higher speed up and FPGA utilization over the
the conventional one.

Key–Words: Systolic array, Bioinformatics, Genome sequence alignment, Resequencing applications, Sequencing
Technology, Biological computation.

1 Introduction
The coming of the most recent generations of se-
quencing technologies [1] has opened a lot of new
research chances in the fields of science (biology)
and medication, including cell Deoxyribonucleic Acid
(DNA) sequencing, gene disclosure and evolutionary
connections. These sophisticated technologies have
helped the exponential development of biological in-
formation that is accessible for specialists. For ex-
ample, the Genbank [2] has multiplied its informa-
tion measure at regular intervals (approximately 18
months) and in its latest release of February 2014 it
included over 158 × 109 base-pair (bp) from a few
distinctive species.

To aid the researcher in the extraction of handy
data and in the understanding of the immense esti-
mated sequence databases, a set of alignment algo-
rithms (e.g. the generally utilized Smith-Waterman

(S-W) [3] and Steven-Song optimized [4, 5] algo-
rithms) have been produced to take care of numerous
open issues in the field of bioinformatics, for exam-
ple, (1) DNA re-sequencing, where genome gathering
is carried out against a reference genome; (2) Multiple
Sequence Alignment (MSA), where various genomes
are adjusted to perform genome annotation; and (3)
Gene discovering, where Ribonucleic Acid (RNA) se-
quences are adjusted against the living being genome
to recognize new genes.

At present, a basic sequencing methodology is de-
pendent upon the provision of High Throughput Short
Read (HTSR) technologies [6], to decrease the ex-
pense of the sequencing procedure. This methodol-
ogy comprises of cutting the DNA pieces under anal-
ysis into shorter sections called short reads, which are
exclusively sequenced and aligned against a reference
sequence.
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Currently, the three most essential HTSR se-
quencing platforms are: the Solexa 1g Sequencer (ll-
lumina), the GS FLX Genome Analyzer (454), and
the Solid Sequencer (Applied Biosystems). The bio-
chemistry engineering underlying each of these plat-
forms prompts altogether different attributes, in terms
of throughput, short reads length, and raw errors. In
any case, freely of the embraced platform, the length
of the short reads processed by these platforms is
small when contrasted with past generation sequenc-
ing technologies and much smaller than the origi-
nal completed DNA sequence. Though, the big vol-
ume of information that is created and the require-
ment to align these short reads to huge reference
genomes constrains an immediate and credulous pro-
vision of standard Dynamic Programming (DP) meth-
ods. One straightforward example of a common chal-
lenge comes from the necessity to align up to 100
million short reads against a reference genome that
could be as substantial as 3 Gbp. For the SOLiD
sequencer, with reads as short as 30 bps, this re-
lates to the processing of 100 million grids of size
3 × 109 × 30, which brings about a computational
assignment that is unfeasible actually for a standard
high execution machine. Hence, the computational
requests for the analysis of the genetic information
handled by the different sequencing technologies has
lead to the advancement of a few accelerating method-
ologies that aims at parallelizing the execution of the
alignment algorithms. Some of these methodologies
are programming based, while others utilize devoted
hardware implementations. Among the programming
based methodologies, an optimized software imple-
mentation utilizing Single-Instruction Multiple-Data
(SIMD) instructions for current general purpose pro-
cessors [7] is normally adopted in sequence alignment
programs, in the same way as SSEARCH35. Other
software implementations make utilization of the ex-
ceedingly parallel execution competencies exhibited
by Graphics Processing Unit (GPU) to attain a high
alignment throughput [8]. Concerning the hardware
implementations, these incorporate both Application
Specific Integrated Circuit (ASIC) [9–12] and Field
Programmable Gate Array (FPGA) [13–17] imple-
mentations. Despite the recognized implementation,
the most well-known and productive hardware archi-
tectures map alignment computations to a systolic ar-
ray of Processing Element (PE). Moreover, in spite
of the fact that some bi-dimensional processor ar-
rays have been exhibited [18], the most widely recog-
nized implementations adopt a uni-dimensional (lin-
ear) systolic array [9–17], [19–23]. Actually, the prin-
ciple contrasts among the different implementations
attributed to the design of the singular PE.

