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Abstract: In this paper, we address the vehicle routing problems with backhauls. This type of vehicle 
routing problem consists of two types of delivery, linehaul and backhaul cases. For the linehaul case, 
vehicles deliver goods/products from a single depot to receiver customers. In contrast, for the 
backhaul case, the delivery process starts from the sender customers and ends at the depot. This 
problem is classified as NP-hard, indeed, a high cost and a high number of vehicles will be caused in 
case of poor planning and management. Thus, it is important to develop an efficient strategy to 
manage this process in a way to reduces the overall cost. In this paper, we first formulated an 
assignment integer linear programming model, which is proven to solve instances of limited size. For 
large-scale instances, we developed an evolutionary genetic algorithm approach, which has been 
tested to be efficient for solving large-scale problems. The result shows that combining the linehaul 
and backhaul cases saves on delivery cost and vehicles. 
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1 Introduction 
A type of vehicle routing problem (VRP) is 
called vehicle routing problem with backhauls 
(VRPB), which exists in many practical and 
industrial applications. In the VRPB, the 
delivery of all customers' requests starting from 
a depot to customers' locations is called the 
linehaul case [8]. In contrast, the pickup of 
customers' requests from customers' locations to 
the origin depot is called the backhaul case. 
However, unlike the common vehicle routing 
problem with the mixed pickup and delivery, 
the combined case in the VRPB, in which all 
linehauls are first visited by the vehicle, 
followed by all backhauls, is the combined 
linehauls and backhauls case [9]. This case 
arises to avoid the mixed reloading of vehicles 
during the service. The paper [10] reported that 
the VRPB in general is a saving cost for 
companies, since the use of backhauling for 
vehicles will significantly contribute to 
reducing the overall delivery cost. However, the 
restriction of visiting all linehauls followed by 

all backhauls on the same route increased the 
complexity of the VRPB. An efficient delivery 
plan should be designed to confront the 
difficulty and complexity of the VRPB. The 
standard vehicle routing problem with 
backhauls (SVRPB) is the general case of the 
VRPB, where each vehicle has a specific 
capacity that needs to be satisfied in the 
delivery plan. Satisfying the customer demand 
with the existence of the vehicle capacity 
restrictions in the SVRPB has also raised the 
difficulty of the problem and made it NP-hard 
to solve. In this paper, we studied the SVRPB 
consisting of the delivery of linehauls and 
backhauls cases by a fleet of vehicles. An 
assignment integer linear programming model 
is formulated to solve this type of problem. In 
order to solve large-sized instances, an 
evolutionary genetic algorithm approach is 
created. The computational results show that the 
genetic algorithm is efficient in solving the 
SVRPB, and the combination of linehauls and 
backhauls cases is considered to save cost. 
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The paper is structured as follows: The 
literature is reviewed in Section 2. The problem 
description is illustrated in Section 3, while the 
optimization model is illustrated in Section 4. 
The computational results are presented in 
Section 5, and finally, Section 6 is for the 
conclusion. 

2 Literature Review 

To the best of our knowledge, only two exact 
methods were developed to solve the SVRPB. 
The first exact method was introduced by [16], 
where the integer mathematical model of the 
SVRPB was solved using a Lagrangian method. 
Later, [11] created the second exact approach, 
which was based on solving the set partitioning 
model of the problem using the dual linear 
programming relaxation. On the other hand, a 
number of articles have been published to solve 
the problem considering heuristic methods. [3] 
classified these heuristics into different types, 
comprising: classical, local search, population 
search, and neural networks heuristics.  

Table 1: Classical Heuristics’ Literature 

Literature Type of Heuristic 

[6] Extension of the Clarke and 
Wright method 

[9] Space-filling curves 

[10] The LHBH based on GAP 

[16] Route construction heuristic for 
the VRPBTW 

[18] Improved cluster-first, route-
second method (directed VRPB) 

Classical heuristic where introduced before 
the year 2000, as in Table 1. In contrast to the 
classical heuristics, the local search heuristics 
were those methods that were introduced after 

the year 2000 and are based on the 
neighborhood of the search space, as illustrated 
in Table 2. 

