
34. (4,5) ≡
((5,2)+(4,2)+(0,2)+(1,2)+(0,4));
35. (4,6) ≡ ((2,2)+(3,2)+(5,2));
36. (5,0) ≡ ((0,2)+ (1,2)+ (0,4)+
(2,2)+(3,2)+(5,2));
37. (5,1) ≡ ((0,4)+ (2,2)+(3,2));
38. (5,2) ≡ (5,2);
39. (5,3) ≡ ((4,2)+(0,2)+(1,2)+(0,4));
40. (5,4) ≡ ((2,2)+(3,2));
41. (5,5) ≡ ((1,2)+ (0,4)+
(2,2)+(3,2)+(5,2));
42. (5,6) ≡ ((4,2)+(0,2)+(1,2));
The calculation procedures form m1 × m2 = 6×7
grid, embracing a two-dimensional (t=2) toroid
surface as being a coordinate system, where each
point node from (0,0) to (5,6) occurs exactly once
(R=1).
The second of the paired GUS-configurations
{(4,2), (1,2), (2,2), (5,2), (3,2), (0,4), (0,2)} (color
broken line) forms the same set of sums, taking 2D
modulo (mod 6, mod 7):
1. (0,0) ≡
((0,4)+(0,2)+(4,2)+(1,2)+(2,2)+(5,2));
2. (0,1) ≡ ((4,2)+(1,2)+(2,2)+(5,2));
3. (0,2) ≡ (0,2);
4. (0,3) ≡ ((0,2)+(4,2)+(1,2)+(2,2)+(5,2));
5. (0,4) ≡ (0,4);
6. (0,5) ≡ ((5,2)+(3,2)+(0,4)+(0,2)+(4,2));
7. (0,6) ≡ ((0,4)+(0,2));
8. (1,0) ≡
((5,2)+(3,2)+(0,4)+(0,2)+(4,2)+(1,2);
9. (1,1) ≡ ((0,2)+(4,2)+(1,2)+(2,2));
10. (1,2) ≡ (1,2);
11. (1,3) ≡ ((3,2)+(0,4)+(0,2)+(4,2));
12. (1,4) ≡ (2,2)+(5,2));
13. (1,5) ≡
((0,4)+(0,2)+(4,2)+(1,2)+(2,2));
14. (1,6) ≡((4,2)+(1,2)+(2,2));
15. (2,0) ≡ ((2,2)+
(5,2)+(3,2)+(0,4)+(0,2)+(4,2));
16. (2,1) ≡ ((5,2)+(3,2+(0,4));
17. (2,2) ≡ (2,2);
18. (2,3) ≡ ((5,2)+(3,2)+(0,4)+(0,2));
19. (2,4) ≡ ((5,2)+(3,2));
20. (2,5) ≡ (3,2)+(0,4)+(0,2)+(4,2)+(1,2);
…………………………………………………
42. (5,6) ≡ ((0,2)+(4,2)+(1,2)).
We observe either of the GUS-configurations
{(4,2), (0,2), (1,2), (0,4), (2,2), (3,2), (5,2)} (black
ring line) and {(4,2), (1,2), (2,2), (5,2), (3,2), (0,4),
(0,2)} (color broken line) forms m1 × m2 = 6×7 grid,
embracing toroid surface as 2-D coordinate system.
Here's another example of paired seven-pointed
(n=7) GUS configurations.{(1,1), (1,3), (1,5), (1,0),
(1,2), (1,4), (1,6)} (ring cycle), and {(1,1), (1,5),
(1,2), (1,6), (1,3), (1,0), (1,4)} (star cycle) presents
in Fig.3.
Fig.3: Paired seven-pointed (n=7) GUS-
configurations, namely the {(1,0), (1,2), (1,4), (1,6),
(1,1), (1,3), (1,5)} (ring cycle), and {(1,0), (1,4),
(1,1), (1,5), (1,2), (1,6), (1,3)} (star cycle).
GUS-configuration {(1,1), (1,3), (1,5), (1,0), (1,2),
(1,4), (1,6)} (ring cycle) forms the set of 2-D
vector sums (clockwise), taking 2-D modulo (6, 7):
1. (0,0) ≡
((1,2)+(1,4)+(1,6)+(1,1)+(1,3)+(1,5));
2. (0,1) ≡ ((1,1)+(1,3)+ (1,5)+(1,0)+
(1,2)+(1,4));
3. (0,2) ≡
((1,0)+(1,2)+(1,4)+(1,6)+(1,1)+(1,3));
4. (0,3) ≡ ((1,6)+ (1,1)+
(1,3)+(1,5)+(1,0)+ (1,2));
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2024.4.7