The aforementioned proposed systolic array ar-

chitecture is not effectively enhanced to manage the
short reads sequences got from current HTSR se-
quencing platforms (e.g. Illumina). In this paper, the
authors propose a novel semi-systolic array architec-
ture for Stevens-Song optimized algorithm [4, 5] for
DNA resequencing that is slightly efficient in speed
and area - for large values of short read length - than
the conventional systolic array architectures reported
in the literature [9–17], [19–23] and also it can be eas-
ily optimized to deal with short read sequences, got
from current HTSR sequencing platforms. This is
achieved by applying a nonlinear mapping methodol-
ogy to the Stevens-Song optimized algorithm after ex-
pressing it as Regular Iterative Algorithm (RIA). This
methodology uses a data scheduling and node projec-
tion techniques to explore the processor array archi-
tectures of the algorithm. One of the explored archi-
tectures is new and to the best of our knowledge is not
reported before in the literature, while the other one is
identical to the conventional systolic array that is re-
ported in the literature [9–17], [19–23]. Also, this pa-
per presents the hardware implementation of the pro-
cessing elements (PEs) of the explored processor ar-
ray architectures. The new processor array architec-
ture (called semi-systolic array architecture) can be
modified to be reused for multiple pass processing in
order to increase the number of processing elements
that can be packed into a single FPGA and to increase
the number of sequences that can be aligned in paral-
lel in a single FPGA.

This paper is organized as follows. Section 2
presents the optimized parallel genome alignment al-
gorithm of Stevens-Song [4,5]. Section 3 presents the
proposed methodology employed to explore the new
semi-systolic array architecture and other architec-
tures. Section 4 shows the Multiple short-read align-
ment in a single FPGA using the proposed architec-
ture. Section 5 compares the resulting semi-systolic
array to the previously published conventional systolic
array in terms of area, speed. Finally Section 6 con-
cludes the paper.

2 An optimized parallel sequence
alignment algorithm

In this research work, we are concerned with the
acceleration of DNA resequencing. Resequencing is
the task of sequencing DNA of a an individual when
provided with a reference sequence to the species.
In resequencing, the prepared data is composed in
small fragments, called short reads, with currently
normal length lies in the range of 30 ∼ 200 base-pairs
and it is likely doubles in the next few years. The
sequence alignment of many short-reads of length
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M (30 ≤ M ≤ 200) against a long reference
sequence of length N (108 ≤ N ≤ 3 × 109) is the
predominant consumer of computational resources.
Stevens and Song [4, 5] have prescribed a sequence
alignment algorithm that is sufficiently adaptable
for resequencing applications, yet is additionally
efficiently implementable on FPGAs.

The notations used in this paper are as follows:

• R = r1r2 . . . rj . . . rN : reference sequence of
length N , rj ∈ {A, G, C, T }.

• S = s1s2 . . . si . . . sM : short-read sequence of
length M , si ∈ {A, G, C, T}.

• C : similarity matrix.

• c(i, j) : the optimal similarity score for the align-
ment of the first i characters of S against the first
j characters of R.

• α : penalty for deletion in S.

• β: penalty for insertion in S.

• γ(si, rj) : base-pair mismatch penalty.

The core part of the algorithm is the calculation
of an (N + 1) by (M + 1) similarity matrix C, often
called the dynamic programming table. The follow-
ing recursion computes the matrix elements (optimal
scores).

c(i, j) = min


C(i, j − 1) + α

C(i− 1, j) + β

C(i− 1, j − 1) + γ(si, rj)

The authors of algorithm supposed that the penal-
ties of the α, β, and γ are restricted to positive inte-
gers in the range [0, 3] and there is no charge penalty
at the beginning of the read. The restriction to positive
values implies that the matrix definition should select
a minimum rather than maximum value as in global
Needleman-Wunsch [24] and local Smith-Waterman
(S-W) [3] algorithms. Another difference between
conventional sequence alignment algorithms and the
one presented in the paper of [5] is that the output val-
ues are taken from the final row in the matrix. In fact
for this application, it is sufficient to output only the
column positions where the value in the final row is
below some threshold T. In our implementation γ is
chosen to be as follows:

γ(si, rj) =

{
0, if si = rj

δ, otherwise

Therefore no penalty is applied if the base-pairs
are the same, and a standard penalty of δ is applied if
they are not. where δ should be in the range 1 to 3.
Therefore, it can be represented using only two bits.