Table 2: Local Search Heuristics’ Literature 

Literature Type of Local Search Heuristic 

[13] Reactive tabu search based on 
two route construction methods 

[1] Reactive tabu search combined 
with two constructive methods 

[14] Adaptive neighborhood search 
method 

[20] 
Reactive tabu search combined 
with an adaptive memory 
scheme 

[7] An ant colony system 

[23] Variable neighborhood local 
search 

[4] 
 

[21] 
 

An iterated local search 
algorithm 
Clustering, routing and local 
search 

[2] 
 

[12] 

A deterministic iterated local 
search algorithm 
Proxy Home Agent (PHA) 

In this paper, we investigate the delivery cost of 
the SVRPB from the perspective of the 
separated delivery of linehauls and backhauls 
cases compared to the combined case 
(combined linehauls and backhauls case). This 
idea is inspired by [5, 22], where the pick up 
and delivery of containers individually and in 
combined cases is investigated. An assignment 
integer linear programming model, followed by 
an improved genetic algorithm (GA) approach, 
is applied to solve these different cases.             
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3 Problem description 

The vehicle routing problem with backhauls 
(VRPB) can be illustrated as a directed graph 
𝐺 =  (𝑉, 𝐴), where 𝑉 is the set of nodes 
consisting of 𝐷, ℒ  and ℬ nodes. Node 𝐷 is the 
central depot, where vehicles start/end their 
trips (routes). ℒ is the set of nodes of linehauls’ 
customers, where ℒ =  1, . . . . , 𝑙, while ℬ is the 
set of nodes of backhauls' customers, where 
ℬ =  𝑏 +  1, . . . , 𝑙 +  𝑏. On the other hand, 𝐴 is 
the set of arcs between nodes, where 𝐴 =

 (𝑖, 𝑗) ∶  𝑖, 𝑗 ∈  𝑉, 𝑖 ≠  𝑗. A demand of 𝑑𝑗  is 
associated with each customer (𝑙 𝑎𝑛𝑑 𝑏) and a 
number of ℋ vehicles of 𝑄 capacity, which are 
available for the service. In the VRPB, there are 
two cases of delivery/pickup, in the first case, 
loaded vehicles start trips from the depot to 
linehauls' customers (see Figure 1), where the 
load needs to be delivered. 

 

Figure 1: Linehauls case 

However, in the second case, empty vehicles 
start to collect loads from backhaul customers 
and return to the depot as in Figure 2. 

 

 

 

Figure 2: Backhauls case 

If the two cases are combined in the same route, 
this is called the combined linehaul and 
backhaul case, as in Figure 3. 

 

 

 

 

 

Figure 3: Combined linehauls and backhauls 
case 

Our objective in this paper is to investigate 
the two separated cases and compare them with 
the combined case to minimize the total 
delivery/pickup cost. 

4 Optimization Model 

4.1 Decision Variables 

Binary variables 𝑥𝑖𝑗ℎ  and 𝑥𝑖ℎ  are created to 
denote the decision on how the orders should be 
delivered, as combined or separately for 
delivery. For example, 𝑥𝑖𝑗ℎ  =  1 means 
linehauls 𝑖 and backhauls 𝑗 need to be delivered 
on the same route by vehicle ℎ. However, 𝑥𝑖 =
 1 means that linehsuls/backhauls i need to be 
delivered separately. 

4.2 Mathematical Model 

An Assignment Integer Linear Programming 
(AILP) model is formulated to find the best 
combination of decisions for delivery route 
planning. The model consists of the most 
important practical constraints that are normally 
used in industry. 

min ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗ℎ

ℎ∈ℋ

+  ∑ ∑ 𝑐𝑖𝑗𝑥𝑖ℎ;

ℎ∈ℋ𝑖∈ℒ⋃∈ℬ𝑗∈ℬ𝑖∈ℒ

      (1) 

       𝑠. 𝑡. 
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∑ ∑ 𝑥𝑖𝑗ℎ; = 1,

ℎ∈ℋ𝑗∈ℬ

 ∀𝑖∈ ℒ;                                 (2) 

 

∑ ∑ 𝑥𝑖𝑗ℎ; = 1,

ℎ∈ℋ𝑖∈ℒ

 ∀𝑗∈ ℬ;                               (3) 

 

∑ 𝑥𝑖ℎ = 1,

ℎ∈ℋ

 ∀𝑖∈ ℒ ⋃ ℬ;                              (4) 

