
the geometric Cesàro sequence space and establish
the relevant matrix transformations. Since the theory
of sequence space and geometric calculus is quite
active and has extensive applications, we believe
many researchers will use our newly acquired results
for future works and applications in related fields.
References:
[1] D. Aniszewska and M. Rybaczuk, Analysis of
the multiplicative Lorenz system, Chaos
Solitons Fractals, 25, 2005, 79–90.
[2] K. Boruah and B. Hazarika, On some
generalized geometric difference sequence
spaces, Proyecciones Journal of Mathematics,
36(3), 2017, 373-395.
[3] K. Boruah and B. Hazarika, Topology on
geometric sequence spaces, Springer Nature
Singapore Pte Ltd., S. A. Mohiuddine et al.
(eds.), Approximation theory, sequence spaces
and applications, Industrial and Applied
Mathematics, 2022.
https://doi.org/10.1007/978-981-19-6116-8
[4] A. F. Çakmak and F. Başar, Some new results
on sequence spaces with respect to non-
Newtonian calculus, Journal of Inequalities
and Applications, 228, 2012, 1-12.
[5] N. Değirmen, Non-Newtonian approach
to algebras, Communications in Algebra,
50(6), 2022, 2653-2671.
[6] C. Duyar and M. Erdoğan, On non-Newtonian
real number series, IOSR Journal of
Mathematics, 12(6), 2016, 34-48.
[7] D. Filip and C. Piatecki, A non-Newtonian
examination of the theory of exogenous growth,
Mathematica Aeterna, 4, 2014, 101-117.
[8] L. Florak and H.V. Assen, Multiplicative
calculus in biomedical image analysis, J. Math.
Imaging Vis., 42(64), 2012, 64–75.
[9] N. Güngör, A note on linear non-Newtonian
Volterra integral equations, Mathematical
Sciences, 16, 2022, 373-387.
[10] N. Güngör, Some geometric properties of the
non-Newtonian sequence spaces , Math.
Slovaca, 70(3), 2020, 689-696.
[11] M. Grossman and R. Katz, Non-Newtonian
calculus, Pigeon Cove Massachusetts: Lee
Press, 1972
[12] U. Kadak, On multiplicative difference
sequence spaces and related dual properties,
Bol. Soc. Paran. Mat., 35(3), 2017, 181-193.
[13] U. Kadak, Cesàro summable sequence spaces
over the non-Newtonian complex field,
Journal of Probability and Statistics, Volume
2016, Article ID 5862107, 10 pages
http://dx.doi.org/10.1155/2016/5862107
[14] M. Kirişci, Topological structures of non-
Newtonian metric spaces, Electronic Journal
of Mathematical Analysis and Applications,
5(2), 2017, 156-169.
[15] G.M. Leibowitz, A note on the Cesàro
sequence spaces, Tamkang J. Math., 2, 1971,
151-157.
[16] S.K. Mahto, A. Manna and P. D. Srıvastava,
Bigeometric Cesàro difference sequence
spaces and Hermite interpolation, Asian-
European Journal of Mathematics, 13(4),
2020.
https://doi.org/10.1142/S1793557120500849
[17] O. Ogur and Z. Gunes, A Note on non-
Newtonian Isometry, WSEAS Transactions on
Mathematics, 23, 2024, 80-86.
[18] O. Ogur and Z. Gunes, Vitali Theorems in
Non-Newtonian Sense and Non-Newtonian
Measurable Functions, WSEAS Transactions
on Mathematics, 23, 2024, 627-632.
[19] K. Raj and C. Sharma, Applications of non-
Newtonian calculus for classical spaces and
Orlicz functions, Afrika Mathematica, 30,
2019, 297-309.
[20] M. Rybaczuk and P. Stoppel, The fractal
growth of fatigue defects in materials, Int. J.
Fract., 103, 2000, 71–94.
[21] W. Sanhan and S. Suantai, Some geometric
properties of Cesaro sequence spaces,
Kyungpook Math. J, 43, 2003, 191-197.
[22] B. Sağır and İ. Eyüpoğlu, Some geometric
properties of Lebesgue sequence spaces
according to geometric calculation style,
GUFBD / GUJS, 12(2), 2022, 395-403.
[23] B. Sağır and F. Erdoğan, On the function
sequences and series in the non-Newtonian
calculus, Journal of Science and Arts, 4(49),
2019, 915-936.
[24] J. S. Shiue, On the Cesàro sequence spaces,
Tamkang Journal of Mathematics, 1, 1970, 19-
25.
[25] S. Suantai, On the H-property of some Banach
sequence spaces, Archivum Mathematicum,
39(4), 2003, 309-316.
[26] D.F.M. Torres, On a non-Newtonian calculus
of variations, Axioms, 10, 171, 2021, 1-15.
https://doi.org/10.3390/axioms10030171
[27] C. Türkmen and F. Başar, Some basic results
on the sets of sequences with geometric
calculus, Commun. Fac. Sci.Univ. Ank. Series
A1, 61(2), 2012, 17-34.
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2024.4.13
Meli
sa Ti
fti
kçi
er, Ni
han Güngör