3 A Systematic Methodology for
Processor Array Design

Systematic methodologies to design processor arrays
allow for design space exploration for optimizing per-
formance according to certain specifications while
satisfying design constrains. Several methodologies
were proposed earlier [25], [26], [27], [28]. How-
ever, most of these methodologies were not able to
deal with algorithms that have dimensions more than
two. The third author proposed a systematic method-
ology that deals with algorithms of arbitrary dimen-
sions [28, 29]. The author proposed a formal alge-
braic procedure for processor array design starting
from a Regular Iterative Algorithm (RIA) for a three-
dimensional digital filter which gives rise to a depen-
dency graph in six-dimensional space. In this work,
we used this formal technique to develop processor
arrays for Stevens and Song optimized algorithm.

3.1 Obtaining the Algorithm Dependency
Graph (DG)

The Stevens and Song Algorithm explained in Section
2 can be easily defined on a two dimensional (2D) do-
main since there are two indices (i, j). The DG is
shown in Fig. 1. The computation domain is the con-
vex hull in the 2D space, where the algorithm oper-
ations are defined as indicated by circles in the 2D
plane [28–30]. Also, from this figure we notice that
the input variables si and c(i, j−1) are represented by
horizontal lines, the input variables rj and c(i− 1, j)
are represented by vertical lines, and the output vari-
able c(i, j) is represented by the slanted lines. the
zero inputs at the left and upper borders of DG rep-
resents the initial values of the score matrix, c(i, 0)
and c(0, j).

3.2 Data Scheduling

Pipelining or broadcasting the variables of an algo-
rithm is determined by the choice of a timing function
that assigns a time value to each node in the DG. A
simple but useful timing function is an affine schedul-
ing function of the form [28].

t(p) = Gp− g (1)

where the function t(p) associates a time value t to a
point p in the DG. Value of G is chosen to ensure that
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Output

Figure 1: Stevens-Song algorithm dependency graph.

only positive time index values are obtained. The row
vector G = [g1 g2] is the scheduling vector and g is an
integer. The affine scheduling function must satisfy
several conditions. From Fig.1, we observe that in
each column the output variable c(i, j) of each node
depends on the output variable c(i − 1, j) form the
previous node in the same column, thus we can write

t(p(i− 1, j)) < t(p(i, j)) (2)

Applying our scheduling function in Equation (2) to
this inequality, we get

[
g1 g2

] [ i− 1
j

]
<

[
g1 g2

] [ i
j

]
(3)

ig1 − g1 + jg2 < ig1 + jg2 (4)

Which could be simplified to

g1 > 0 (5)

Similarly From Fig.1, In each row we observe
that the output variable c(i, j) depends on the previ-
ous output value c(i, j − 1) of the same row, thus we
can write

[
g1 g2

] [ i
j − 1

]
<

[
g1 g2

] [ i
j

]
(6)

ig1 + jg2 − g2 < ig1 + jg2 (7)

Which could be simplified to

g2 > 0 (8)

From Equations 5 and 8 there are many solutions
for G, the most reasonable and simplest one is

G = [1 1] (9)

If we want to pipeline or allocate a variable whose
nullvector is θ , we must have

Gθt ̸= 0 (10)

where θ is the nullvector of the variable dependence
matrix [28]. On the other hand, if we want to broad-
cast a variable whose nullvector is θ , we must have
[28]

Gθt = 0 (11)

To study the timing of the variables si, rj, and
c(i, j), we first find their nullvectors

θsi = [0 1] (12)

θrj = [1 0] (13)

θc(i,j) = [−1 − 1] (14)

The product of G and these nullvectors gives

Gθtsi = 1 (15)

Gθtrj = 1 (16)

Gθtc(i,j) = −2 (17)

Therefore, The input and output variables will be
pipelined or allocated.

