
Synthesis of Singular Systems Walsh and Walsh-like
Functions of Arbitrary Order

ANATOLY BELETSKY MIKOLAJ KARPINSKI
Department of Electronics Department of Cyber Security

National Aviation University University of the National Education Commission
1, Ave. Liubomyra Huzara, Kyiv 2, St. Podchorazych, Krakow

UKRAINE POLAND

ARSEN KOVALCHUK DMYTRO POLTORATSKYI
Department of Electronics Department of Electronics
National Aviation University National Aviation University

1, Ave. Liubomyra Huzara, Kyiv 1, Ave. Liubomyra Huzara, Kyiv
UKRAINE UKRAINE

Abstract: - Functionally complete systems of Walsh functions (bases), a particular case of alternating piecewise
constant sequential functions, are widely used in various scientific and technological fields. As applied to the
tasks of spectral analysis of discrete signals, the most interesting are those Walsh bases that deliver linear
coherence of the frequency scales of fast Fourier transform (FFT) processors. By the frequency scales of an
FFT processor, we mean the scale on which the normalized frequencies of the input signal are arranged (input
scale) and the scale on which the signal's spectral components are arranged (output scale). The frequency scales
of the FFT processor are considered linearly coherent if the processor responses with maximum amplitudes and
phases of the same sign are located on the bisector of the Cartesian coordinate system formed by the frequency
scales of the processor. None of the known Walsh bases ordered by Hadamard, Kaczmage, or Paley provide
linear coherence of the frequency scales of the FFT processor. In this study, we develop algorithms to
synthesize two systems, called Walsh-Cooley and Walsh-Tukey systems, which turn out to be the only ones in
the set of classical Walsh systems and sequents Walsh-like systems, respectively, that deliver linear coherence
to the frequency scales of FFT processors.
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1 Introduction
In the theory and practice of spectral analysis of
discrete signals on finite intervals [1, 2], noise-
resistant coding and compression of audio and video
data [3, 4, 5], cryptography protection of information
[6, 7], in cellular communication channels [8] and
other fields of science and technology [9, 10, 11]
functionally complete systems of Walsh functions
(for simplicity - Walsh systems), which are a
particular case of systems of alternating piecewise
constant sequential functions [12], are widely used.
These publications cover a range of applications,
from signal processing, machine learning, encryption,

and medical diagnostics. These can involve advanced
mathematical functions like those discussed in
synthesizing singular systems using Walsh and
Walsh-like functions.

A Walsh system is a set of orthogonal functions
taking values +1 and 1- over the entire domain of
definition 2 nN = , where n is a natural number. The
number of features included in a Walsh system is
usually equal to the number of samples N of the
signal since, in discrete spectral analysis, the number
of harmonics must also be equal to N. The
convenient way to represent these systems is to show
them in square matrices (we will also call them
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Walsh matrices), in which each row is a Walsh
function, and for simplicity, instead of the values of
the elements 1+ and 1- , write only their signs + or
- . The rows of Walsh matrices are numbered from
top to bottom, and the columns from left to right,
starting from zero. The row number determines the
order of the Walsh function in the system and is
further denoted by the symbol k.

The completeness of Walsh systems implies that
on the definition interval N, it is impossible to
introduce any additional function that would be
orthogonal simultaneously to all other functions
already included in the system [3]. A complete
system of Walsh functions forms a basis of Walsh
space, each function being called a basis function of
the system of the corresponding order. Walsh
systems are formed from basis functions in such a
way that they (functions) form a symmetric matrix of
order N. Matrix symmetry is achieved by the
appropriate ordering of Walsh basis functions.

So far, only three orderings have found use: by
Hadamard, Walsh, and Paley [13]. The enumerated
Walsh systems will be called canonical systems.
Hadamard proposed the first ordering in 1893 in
connection with studies on the theory of
determinants [14]. For example, the Walsh-
Hadamard system (matrix) NH of the eighth order
has the form.
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where the parameters , 0, 1k t N= - , define the order
k of the basis function ( , )h k t , coinciding with the
matrix’s row number and the normalized discrete
time t, respectively.