∑ 𝑥𝑖𝑗ℎ𝑑𝑖𝑗 ≤ 𝑄,

ℎ∈ℋ

 ∀𝑖∈ ℒ, ∀𝑖∈  ℬ;                (5) 

∑ 𝑥𝑖ℎ𝑑𝑖 ≤ 𝑄,

ℎ∈ℋ

 ∀𝑖∈ ℒ ⋃ ℬ;                    (6) 

𝑥𝑖𝑗ℎ, 𝑥𝑖ℎ ∈ {0, 1} ∀𝑖, 𝑗 ∈ 𝒩, ∀𝑗∈ ℋ;         (7)  

The objective function (1) is to minimize the 
total travelling cost between the depot and 
customers for the separated and joint cases. 
Constraints (2)-(4) force all orders to be 
delivered separately or jointly. Constraints (5)-
(6) are to ensure that the maximum capacity of 
orders (separately and jointly) for all routes is 
less than or equal to the total vehicle capacity. 
Finally, constraint (7) is to represent the domain 
of variables. 

4.3 Genetic algorithm approach 

The genetic algorithm (GA) has been applied as 
a metaheuristic approach for solving different 
types of optimization problems. The GA is 
usually applied to solve complicated and large-
scale optimization problems, which cannot be 
solved by exact methods. The GA starts by 
creating initial solutions for the investigated 
problems, and the solutions are evaluated based 
on their fitness values to choose a group of 
these solutions for the combination processes. 
The crossover and mutation are then applied to 
these selected solutions to create new solutions 

(offspring). The GA process continues 
repeatedly until a best (good) solution is 
obtained. Usually, the exact optimization 
approaches cannot be applied for solving the 
VRPB as the latter is classified as NP-hard [18]. 
Thus, heuristic/metaheuristic approaches are 
required to solve these types of problems. The 
GA is believed and tested as an efficient 
method for solving complicated and large-scale 
problems [19]. For this reason, we applied the 
GA to solve the VRPB in order to find near 
optimal solution. In the next sections, we will 
describe the GA in more detail. 

4.4 Chromosomes (Solutions) demonstration 

In the VRPB, the chromosome refers to the 
solution of this problem, which is a permutation 
of the linehauls and backhauls customers as 
shown in Figure 4(A). The capacity constraints 
cause infeasible solutions of the chromosomes. 
To tackle the infeasibility, we sample the 
chromosomes from the delivery category 
(linehauls) until the demand of linehauls 
reaches the maximum capacity of the vehicle. 
Then the sample process starts from the pickup 
(backhaul) category and continues until the 
vehicle capacity is full. When the capacity is 
full for the delivery and pickup then the depot is 
inserted at the end to terminate the route, which 
represents a vehicle, as shown in Figure 4(B).  

 

 

 

Figure 4: Chromosomes (Solutions) 
demonstration of the VRPB 

However, some routes in the chromosome 
consist of only linehauls or only backhauls 
customers when we deal with the two cases 
separately. For this purpose, we used an 
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insertion method as demonstrated in Algorithm 
1, which helps in creating feasible routes in 
terms of vehicle capacity. However, we still 
face the feasibility of using a larger number of 
fleets rather than the available fleet, which we 
tackle within the fitness function by penalizing 
the large number of fleets, which helps to 
exclude them in the evaluation process. 

In more detail, we first assume that an 
empty route starts from the depot, then we first 
insert linehauls until the vehicle capacity is 
reached. Similarly, for the backhauls case, we 
insert them in the created route until the vehicle 
capacity is reached; in this case, the current 
route (vehicle) is terminated, and then we start a 
new route until all routes are completed. To 
illustrate the insertion method, an example of 6 
linehauls and 6 backhauls is considered, which 
also includes the depot (D) and 4 vehicles. As 
shown in Figure 4(A), a chromosome is a 
random permutation of all linehauls and 
backhauls, and then we insert depots (D) into 
the chromosome to divide it into routes 
(vehicles) (see Figure 4(B)). In more details, the 
first vehicle (Vehicle 1) starts from the depot, 
and then visit the linehauls (1, 3), and since that 
the vehicle capacity is reached, then the same 
vehicle travels to backhaul (7), and similarly 
since the capacity of the vehicle is full, thus we 
terminate this route (vehicle) by inserting the 
depot at the end. The same procedure is applied 
for all other vehicles until this chromosome is 
completed. 