3.3 DG Node Projection

The projection operation is a many-to-one function
that maps several nodes of the DG onto a single node,
which constitutes the resulting processor array. Thus,
several operations in the DG are mapped to a single
PE. The projection operation allows hardware econ-
omy by multiplexing several operations in the DG on
a single PE. The third author [28] explained how to
perform the projection operation using a projection
matrix P . To obtain the projection matrix we need
to define a desired projection direction d. The vector
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d belongs to the null-space of P . Since we are dealing
with a two-dimensional DG, matrix P is a row vec-
tor and d is a column vector [28]. A valid projection
direction d must satisfy the inequality [28]

Gd ̸= 0 (18)

In the following, we will discuss design space ex-
plorations based on the timing function G obtained
in Equation 9. There are many projection vectors
that satisfy Equation 18 for the scheduling function
in Equation 9. For simplicity we choose four of them
as follows:

d1 = [1 0]t (19)

d2 = [0 1]t (20)

d3 = [1 1]t (21)

The corresponding projection matrices are given
by

P1 = [0 1] (22)

P2 = [1 0] (23)

P3 = [−1 1] (24)

Our processor design space now allows for three
systolic/semi-systolic array configurations for each
projection vector for the timing function G. In the
following subsections, we study the systolic/semi-
systolic arrays associated with each design option.

3.3.1 Design1: using d1 = [1 0]t

A point in the DG p = [i j]t will be mapped by the
projection matrix P1 = [0 1] onto the point

p′ = P1p = j (25)

The resulting semi-systolic array corresponding to the
projection matrix P1 consists of N PEs. Only at most
M PEs are active at each time step. Fig. 2 shows the
processor activity for the case N = 6 and M = 3,
where the black nodes represent active PEs and white
nodes represent idle PEs. Since only maximum M
PEs are active at a given time step, the PEs are not
well utilized. To improve PE utilization, we need to
reduce the number of processors. We note from Fig.
2 that PEj and PEj+M are active at non-overlapping
time steps. Thus, each pair of PEs (PEj and PEj+M )
can be mapped to a single PE without causing time
conflicts. This can be achieved by mapping PEs with
indices j (in Fig. 2 ) to PEs with indices j

′
using the

following nonlinear projection operation:

j
′
= j mod M (26)

The resulting semi-systolic array for different values
of N and M is shown in Fig. 3. To the best of our
knowledge, This semi-systolic array is new and was
not reported before in the literature. The semi-systolic
array consists of M PEs. Input bits of reference se-
quence r(kM + j) should be allocated to each pro-
cessing element in the semi-systolic array, where k
has values in range from 0 to ⌈N/M⌉ − 1. since each
PE in the semi-systolic array needs the reference se-
quence bits at different time (one time step difference
between consecutive PEs as shown in activity graph,
Fig. 2). Thus, these reference bits are made available
for all PEs (broadcasted) with internal control in each
PE that loads the signal at the right time. On the other
hand, Input bits of the short-read sequence si and in-
termediate out bits of c(i, j) are pipelined between ad-
jacent PEs. A tristate buffer at the output of each PE
ensures that it is the only output fed to the output bus.

To reduce the size of the PE of the semi-systolic
array to maximize parallelism, we used the compact
offset encoding scheme of [5] to reduce the band-
widths of its data paths. In this scheme, the authors
labeled the three inputs and the one output (a quar-
tet) of the scoring matrix recursion starting from left
to right as x, y, z, w, where x represents the upper left
input and w is the output. They proved that in any
quartet of the scoring matrix there are only two possi-
ble offsets of the value of x, x − 1 and x + 1, for the
uniform scoring function: α = 1, β = 1, δ = 1 (see
Table 1). As shown in Table 1, the recursion contains
only three possible relative values (x, x − 1, x + 1).
Therefore, only two bits are required to represent the
scores.

Table 1: Offset encoding scheme using the uniform
scoring function (α = 1, β = 1, δ = 1) [5].

x y = x− 1, x, x+ 1

z = x− 1, x, x+ 1 w = x, x+ 1

Figure 4 shows the hardware implementation of
each PE of Design1 depending on the compact offset
encoding scheme. The input r(kM + j) represents a
base pair of the reference sequence R. It is loaded in
a register one clock cycle before a computation starts
and it is applied for the whole computational cycle (M
clock cycles). The input si represents the base pair of
the short read sequence S that is pipelined to the next
PE through register. The resulted score c(M,kM+j)
will be available on the output bus after M clock cy-
cles through a tristate buffer. There are two data path
control signals. The first one is the ”first-clk-cycle”,
that indicates the first cycle in each iteration. The sec-
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ond one is the ”Last-clk-cycle”, that indicates the last
cycle in each iteration. These control signals, in each
PE, is delayed one clock cycle before propagating to
the next PE. This is done by propagating these signals
through registers between the PEs.