The simplicity of forming Hadamard-ordered
Walsh function systems [15, 16] has made them
particularly convenient for implementing the fast
Fourier transform (FFT) algorithm using the Cooley-
Tukey scheme [17].

In 1923, Walsh proposed a system in which the
Hadamard basis functions { }( , )N w k t=W , were
ordered by the number of sign changes [18]. Later
(1948), the NW systems were called Walsh-
Kaczmage systems [19]. In particular
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Finally, in 1932, Paley developed [20] another
way of ordering the Hadamard basis functions, which
was reduced to the binary-inverse permutation (BIP)
of binary numbers of Walsh-Hadamard functions.
Subjecting the basis functions of the matrix (1) to
BIP, we arrive at the system of Walsh-Paley
functions of the eighth order.
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Matrices NP of arbitrary order 2 nN = , can be
compiled using a simple recurrence rule [3], the
essence of which is reduced to the following
transformations. Each row of the matrix /2NP is
written twice, and then to the first of them (let us call
it even), the elements of the same row are assigned
from the right, i.e., the elements of the right half of
the even row repeat the elements of its left half, and
to the second (odd row) － the opposite
(complementary) elements. Let us call the above
method of forming Walsh-Paley function systems a
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repeated-complementary algorithm or, for short, an
R.C. algorithm.

In many applications, the Walsh-Paley systems
proved preferable to the previously obtained
Hadamard and Kaczmage systems. For this reason,
the Walsh-Paley function systems NP are reference
systems in the sense that by the appropriate
permutation of the numbers k of basis functions of
these systems, one can obtain the matrices of all
remaining classical Walsh systems [21], the total
number of which nL the relation determines.

( )
1
2 (mod 2)

n
i

n
i

L i
=

= - . (3)

For some values of n, the estimates nL calculated
in formula (3) are given in Table 1.

Table 1. Number of symmetric
systems of Walsh functions

n 1 2 3 4 5
N 2 4 8 16 32

1 4 28 448 13ˈ888
n 6 7 8
N 64 128 256

888ˈ832 112ˈ881ˈ664 28ˈ897ˈ705ˈ984

Along with the most common way of representing
the elements of Walsh matrices in the form + and - ,
coded matrices are often used. In these matrices, the
"plus" sign is replaced by the digit 0 and the "minus"
by the digit 1, thus transferring Walsh systems from
the space of originals to the space of images. As a
result of such substitution, the matrix (2), for
example, takes the form (4).
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0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1
2 0 0 1 1 0 0 1 1
3 0 0 1 1 1 1 0 0
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7 0 1 1 0 1 0 0 1
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The transition from the original space to the image
space is accompanied by replacing the bitwise
multiplication operations by modulo 2 bitwise
addition operations.
The main disadvantage of the R.C. algorithm for

synthesizing systems of Paley functions is that the
calculation of the matrix of the order 12 n+ must
precede the computation of the matrix of the order
2 n . An alternative to the recurrent R.C. algorithm is
the empirically established [21] algorithm for direct
computation of basis functions of Paley systems,
hereafter referred to as the D.C. algorithm. The
essence of the estimation scheme of the D.C.
algorithm for the system of Paley basis functions in
image space is as follows. Irrespective of the
ordering method, the elements of the null order
functions in any Walsh system are equal to 0, i.e.,

( )0, 0p t = . (5)

The elements of the first-order basis functions,
called generating functions of Walsh-Paley systems,
are defined by the expression

( ) 0, 0, / 2 1
1,

1, / 2, 1

t N
p t

t N N

= -
=

= -
. (6)

Expressions (5) and (6) are the initial conditions
of the Walsh-Paley system synthesis algorithm,
which directly follow from the matrix (4), and if

1k , then the relations hold:

