
system. In this case, we refer to the ability of the
model to maintain reliable and constant performance,
even in the face of variations in input data or
disturbances. Ensuring the stability of an AI system
requires continuous attention to various aspects, from
training to operational robustness (Caramanis et al.,
2012; Qiu et al., 2016).
References:
[1] Bengio, Y., Lecun , Y., & Hinton, G. (2021).
Deep learning for AI. Communications of the ACM ,
64 (7), 58-65.
[2] Bishop, C. M. (2006). Pattern recognition and
machine learning. Springer google schola, 2, 1122-
1128.
[3] Boyd, S., & Vandenberghe, L. (2018).
Introduction to applied linear algebra: vectors,
matrices, and least squares . Cambridge University
Press.
[4] Calonge, D. S., Smail, L., & Kamalov, F. (2023).
Enough of the chit-chat: A comparative analysis of
four AI chatbots for calculus and statistics. Journal
of Applied Learning and Teaching , 6 (2).
[5] Caramanis, C., Mannor, S., & Xu, H. (2012). 14
Robust Optimization in Machine
Learning. Optimization for Machine Learning, 369.
[6] Carney , M., Webster, B., Alvarado, I., Phillips,
K., Howell, N., Griffith, J., ... & Chen, A. (2020,
April). Teachable machine: Approachable Web-
based tool for exploring machine learning
classification. In Extended abstracts of the 2020 CHI
conference on human factors in computing systems
(pp. 1-8).
[7] Chiu , T. K., Xia, Q., Zhou, X., Chai, C. S., &
Cheng, M. (2023). Systematic literature review on
opportunities, challenges, and future research
recommendations of artificial intelligence in
education. Computers and Education: Artificial
Intelligence , 4 , 100118.
[8] Deisenroth , M. P., Faisal, A. A., & Ong, C. S.
(2020). Mathematics for machine learning .
Cambridge University Press.
[9] Fitzpatrick, P. M. (2009). Advanced Calculus,
Pure and Applied Undergraduate Texts vol. 5.
American Mathematical Society, Providence .
[10] García Planas, M. I. (2019). Analyzing
Controllability of dynamical systems modelling brain
Neural Networks. WSEAS transactions on
systems, 18, 304-312.
[11] Gelman, A., Vehtari, A., Simpson, D.,
Margossian, C. C., Carpenter, B., Yao, Y., ... &
Modrák, M. (2020). Bayesian workflow. arXiv
preprint arXiv:2011.01808.
[12] Ghada, A. R., Mamat, R. B., & Rawashdeh, J.
H. (2021). Evaluation of the Performance for Popular
Three Classifiers on Spam Email without using FS
Methods. WSEAS Transactions on Systems and
Control, 16, 121-132.
[13] Goodfellow, I., Bengio, Y., & Courville, A.
(2016). Deep learning . MIT press.
[14] Hastie, T., Tibshirani , R., Friedman, J. H., &
Friedman, J. H. (2009). The elements of statistical
learning: data mining, inference, and prediction
(Vol. 2, pp. 1-758). New York: Springer.
[15] Janiesch , C., Zschech , P., & Heinrich, K.
(2021). Machine learning and deep learning.
Electronic Markets , 31 (3), 685-695.
[16] Koller, D., & Friedman, N. (2009). Probabilistic
graphical models: principles and techniques. MIT
press.
[17] Lane, D. (2021). Machine learning for kids: A
project-based introduction to artificial intelligence .
No Starch Press.
[18] Luckin , R., George, K., & Cukurova , M.
(2022). AI for school teachers . CRC Press.
[19] Lv, T., Yan, P., Yuan, H., & He, W. (2020,
June). Spam filter based on naive Bayesian classifier.
In Journal of Physics: Conference Series (Vol. 1575,
No. 1, p. 012054). IOP Publishing.
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2024.4.15