0 1 2 3 4

1

2

3

PEj

tim
e

5

si, c(i, j-1)

c(i-1, j-1)

rj, c(i-1, j)

si, c(i, j)rj, c(i, j)

r1, 0

r2, 0

r3, 0

r4, 0

r5, 0

r6, 0

s1, 0

s2, 0

s3, 0

c(3,1)

c(3,2)

c(3,3)

c(3,4)

c(3,5)

c(3,6)

c(i, j)

4

5

6

7

8

Figure 2: Processor activity at different time steps for
d1 = [1 0]t, N = 6, and M = 3.

PE1 PE2 PEj

si

PEM

r(kM+j)

K = 0 to 1M/N

score

Intermediate results and control

short read 

Figure 3: Processor array for d1 = [1 0]t for different
values of N and M .

3.3.2 Design2: using d2 = [0 1]t

A point in the DG p = [i j]t will be mapped by the
projection matrix P2 = [1 0] onto the point

p′ = P2p = i (27)

The resulting systolic array corresponding to the pro-
jection matrix P2 consists of M PEs. Fig. 5 shows
the processor activity for the case N = 6 and M = 3,

Comp.
(=)

Score x

Score w

si

r(km+j)

c(M, kM+j)

E
N

B

Last-clk-cycle-in

first-clk- cycle-in first-clk- cycle-out

(From previous PE)

Comp.
(=)

Comp.
(=)

(From previous PE)

Reg.

C
E

Reg.

Reg.

Reg.
Dec.
(-)

Score z
(From previous PE)

m
ux

1
0

Inc.
(+)

Reg.

Reg.
Last-clk-cycle-out

(To next PE)

Score y

(To next PE)

1

2

2

2

2

1

1

(To next PE)
OR

1

Figure 4: Design1 PE logic diagram for uniform scor-
ing function (α = 1, β = 1, δ = 1).

where the black nodes represent active PEs and white
nodes represent idle PEs. At most time steps, the max-
imum number of PEs, M , are active and this results in
a good utilization of PEs. The resulting systolic ar-
ray, for different values of N and M is shown in Fig.
6. This systolic array is identical to the one reported
in [9–17], [19–23]. The systolic array now consists
of M PEs. Input bits of short-read si should be al-
located to each PE (as reported in the previous publi-
cations). Since each PE in the processor array needs
the short read bits at different time (one time step dif-
ference between consecutive PEs as shown in activity
graph, Fig. 5). Thus, these bits are made available for
all PEs (broadcasted) with internal control in each PE
that loads the signal at the right time. By this way, the
query sequence bits can be fed serially to the systolic
array as the subject sequence bits. On the other hand,
input bits of the reference sequence rj and the inter-
mediate output bits of c(i, j) of each PE are pipelined
to the next PE with higher index. The output score is
obtained serially from the last PE (PEM) of the array
after latency of M clock cycle.

To reduce the size of the PE of the systolic array
to maximize parallelism, we used the compact offset
encoding scheme of [5] to reduce the bandwidths of
its data paths. This scheme was discussed before in
Subsection 3.3.1.

Figure 7 shows the hardware implementation de-
tails of each PE of Design2 depending on the com-
pact offset encoding scheme. The input si represents
a base pair of the short read sequence S. It is loaded in
a register one clock cycle before a computation starts
and it is applied for the whole computational cycle (M
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clock cycles). The input rj represents the base pair of
the reference sequence R that is pipelined to the next
PE through register. The resulted score c(M, j) will
be available on the output bus, after M clock cycles,
from the last PE in the systolic array. .

There is one data path control signal, ”first-clk-
cycle”, that indicates the first cycle in each iteration.
This signal is delayed one clock cycle before propa-
gating to the next PE. This is done by propagating this
signal through registers between the PEs.