( ) ( )( )2 , , 2 Np k t p k t= (7)

– even and

( ) ( ) ( )2 1, 2 , 1,p k t p k t p t+ =

– odd basis functions.
In the right part of equality (7), the notation

( )2 Nt means calculating the remainder of a number

2t modulo N.
The systems of Walsh functions, which we denote

{ }( , ) ,k tj are widely used as bases for the discrete

Fourier transform (DFT). The spectrum ( )m k&X of
the complex discrete signal ( )mx t& , formed by the
DFT processor in Walsh function basis, is defined by
the relation

1

0
( ) ( ) ( , ), (8)

N

m m
t

k x t k t
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= j&X
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in which N ̶ sample volume, m ̶ normalized input
signal frequency, k ̶ signal harmonic number, and t ̶
signal reference number (discrete time).

The amplitude-frequency and phase-frequency
characteristics (AFC and PFC) of DPF processors are
usually computed concerning a discrete exponential
signal (DES)

2( ) expmx t j mt
N
p

=& , , 0, 1m t N= - . (9)

For small values of N, spectrum estimation is
solved quite simply using the graph-analytical
method of calculation, the essence of which is shown
in Fig. 1 for the eight-point DPF based on Walsh-
Paley functions (2) when calculating, for example,
the harmonic 1(1)X& .

Fig. 1. To the definition of the harmonic 1(1)X&
in the basis of Walsh-Paley functions

The points in Fig. 1 mark the vectors of input
signals involved in the formation of the response

1(1)X& in the first output channel of the processor,
and the digits in the vicinity of these points indicate
the value of the time reference t of the first order
basis function (1, )p t . According to the matrix (2),

the vectors of the first four samples of signal 1( )x t&

are taken with a + sign and the remaining ( 4, 7)t =
with a ̶ sign.

FFT processors realized according to the Cooley-
Tukey scheme in different Walsh bases provide the
following characteristics of the spectrum of signal (9)
at integer frequencies. Firstly, the spectrum consists
of a set of pairs of harmonics, and in each pair, the
harmonics have the same amplitudes but opposite
signs of initial phases. Secondly, for all the above
Walsh bases, if an "even" signal (i.e., the frequency

m is even) is fed to the input of the FFT processor,
then only the even output channels of the processor
"ring," and vice versa.

The harmonics of the discrete complex-
exponential signal, whose sample size is eight, in the
Walsh-Paley function basis are given in Table 2 for
"odd" and Table 3 for "even" harmonics. The
complex values z& of the harmonics are denoted as
follows: ( , )z a b=& , where a and b are the real and
imaginary components of the vector z& , respectively.

Table 2. Odd harmonics of the
complex-exponential signals (9)

Table 3: The even harmonics of the
complex-exponential signal (9)

m (0)mX& (2)mX& (4)mX& (6)mX&

0 8 0 0 0
2 0 4(1, 1) 0 4(1, - 1)
4 0 0 8 0
6 0 4(1, - 1) -1) 0 4(1, 1)

Similar discrete complex-exponential signals
spectrum calculations can be performed for an
arbitrary Walsh basis.

Let us introduce the concepts of the frequency
scales of the FFT processor (as well as FFT). The
abscissa axis X of the Cartesian coordinate system,
on which we place the normalized frequencies m of
the input signal ( )mx t& , lets us call the input
frequency scale of the processor. The ordinate axis Y,
on which we will put the number of k output
channels of the processor, is designed to capture the
harmonic of the signal ( )mx t& , we will call the output
frequency scale of the processor.

m (1)mX& (3)mX&

1 2(1, 1 2)+ 2(1, 2 1)-

3 2(1 2, 1)+ - 2(1 2, 1)-

5 2(1, 1 2)- 2(1, 1 2)- -

7 2(1 2, 1)- - 2(1 2, 1)+

m 1(5)X& 1(7)X&

1 2(1, 1 2)- 2(1, 1 2)- -

3 2(1 2, 1)- - 2(1 2, 1)+

5 2(1, 1 2)+ 2(1, 2 1)-

7 2(1 2, 1)+ - 2(1 2, 1)-
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Selecting from the tables containing the complex
spectrum of the signal (9), harmonics with maximum
amplitude and positive phase, we plot the

relationship between the frequency scales m and k of
the eight-point DPF processors in Walsh bases
ordered by Hadamard, Kaczmage, and Paley (Fig. 2).