 

Algorithm 1 - Insertion method 

Step 1: Let N refer to the total number of 
linehauls (L) and backauls (B). Let I = 1. 

Step 2: Initialize an empty route starting from 
the depot (D). Let R = 1. 

Step 3: while I ≤ N 

Step 2.1: Insert the linehauls (L) from N. 

            If the total demand of the linehauls (L) 
does not violate the capacity of the vehicle 

then set I = I + 1 and go to Step 3;  

          elseif the demand of the linehauls (L) 
violates the capacity of the vehicle, then 
go to Step 4: 

Step 4: Insert the backhauls (B), I, from N. 

          If the total demand of the backhauls does 
not violate the capacity of the vehicle 

then set I = I + 1 and go to Step 3; 

          elseif the demand of the backhauls 
violates the capacity of the vehicle, then go to 
Step 5: 

Step 5: Insert the depot (D) - terminate route 
(R=1) for the current vehicle and go to Step 1. 
 

4.5 The initial population, evaluation, and 

selection 

As we mentioned, the initial population for the 
VRPB is built based on the permutation of the 
delivery and pickup process. Considering the 
feasibility of the chromosomes regarding the 
capacity of vehicles, we insert the depot at the 
end of the routes. In this case, all the 
chromosomes (solutions) have a similar length, 
but the number of vehicles may be different for 
each chromosome based on the feasibility of the 
chromosomes. When the initial population is 
constructed, then each chromosome is evaluated 
based on the fitness values of chromosomes, 
which in this problem is represented by the 
objective function (9). As we know that the 
objective of the VRPB is to minimize the 
transportation cost to satisfy all customers. 
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 𝐹𝑖𝑡(𝑖) =  𝑂𝐹(𝑖)                                                   (8) 

=  𝑇𝐶(𝑖) +  𝑃(𝑖)                                                 (9) 

Where 𝐹𝑖𝑡(𝑖) is the fitness value for 
chromosome 𝑖, while 𝑂𝐹(𝑖) is the original 
objective function of the problem, which 
comprises the total transportation cost 𝑇𝐶(𝑖) 
and the penalty of a larger number of vehicles 
𝑃(𝑖), adding to solution (𝑖). Based on the 
fitness values, the selection process, which is 
the Roulette Wheel Selection (RWS) approach, 
is applied to select a group of solutions for the 
next recombination processes of the GA. 
Solutions are chosen based on the proportion of 
the fitness values of each chromosome to the 
total fitness of all chromosomes. Solutions with 
the smaller fitness values have a higher chance 
of being selected as a parent for the next 
recombination process. 

4.6 Crossover and Mutation Operators 

To apply the recombination process, two 
operators of crossover and mutation are used. In 
the crossover process, a number of elements of 
the first parent are chosen to start the first 
offspring, then to complete the first offspring, 
non-repeated elements are chosen from the 
second parent. Conversely, the second offspring 
is constructed by selecting the first part of this 
offspring from the second parent, and the 
second part of the second offspring is 
completed from the first parent. To illustrate the 
crossover process, two parents are presented in 
Figure 5. 

 

 

 

 

 

 

 

 

Figure 5: Crossover Process 

Firstly, elements (1, 3, 7, 4) are chosen from 
Parent 1 to start Offspring 1, then the rest of the 
elements are completed from Parent 2 as shown 
in Figure 5(a). Similarly to Figure 5(b), 
Offspring 2 is constructed, but this time the first 
part of Offspring 2 is picked from Parent 2 (2, 
5, 7, 4), while the rest of the elements of 
Offspring 2 are completed from non-repeated 
elements of Parent 1. The mutation operator is 
the second process which usually applied to 
explore the search space of the GA. In the 
mutation process, two elements are selected 
from a solution that is chosen randomly from 
the population. These two elements are swapped 
with each other to create the new solution. 
Figure 6 demonstrates the mutation operator 
where the two elements 4 and 5 are chosen from 
the solution as in Figure 6(a) and then swapped 
to create the new solution in Figure 6(b). 

 

 

                Figure 6: Mutation Process 

All the above operations are executed 
repeatedly, and the GA terminates when the 
best solution among generations is achieved. 
The termination of the GA processes is based 
on a specific stopping criterion, which for the 
VRPB we use a large number of generations. 