0 1 2

1

2

PEi

tim
e

s1, 0

s2, 0

s3, 0

r1, 0

r2, 0

r3, 0

r4, 0

r5, 0

r6, 0

3

4

5

6

7

8

 c(3, 1)

 c(3, 2)

 c(3, 3)

 c(3, 4)

 c(3, 5)

 c(3, 6)

Figure 5: Processor activity at different time steps for
d2 = [0 1]t, N = 6, and M = 3.

3.3.3 Design3: using d3 = [1 1]t

A point in the DG p = [i j]t will be mapped by the
projection matrix P3 = [−1 1] onto the point

p′ = P3p = i− j (28)

PE1 PE2 PEi
rj

PEM

si

score

Intermediate results, reference sequence and 
control

Figure 6: Processor array for d2 = [0 1]t for different
values of N and M .
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(=)
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(=)

(From previous PE)

Reg.

C
E

Reg.

Reg.

Reg.
Dec.
(-)

Score y
(From previous PE)

m
ux

1
0

Inc.
(+)

Reg.

(To next PE)

Score z

(To next PE)

1

2

2

2

2

1

(To next PE)
OR

1

Figure 7: Design2 PE logic diagram for uniform scor-
ing function (α = 1, β = 1, δ = 1).

The resulting semi-systolic array corresponding to the
projection matrix P3 consists of M PEs, after adding
a fixed increment to all PE indices to ensure non-
negative PE index values [28, 29]. Only at most M
PEs are active at each time step. Fig. 8 shows the pro-
cessor activity for the case N = 6 and M = 3 where
the black nodes represent active PEs and white nodes
represent idle PEs. Since only maximum M PEs are
active at a given time step, the PEs are not well uti-
lized. To improve PE utilization, we need to reduce
the number of processors. We notice from Fig. 8 that
all PEs whose indices are given by (28) can be mapped
to PEs with indices j

′
as

j
′
= i− j mod M (29)

without any timing conflicts. This statement is true as
long as the inequality Gd3 ̸= M is satisfied. The re-
sulted semi-systolic array of this design is not regular
and will have high complexity that makes it not suit-
able for VLSI implementation. Thus, we will ignore
this design in this research paper.
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Figure 8: Processor activity at different time steps for
d3 = [1 1]t, N = 6, and M = 3.

4 Multiple short-read alignment in
a single FPGA using the proposed
design

The proposed semi-systolic array, shown in Fig. 3,
computes a single short read against a reference se-
quence. However, it is possible to fit several indepen-
dent semi-systolic arrays onto an FPGA, and by doing
so it is possible to align several short-reads in paral-
lel. The extension of the design from a single align-
ment processor to one that can perform P alignments
in parallel is shown in Fig. 9. The semi-systolic ar-
ray is simply replicated as many times as we can fit it
onto a single FPGA. The DRAM interface and serial-
izer feeds all the systolic arrays in parallel. The score
output buses in the semi-systolic arrays are passed to
a thresholding output stages that conditionally write
the corresponding reference base-pair index to a FIFO
buffer if the score is below a user-specified value. The
round-robin reader cycles through the FIFOs at the
end of each systolic array to read their values and
write those values to a single shared FIFO. The hard-
ware details of the thresholding output stage and the
round-robin reader are given in [4].

Due to the on-chip memory and logic limitations
of FPGA, the number of PEs that could be packed into
a single FPGA is limited. Also, there is another po-
tential problem to designs that have large values of
short read length M (M ≥ 128). This problem is
the large amount of FPGA resources that left unused
due to the number of semi-systolic arrays P should
be a whole number. It is possible to alleviate this
problem by making semi-systolic arrays with differ-
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Figure 9: Multiple short-read alignment in a single
FPGA using proposed semi-systolic array.

ent length, but this solution is not desirable to the
user, who has constant-length short reads. To increase
the number of PEs that can be packed into a single
FPGA and hence increasing the number of sequences
that can be aligned in parallel in it, this design archi-
tecture should be modified to be reused for multiple
pass processing. This is also resolves the potential
problem of many FPGA resources left unused for de-
signs that have large values of short read length M .
The design modification starts by partitioning the al-
gorithm in hand into small alignment steps and map
the partitioned algorithm on a fixed size linear semi-
systolic array of size v, where M > v. This fixed size
array is called folded semi-systolic array and can be
extended to perform Q = pq alignments in parallel,
where q = ⌈M/v⌉ is the number of folds. In each
fold of semi-systolic array, M − v short read base-
pairs should be kept in a feed back FIFO to be used
for the next fold. We still working on the design of
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the fixed size folded semi-systolic array and it will be
put in a future work.