Hadamard Basis Kaczmage Basis Paley Basis

Fig. 2. Ratio of frequency scales of DFT processors in canonical Walsh bases

For plotting in Fig. 2, we chose harmonics with
positive phases because none of the harmonics with
negative phases in the canonical Walsh bases falls on
the bisector of the coordinate axes (m, k), which
significantly distorts the trajectory of the location of
points on the plane (X, Y), far from linear.

We will say that a specific basis provides the
frequency scales of the DFT processor with linear
coherence if the harmonics of the discrete complex-
exponential signal with maximum amplitude and
unchanging in sign phase are located on the bisector
of the right angle formed by the coordinate axes m
and k. Alternatively, in other words, the frequency
scales of the DFT processor are linearly coherent if,
when samples of a complex-exponential signal are
input to the input of the DFT processor, the
maximum "ringing" will be in the output channel
whose number k coincides with the frequency of the
input signal m. Linear coherence to the frequency
scales of the DFT processor is provided, for example,
by the basis of discrete exponential functions (DEF).

2 Statement of the Research Problem
As follows from the graphs presented in Fig. 2, none
of the three canonical Walsh bases, ordered by
Hadamard, Kaczmage, or Paley, provide linear
coherence to the frequency scales of DFT processors,
which complicates their application in spectrum
analysis oriented to the measurement of the
frequency of input signals. The mentioned
disadvantage of the canonical Walsh function
systems was the starting point that predetermined the
most critical problem solved in this study, namely,
the development of algorithms for the synthesis of
Walsh and Walsh-like bases (the definition of
Walsh-like bases is given in Section 4) that deliver

linear coherence to the frequency scales of DFT
processors. Such Walsh systems will be called
singular.

3 Walsh-Cooley singular systems
Let us try to understand the reason for the nonlinear
coherence of the frequency scales of FFT processors
in the canonical Hadamard, Kaczmage, and Paley
bases. For this purpose, we turn (see Fig. 3) to the
tree of an eight-point FFT on the Cooley-Tukey
scheme.

Fig. 3. Directed graph of the eight-point FFT
the algorithm in the DEF basis

To give the harmonics k of the spectrum ( )k&X a
natural linearly increasing ordering, the sample
numbers t of the input signal ( )x t& must be subjected
to BIP.
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The symbol Y in Fig. 3 denotes the FFT
processor’s complex phase multipliers (PM) in the
DEF basis, the degrees of which are defined by the
expression

2exp , 0, 1l j l l N
N
p

Y = - = - .

The set of multipliers lY , 0, 3l = , used in the
third step of the eight-point FFT tree (Fig. 4), is
covered by an arc. The light circle highlights the PM
included in the set, and the arc's arrow rests on the
vector of the multiplier not included in this set.

Fig. 4. Phase multipliers of the DEF basis
for the eight-point DFT

To ensure the transition to the Walsh function
basis, we approximate the PM of the DEF system
located in the lower complex half-plane by values
1+ , and in the upper half-plane by values 1- , as

shown in Fig. 5.

Fig. 5. Approximation of DEF phase multipliers

If the numbers t of time samples of the signal
( ),x t& fed to the input of the FFT processor form a

natural sequence (see Fig. 6), then the output of the
processor’s spectrum based on Walsh-Hadamard
functions (H) is formed. If the numbers t are
subjected to BIP, the processor forms a spectrum in
the Walsh-Paley function basis (P). Finally, if, in
addition to BIP, the numbers of samples of the input
signal are transformed by the inverse Gray code, then

we obtain a spectrum in the Walsh-Kaczmage
function basis (W).

