
using a hybrid intelligent method’, IET Renew.
Power Gener., 2017, 11, (5), pp. 678–687
[16] Kalmikov, A. Wind Power Fundamentals, In book:
Wind Power Engineering, December 2017,
10.1016/B978-0-12-809451-8.00002-3
[17] Kemeny, J. G. & Snell, J. L. Finite Markov
Chains, © 1976, ISBN 0-387·90192-2 Springer-
Verlag New York
[18] Laslett, D., Creagh, C., Jennings, P. A simple
hourly wind power simulation for the south-west
region of western Australia using MERRA data,
Renew. Energy, 2016, 96, pp. 1003–1014
[19] Lopes, V. V., Scholz, T., Estanqueiro, A. &
Novais, A. Q. On the use of Markov chain models
for the analysis of wind power time-series, 11th
International Conference on Environment and
Electrical Engineering (2012), pp 770 – 775.
https://doi.org/10.1109/EEEIC.2012.6221479
[20] Power Technology – World’s most used renewable
power sources – last updated July 28, 2020, 21:11.
https://www.powertechnology.com>features>featur
e... Accessed August 1, 2021
[21] Renewable power – Center for Climate and Power
Solutions –
http://c2es.org>content>renewablepower. Accessed
August 1, 2021
[22] Renewable power statistics – Statistics explained.
https://ec.europa.eu>statistics-explained>index.php
Accessed August 1, 2021
[23] Saporu, F. W. O. and Gongsin, I. E. Wind Power
Potential of Maiduguri, Borno State, Nigeria,
International Journal of Science and Research
(IJSR), Volume 6 Issue 8, pp. 1020 – 1024, August
2017. https://doi.10.21275/ART20175442
[24] Shamshad, A., Bawadi, M.A., Hussin, W.M.A.W.,
et al.: ‘First and second order Markov chain models
for synthetic generation of wind speed time series’,
Energy, 2005, 30, (5), pp. 693–708
[25] Singh, D., Dwight, R., and Viré, A. Probabilistic
surrogate modeling of damage equivalent loads on
onshore and offshore wind turbines using mixture
density networks, Wind Energy Science
Discussions (Started March 6, 2024)
https://doi.org/10.5194/wes-2024-20
[26] Szubartowski, M., Migawa, K.. Borowski, S.,
Neubauer, A., Hujo, L., and Kopiláková, B.
Application of the Semi-Markov Processes to
Model the Enercon E82-2 Preventive Wind Turbine
Maintenance System. Energies 2024, 17, 199.
https://doi.org/10.3390/en17010199
[27] Tagliaferri, F., Hayes, B.P., Viola, I.M., et al.:
‘Wind modelling with nested Markov chains’, J.
Wind Eng. Ind. Aerodyn., 2016, 157, pp. 118–124
[28] Tastu, J., Pinson, P., Trombe, P.J., et al.
Probabilistic forecasts of wind power generation
accounting for geographically dispersed
information, IEEE Trans. Smart Grid, 2014, 5, (1),
pp. 480–489
[29] Tina, G. and Gagliano, S. (2008), Probability
Analysis of Weather Data for Power Assessment of
Hybrid Solar/Wind Power Systems, 4th
IASME/WSEAS International Conference on
Power, Environment Ecosystems and Sustainable
Development (EEESD ’08). Algarve, Portugal,
June 11 – 13, 2008
[30] US Department of Energy – Land Based Wind
Market Report: 2022 Edition
[31] Wang, C.-H., Zhao, Q., and Tian, R. Short-Term
Wind Power Prediction Based on a Hybrid Markov-
Based PSO-BP Neural Network. Energies 2023, 16,
4282. https://doi.org/10.3390/en16114282
[32] Yongning, Z., Lin Y., Zheng, W., Linlin, W.,
Bingxu. Z., Haibo, L. and Shihui. Y. (2019) Spatio-
temporal Markov chain model for very short-term
wind power forecasting, J. Eng., 2019, Vol. 2019
Iss. 18, pp. 5018-5022.
http://creativecommons.org/licenses/by-nc/3.0/
[33] Zhao, F., 2020 – A record year for the wind
industry In: Global Wind Report 2021, pp.6,
GWEC
[34] Zhao, Y., Ye, L., Pinson, P., et al. Correlation-
Constrained and sparsity controlled vector
autoregressive model for spatio-temporal wind
power forecasting, IEEE Trans. Power Syst., 2018,
33, (5), pp. 5029 – 5040.
https://doi.org:10.1109/TPWRS.2018.2794450
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2024.4.1
Gongsin Isaac Esbond,
Funmilayo W. O. Saporu