The folded systolic array solution for the conven-
tional systolic array is infeasible. This is due to the
resulted folded systolic array would have a feed back
FIFO depth of N − v that depends on the length N
of the reference sequence (108 ≤ N ≤ 3 × 109).
Because of the large size of this feed back FIFO, the
memory resources of the FPGA will not be sufficient
to implement it.

5 Implementation Results
This section discusses the resource utilization and
performance evaluation of the proposed novel design
(Design1) and the conventional design (Design2). The
semi-systolic array of Design1, Fig. 3, and the sys-
tolic array of Design2 , Fig. 6, are described in
VHDL language and implemented on Xilinx Vertix-
5 FPGA (XC5VLX110) using Xilinx ISE8.1 tools.
The semi-systolic array of Design1 utilizes 473 slices
for M = 64, with a total of 17,280 slice, a maxi-
mum of 36 semi-systolic arrays can be fitted onto the
XC5VLX110 FPGA. These utilization values are in-
creased as the short read length increases as shown
in Table 2. On the other hand, the systolic array of
Design2 utilizes 470 slices for short read length of
M = 64 with a maximum value of 36 systolic arrays
can be fitted on the same FPGA. Also, this utilization
increases as the short read length increases as shown
in Table 2.

In Table 2, The columns entitled ”#PE-D1” and
”#PE-D2” represent the total number of PEs that can
be fitted on the FPGA by the multiple parallel semi-
systolic arrays of Design1 and the multiple parallel
systolic arrays of Design2, respectively. The columns
entitled ”f max-D1” and ”f max-D2” represent the
maximum clock frequency obtained from the syn-
thesis results for Design1 and Design2, respectively.
The columns entitled ”GCUPS-D1” and ”GCUPS-
D2” represent the Giga cell updates per seconds ob-
tained for Design1 and Design2, respectively. The
GCUPS design metric is a convenient measure to per-
formance in sequence alignment implementation that
it does not depend on the lengths of the two sequences
being aligned. It is calculated by multiplying the num-
ber of PEs that are fitted on the the FPGA by the max-
imum clock frequency obtained for each design. The
”speed up” and ”FPGA utilization ratio” design met-
rics are calculated using the synthesis results in or-
der to measure the degree of optimization achieved in
each design. The ”speed up” is calculated by dividing
the GCUPS of Design2 ”GCUPS-1” by the GCUPS of
Design1 ”GCUPS-D2”, while the ”FPGA utilization

ratio” is calculated by dividing ”#PE-D1” by ”#PE-
D2”.

We notice from Table 2 that for large values of
short read lengths (M > 128), the proposed design
(Design1) has a slightly higher speed up over the
conventional design (Design2) by ratios ranging from
0.07% to 0.15% as M increases. Also, it has a slightly
better FPGA utilization over the conventional design
by ratio of 0.005%. In spite of this slight increase in
performance of the proposed design, the folded fixed
size version of the proposed design - that we are work-
ing on it now - will achieve a significant increase in
speed and FPGA utilization.

6 summary and conclusion
This paper presented a new semi-systolic array ar-
chitecture for Stevens-Song optimized algorithm for
DNA resequencing applications. This proposed ar-
chitecture is efficient in area and speed - for large
values of short read length - than the conventional
systolic array architecture previously reported in the
literature. Also, it can be easily optimized to deal
with short read sequences, got from current HTSR
sequencing platforms. Moreover, it can been modi-
fied to be reused for multiple pass processing in or-
der to increase the number of processing elements that
can be packed into a single FPGA and to increase the
number of sequences that can be aligned in parallel
in a single FPGA. This resolves the potential prob-
lem of many FPGA resources left unused for designs
that have large values of short read length. The im-
plementation results showed that the proposed design
has a slight higher speed and higher FPGA utilization
over the conventional design as short read length in-
creases. In spite of this slight increase in performance
of the proposed design, the folded fixed size version of
the proposed design - that we are working on it now -
will achieve a significant increase in speed and FPGA
utilization.
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