Fig. 6. Directed graph of the eight-point FFT the
algorithm

The + sign in the butterfly operators means that
the weight of the lower edge of the operator is +1,
and thus, the operator performs the transformation
shown in Fig. 7.

Fig. 7. "Butterfly" operator

From the analysis of the approximation of the
complex phase multipliers shown in Fig. 5, from the
engineering point of view, the proposed
approximation can hardly be recognized as rational.
More appropriate should be considered the
approximation in which the multipliers located in the
right (positive concerning the abscissa axis) complex
half-plane are replaced by positive units, and the
PMs from the left (negative) half-plane are replaced
by negative units.

This kind of PMs approximation can be achieved,
as shown in Fig. 8, by rotating the unit circle on the
complex plane counterclockwise by the angle / 2p .
In this case, the position of the coordinate axes and
the arc encompassing the phase multipliers of the last
step of the FFT tree should remain unchanged.
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Fig. 8. Modified approximation
phase multipliers of the DEF

The butterfly operator with negative PM (let us
call it the inverse operator) realizes the
transformation shown in Fig. 9.

Fig. 9: Inverse operator "butterfly"

Let us make a tree of the eight-point FFT
algorithm (Fig. 10), the sequence of phase
multipliers in the third stage of the transformation,
which ( , , , )+ + - - is chosen based on the
approximation presented in Fig. 8.

Fig. 10. Tree of the modified FFT algorithm

Following the transformations shown in Figs. 9
and 10, we easily arrive at the Walsh system
(denoted by NC ), which we will call the Walsh-

Cooley system of functions, thus paying tribute to
the positive influence of the Cooley-Tukey algorithm
on the emergence of a new way of ordering the basis
functions of Walsh systems. The Walsh-Cooley
system was first reported at the International
Conference in Wroclaw [22] in 2000. The eighth-
order matrix 8C of the Walsh-Cooley system is
represented by the expression (10):

8

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
2 0 0 1 1 0 0 1 1
3 0 1 1 0 0 1 1 0

. (10)
4 0 0 0 0 1 1 1 1
5 0 1 0 1 1 0 1 0
6 0 0 1 1 1 1 0 0
7 0 1 1 0 1 0 0 1

t

k

®

=C

The Walsh-Cooley functions ( , )c k t in the image
space are calculated by formulas similar to formulas
(4) ̶ (6) for the basis functions ( , )p k t of Walsh-
Paley systems and differ from the latter only by the
values of the first order functions. In particular,

30, 0, 1 and , 1,
4 4(1, )
31, , 1.

4 4

N Nt t N
c t

N Nt

= - = -
=

= -

And if 1k , then

(2 , ) ( , (2 ) )Nc k t c k t= (11)

̶ for even functions and

(2 1, ) (2 , ) (1, )c k t c k t c t+ =

̶ for odd functions.
Perhaps one of the first mathematicians to point

out that Walsh function systems are somehow related
to Gray's codes was Dr. C. Yen, a professor at the
University of Sydney. In particular, he found [23]
that if the binary numbers of the rows (basis
functions) of the matrix of the Walsh-Paley system
(P) are rearranged according to the law of Gray's
inverse transformation (coding), we come to the
Walsh system ordered at Kaczmage (W). Naturally,
rearranging the strings of the Walsh-Kaczmage
system by the direct Gray code restores the Walsh-
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Paley system. It was noted above that the DIP of the
basis functions of the Walsh-Hadamard system
transforms it into the Walsh-Paley system and vice
versa. The complete picture of the interrelation of the
systems P, H, and W by Yen is presented in Fig. 11,
in which, for simplicity, the DIP operation is denoted
by symbol 1, and the operations of the direct and
inverse Gray transformations by symbols 2 and 3,
respectively.

