
lim
n→∞
F2((vn+m, vn, t) = 1
Therefore {un}is a Cauchy sequence in
(U1, F1∗)and {vn}is a Cauchy sequence in
(U2, F2,∗).
But (U1, F1,∗)and (U2, F2,∗)are complete
fuzzy b-metric spaces, so there exists u∈U1
and v∈U2such that for each t > 0
lim
n→∞
F1(un, u, t)=1and lim
n→∞
F2(vn, v, t) = 1.
Hence {(un, vn)}converges to (u, v)in U1×U2.
Therefore (U1×U2, F, ∗)is a complete fuzzy b-
metric space.
Conversely, suppose that (U1×U2, M, ∗)is com-
plete.
We will show that (U1, F1,∗)and (U2, F2,∗)are
complete.
Let {un}and {vn}be Cauchy sequences in
(U1, F1,∗)and (U2, F2,∗), respectively.
Then F1(um+n, un, t)converges to 1and
F2(vm+n, vn, t)converges to 1for each t > 0
and m > 0. It follows that
lim
n→∞
F((un+m, vn+m),(un, vn), t)
= [ lim
n→∞
F1((un+m, un, t)·lim
n→∞
F2((vn+m, vn, t)]
converges to 1.
Thus {(un, vn)}is a Cauchy sequence in U1×U2.
Since (U1×U2, F, ∗)is complete, there exists
(u, v)∈U1×U2such that F((un, vn),(u, v), t)
converges to 1, as lim n→ ∞.
Clearly, F1(un, u, t)converges to 1and
F2(vn, v, t)converges to 1.
Hence, (U1, F1,∗)and (U2, F2,∗)are complete.
Theorem 3.6 Let ube a limit point of {un}in
a fuzzy b-metric space (U1, F1,∗)and u0be a
limit point of {u0
n}in a fuzzy b-metric space
(U2, F2,∗). Where ∗is a continuous t-norm, and
(u, u0)is the point of limit (un, u0
n)in the fuzzy
b-metric space (U1×U2, F, ∗).
Proof: The space (U1×U2, F, ∗)is fuzzy b-
metric space then by above Theorem (3.5).
Since ube a limit of (un), thus for all t > 0,
limn→∞ F1(un, u, t) = 1 and since u0be a limit
of (u0
n), thus limn→∞ F2(u0
n, u0, t) = 1. Now for
all t > 0,
lim
n→∞
F((un, u0
n),(u, u0), t)
= lim
n→∞
F1(un, u, t).
lim
n→∞
F2(u0
n, u0, t)
= 1.1 = 1.
Hence F((un, u0
n),(u, u0), t)=1, which gives
(u, u0)is the limit point of (un, u0
n).
4 Completeness of U1×U2with F=
F1∧F2
Here we introduce the fuzzy b- metric space in
terms of the minimum t-norm ∧. All the proper-
ties of fuzzy b-metric space are remained same,
only the triangle inequality is redefined as:
F(u, v, k(s+t)) ≥F(u, w, s)∧F(w, v, t)for
each t, s > 0, where ∧is the minimum of
F(u, v, s)and F(w, v, t).
Then we will show that the Cartesian product of
two fuzzy b-metric spaces is a fuzzy b- metric
space and the properties of convergent sequence
and Cauchy sequence in terms of the ordered pair
in fuzzy b-metric space are established by using
the the minimum triangular norm ∧.
Theorem 4.1 If (U1, F1,∗)and (U2, F2,∗)are
fuzzy b-metric spaces. If there exists k≥1, then
(U1×U2, F, ∗)is a fuzzy metric space by defining
F((u1, v1),(u2, v2), t) = F1(u1, u2, t)∧F2(v1, v2, t).
Proof: Let (u1, v1),(v2, y2),(u3, v3)∈U1×U2:
(i) Let t≥0, we have F1(u1, u2, t) = 0 and
F2(v1, v2, t) = 0. Hence,
F((u1, v1),(u2, v2), t)=0.
F1(u1, u2, t) = 1 for each t > 0⇐⇒ u1=
u2, and F2(v1, v2, t)=1for each t > 0⇐⇒
v1=v2.
Together with,
[F1(u1, u2, t)∧F2(v1, v2, t)] = 1
for t > 0⇐⇒ u1=u2and v1=v2. That is,
F((u1, v1),(u2, v2), t) = 1
⇐⇒ (u1, v1) = (u2, v2).
(iii) F1(u1, u2, t) = F1(u2, u1, t)and
F2(v1, v2, t) = F2(v2, v1, t)Now for each t > 0,
F((u1, v1),(u2, v2), t)=[F1(u1, u2, t)∧F2(v1, v2, t)]
= [F1(u2, u1, t)∧F2(v2, v1, t)]
=F((u2, v2),(u1, v1), t).
(iv) F1(u1, u2, k(s+t)) ≥[F1(u1, u3, s)∗
F1(u3, u2, t)] for each s, t > 0.
Also, F2(v1, v2, k(s+t)) ≥[F2(v1, v3, s)∗
F2(v3, v2, t)] for each s, t > 0. Now for each
t > 0,
F((u1, v1),(u2, v2), k(s+t))
= [F1(u1, u2, k(s+t)]
∧F2(v1, v2, k(s+t))
≥[F1(u1, u3, s)∗F1(u3, u2, t)
∧F2(v1, v3, s)∗F2(v3, v2, t)]
≥[F1(u1, u3, s)∧F2(v1, v3, s)] ∗[F1(u3, u2, t)∧
F2(v3, v2, t)]
≥[F((u1, v1),(u3, v3), s)∗F((u3, v3),(u2, v2), t)].
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2024.4.10
Thaneshwar Bhandari,
K. B. Manandhar, Kanhaiya Jha