5 Computational experiments 

A computational experiments are illustrated in 
this section for randomly generated instances. 
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In these instances, an approximated random 
geographical information is simulated for a 
single depot and a group of linehaul and 
backhaul customers. The distances between the 
central depot and customers, and also between 
customers, are rescaled approximately. A 
variant number of linehauls and bachauls orders 
and fleets are considered for the pickup and 
delivery. Both solution methods are coded in 
MATLAB R2017b and executed by CPLEX 
12.6.1. To tackle randomness, the instances of 
the GA are solved for an average of 25 times. 

Table 3: Results for solving examples by AILP 
and GA. 

# 

Number& 

Type 

 of orders 

# Fleet 

Tota
l 
cost 

CPU 
(%) 
Gap  

of 

Or. Li. Ba. ava. us. time 

GA 

 
from 
MILP 

MILP solution 

5 3 2 2 2 347 0:11 - 

  2 3   2 329 0:11 - 

  3 2   1 364 0:12 - 

  2 3   2 372 0:12 - 

  3 2   1 389 0:11 - 

10 5 5 4 3 585 0:43 - 

  6 4   3 577 0:42 - 

  5 5   2 564 0:43 - 

  4 6   3 553 0:43 - 

  5 5   2 521 0:44 - 

15 8 7 6 4 864 0.06
389 - 

  7 8   4 821 0.06
528 - 

  9 6   3 833 0.05
764 - 

  6 9   3 822 0.06
389 - 

  8 7   3 810 0.05
833 - 

20 10 10 8 5 1124 2:23 - 

  11 9   6 1215 2:25 - 

  12 8   5 1182 2:26 - 

  9 11   6 1195 2:24 - 

  8 12   5 1204 2:23 - 

30 15 15 10 8 1524 3:41 - 

  16 14   7 1489 3:55 - 

  17 13   8 1567 0.17
014 - 

  14 16   7 1534 3:44 - 

  13 17   8 1566 0.18
403 - 

GA solution 

5 3 2 2 2 387 0:18 11% 

  2 3   2 372 0:19 13.1
0% 

  3 2   1 392 0:18 7.70
% 

  2 3   2 402 0:19 8.10
% 

  3 2   1 413 0:18 6.20
% 
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10 5 5 4 3 643 0:24 9% 

  6 4   3 639 0:21 10.7
0% 

  5 5   2 625 0:20 10.8
0% 

  4 6   3 618 0:21 11.7
0% 

  5 5   2 587 0:24 12.6
0% 

15 8 7 6 4 924 0:33 7% 

  7 8   4 911 0:34 11% 

  9 6   3 917 0:37 10.1
0% 

  6 9   3 915 0:34 11.3
0% 

  8 7   3 904 0:38 11.6
0% 

20 10 10 8 5 1216 0:44 8.20
% 

  11 9   6 1296 0:47 6.70
% 

  12 8   5 1287 0:42 8.80
% 

  9 11   6 1283 0:45 7.40
% 

  8 12   5 1305 0:43 8.40
% 

30 15 15 10 8 1684 0.04
375 

10.5
0% 

  16 14   7 1633 0.04
722 

9.70
% 

  17 13   8 1698 0.04
861 

8.30
% 

  14 16   7 1689 0.04
375 

10.1
0% 

  13 17   8 1695 0.04
306 

8.20
% 

 

5.1 Results for the AILP and GA 

We tested the cost gap of the solution of the GA 
approach from the solution obtained from 
solving the AILP model for small-sized 
instances. Different sizes of instances (5, 10, 15, 
20, 30) are tested using the AILP and GA as 
shown in Table 3. The number and type of 
orders are given in the first, second, and third 
columns of Table 3, in addition to the number 
of the fleet, which is illustrated in the fourth 
column.  

We can see from the result that the gap of the 
total cost obtained from the GA is higher than 
the solution obtained from the AILP by only 6-
13% of the real total cost of the delivery plan. 
The number of the used fleet for the AILP and 
GA is the same, which is approximated to the 
nearest integer number since the number of the 
used vehicles is the average of the fractional 
solution of the GA as we run each instance 25 
times. The computational times for the AILP 
are larger than the solution time of the GA for 
each instance. It is clear from the gap between 
the total cost of the GA solution from the AILP 
solution that the GA approach performs 
acceptably. This means that the developed GA 
approach is efficient in solving this type of 
problem. As we can see from the result in Table 
3, the AILP model in this case can only solve 
up to 30 orders because of the memory 
capacity. Thus, we develop the GA to solve 
larger instances. 
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5.2 Results for linehauls and bachauls cases 