Fig. 11. Relationship of function numbers
of Walsh's canonical system

According to Fig. 11, to transform the system W
into H, the numbers of basis functions of the system
W must first be rearranged according to the law of
the direct Gray code 2 and thus transform the system
W into the system P, and then perform DIP over the
numbers of functions of the system P using operator
1. Consequently, the system of functions W is
transformed into H using code 21, which belongs to
a subset of the so-called composite Gray codes
(CGC). The inverse transformation of the system of

functions W into H is performed using the code
inverse to CGC 21, i.e., using the code .

Gray's codes, proposed in 1953 in response to the
requests of engineering practice concerning the
construction of optimal converters of the
"angle - code" type according to the criterion of
minimum ambiguity error [10], at the dawn of their
appearance, attracted the attention not only of
mathematicians but also a wide range of developers
of various electronic equipment. As noted above, the
canonical Walsh systems are interconnected by
classical Gray operators. In contrast, the new Walsh-
Cooley system falls out of this chain of
interconnection. The possibility of constructing
codes inverse in the direction of formation to the
classical Gray codes was out of the researchers' field
of view. In the known (classical) scheme (Fig. 12),
the formation process of direct and inverse Gray
codes develops in the direction from left to right. On
this basis, let us call the classical method of Gray
transformation left-sided. In this case, the
transformed number’s high (left) digit remains
unchanged in both forward and reverse
transformations.

At the same time, it is possible to propose a
scheme of the Gray transformation [21], reversed to
the direction of the classical (left-sided)
transformation. In such a class of transformations,

(a) (b)

Fig. 12: Graphs of the forward (a) and backward (b) Gray's left-sided transform

which is called right-sided (Figure 13); the value of
the transformed number’s lower (right) digit remains
unchanged in the forward and reverse

transformations, denoted by symbols 4 and 5,
respectively.

(a) (b)

Fig. 13. Graphs of forward (a) and backward (b) Gray's right-sided transform
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From the comparison of Figs. 12 and 13, we see
that we arrive at the right-sided Gray transform by
expanding the graphs of the left-sided transform by
180° for the vertical axis of symmetry. The
fundamental difference between left- and right-sided
Gray codes is as follows. If, during the left-sided
Gray transformation, the Hemming distance between
adjacent code combinations remains constant and
equal to one, then, during the right-sided
transformation the noted property of classical Gray
codes is violated, which can be traced by Table 4.

Table 4: Towards a comparison
of Gray's transformations

Dec Bin 2 4
0 000 000 000
1 001 001 011
2 010 011 110
3 011 010 101
4 100 110 100
5 101 111 111
6 110 101 010
7 111 100 001

Let us summarize Gray's simple operators in
Table 5, including also the operator 0, which is a unit
matrix, and the operators of cyclic shifts by one digit
to the right, denoted by the numerical symbol 6, and
to the left, which we will indicate by the symbol 7.

Table 5: The operators of simple Gray
transformations

Design.
operator The operation to be performed

0(е) Saving the source code
1 Inverse code rearrangement
2 Gray's direct left-sided transform
3 Gray's inverse left-sided transform
4 Gray's direct right-sided transform
5 Gray's inverse right-sided transform

tra6 Cyclic shift one digit to the right
7 Cyclic shift one digit to the left

The listed operators of simple Gray
transformations can be represented in matrix form,
and the order n of these matrices coincides with the
degree of two in the expression ,2 nN = by which
the order of Walsh matrices is given. In particular,
the matrices of simple Gray transform operators

accompanying Walsh systems of the eighth order are
presented in Table 6.