As we found in the previous section that the 
AILP solved only 30 orders. Thus, we will only 
use the GA in this section to investigate the 
difference of using the two cases (linehauls and 
bachauls) separately and jointly. As shown in 
Table 4, a number of 20-50 linehaul and 
backhaul orders have been tested separately. 
Next, the two cases are combined to solve them 
jointly for up to 100 orders. The available fleet 
sizes for all these separate cases are between 8-
22 vehicles, while the available fleet for the 
joint cases is between 16-44 vehicles. As we 
mentioned before that we ran the GA solution 
25 times, thus, the values of the result in this 
case refer to the average of 25 values. As 
demonstrated in Table 4, the average total cost 
for the combined case is reduced by 9.5-12% 
than the summation of the two separated cases. 
At the same time, the used fleet is also reduced 
for the joint case compared to the summation of 
the two separated cases. For instance, in the 
example of 90 orders, servicing the two cases 
separately needs 13 vehicles for the linehaul 
orders and 12 vehicles for the backhaul orders. 
While for the joint case, just 21 vehicles are 
needed to execute the pickup and delivery for 
orders, which means that 4 vehicles will be 
saved in this case. It is noticed that the solution 
time to perform the joint cases is larger 
compared to the two separated and the reason is 
the large number of orders in the joint case. 

Table 4: Results for Separately and Jointly 
Linehaul and Backhaul Cases 

Or. # Fleet 
Mea

n of 
CPU 

Saving  

cost(%) 

av. us. 
total 

cost 
time 

 

20-
Li. 8 6 1117 3:45 

 

20-
Ba. 8 5 1084 3:47 

 

40-
Sep. 

  
2201 0.31

389 
 

40-
Joi. 16 9 1987 0.35

208 10.80% 

25-
Lin. 12 6 1215 0.18

958 
 

25-
Ba. 12 7 1185 0.19

097 
 

50-
Sep. 

  
2400 0.35

278 
 

50-
Joi. 24 10 2191 8:45 9.50% 

30-
Lin. 14 7 1321 4:27 

 

30-
Ba. 14 7 1294 4:32 

 

60-
Sep. 

  
2615 8:59 

 

60-
Joi. 28 12 2344 9:37 11.60% 

35-
Lin. 16 8 1514 5:57 

 

35-
Ba. 16 9 1487 5:46 

 

70-
Sep. 

  
3001 11:0

3 
 

70-
Joi. 32 15 2723 12:0

7 10.20% 
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40-
Lin. 18 11 1690 0.30

347 
 

40-
Ba. 18 10 1710 0.29

583 
 

80-
Sep. 

  
3400 13.4

3 
 

80-
Joi. 36 17 3052 14:5

4 11.40% 

45-
Lin. 20 13 1823 7:33 

 

45-
Ba. 20 12 1793 7:45 

 

90-
Sep. 

  
3616 0.63

75 
 

90-
Joi. 40 21 3228 0.66

736 12% 

50-
Lin. 22 14 2023 0.37

639 
 

50-
Ba. 22 15 1989 0.38

264 
 

100-
Sep. 

  
4012 17:3

3 
 

100-
Joi. 44 24 3605 0.80

625 11.20% 

6 Conclusions 

In this paper, we investigated the delivery of 
linehauls and backhauls cases by a fleet of 
vehicles. An assignment integer linear 
programming model is formulated to solve this 
type of problem. This mathematical model 
solves only limited-sized instances. Thus, an 
evolutionary genetic algorithm approach is also 
developed to solve large-sized instances. The 
procedures of the genetic algorithm have been 
designed to fit this type of problem. The result 

shows that the gap of the total cost between the 
solution obtained from the assignment integer 
linear programming model and the genetic 
algorithm solution is small, which suggests that 
this type of evolutionary algorithm is efficient 
to solve the problem. Both cases of the 
linehauls and backhauls are investigated 
separately and jointly, and the result shows that 
it is worthwhile to combine the linehauls and 
backhauls cases in this type of delivery a cost 
savings. As a future work, other heuristic or 
even meta-heuristic approaches can be applied 
to this type of vehicle routing problem, and the 
result may be improved from this work or even 
past work. 
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