Table 6. Matrix forms of simple Gray operators

1 0 0
0 0 1 0

0 0 1
=

0 0 1
1 0 1 0

1 0 0
=

1 1 0
2 0 1 1

0 0 1
=

1 1 1
3 0 1 1

0 0 1
=

1 0 0
4 1 1 0

0 1 1
=

1 0 0
5 1 1 0

1 1 1
=

0 1 0
6 0 0 1

1 0 0
=

0 0 1
7 1 0 0

0 1 0
=

We come to the following conclusions from the
data analysis in Table 6. First, the matrices of simple
Gray operators are right-sided symmetric, i.e.,
symmetric concerning the auxiliary diagonal, and the
operators 0 and 1 correspond to bilaterally symmetric
matrices. Second, the pairs of Gray matrices
(operators) located in the rows of Table 6 (except for
the operators of the first row) are mutually inverse,
which means that 0 1 1= . The multiplication
operation is performed over the field 2F .

According to (7), there are 28 symmetric Walsh
systems of the eighth order. In contrast, using
classical Gray codes, it is possible to connect, as
shown in Fig. 10, only three systems ordered by
Hadamard, Kaczmage, and Paley. The reason for the
incompleteness of the interconnection graph to cover
all Walsh systems of fixed order N is that the
approach proposed by S. Yen, based on the use of
only classical (left-sided) Gray transformations,
turned out to be a dead end.

All Walsh systems of order N consist of the same
complete set of basis functions and differ from each
other only by the ways of their ordering.

The problems related to the development of
algebraic methods for ordering basis functions
symmetrizing Walsh systems became solvable only
after the introduction of right-sided Gray
transformations [21]. Fig. 14, a development of the
scheme for transforming Walsh systems according to
C. Yen (see Fig. 11), is the simplest example
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illustrating the application of the direct right-sided
Gray transform operator (operator 4).

Fig. 14. Tree of the interrelation
of the fourth order Walsh systems

The complete graph of the systems of Walsh
functions of the eighth order is shown in Fig. 15.

Fig. 15: The complete graph of Paley-connected
of the eighth order Walsh systems

The large Latin letters in the graph nodes denote the
invariant fundamental Walsh systems, named so
because the algorithm for their synthesis does not
depend on the order N of the Walsh systems. The
numbers in the nodes of the contours denote the
numbers of systems that, together with the invariant
systems, constitute the complete set of classical Walsh
systems of the eighth order. The directed edges
connect the tree nodes, each assigned a weight equal
to a simple or symmetric composite Gray code.

Let us briefly explain how, based on the eighth-
order Walsh-Paley matrix P given by expression (4),
we can obtain, for example, the Walsh matrix
number 15 (denoted by 15M ). The matrices P and

15M are related by the CGC 3(242)=G . Based on
the data in Table 6, we have

1 1 0 1 0 0 1 1 0
242 0 1 1 1 1 0 0 1 1

0 0 1 0 1 1 0 0 1
= =

0 1 1
1 1 1 ,
0 1 0

=

which leads to the value

0 0 1
1 0 0
1 1 0

=G .

The numbers 15k of the basis functions of the
system 15M are related to the numbers pk of the
basis functions of the Walsh-Paley system by the
relation

15 pk k= G .

By successively searching the states of three-bit
numbers pk , we arrive at the values of the row
numbers of the matrix 15M (see Table 7), in which
rows of matrix P are moved.

Table 7. Rearrangement of rows
of the matrix P to the rows of the matrix 15M

pk 0 1 2 3 4 5 6 7

15k 0 6 4 2 1 7 5 3

The matrix 15M has the form
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15

0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 1
2 0 0 1 1 1 1 0 0
3 0 1 1 0 1 0 0 1

.
4 0 0 1 1 0 0 1 1
5 0 1 1 0 0 1 1 0
6 0 0 0 0 1 1 1 1
7 0 1 0 1 1 0 1 0

t

k

®

=P

The considered example explaining the algorithm
of calculating the matrix 15M leads to the following
constructive conclusion. Each matrix W of a Walsh
system of order 2 nN = corresponds to a uniquely
related matrix of order n, which we will call an
indicator matrix (IM) and denote by J. The IMs of
Walsh systems are binary right-sided symmetric
matrices that are non-degenerate over the field 2F .
The number nL of IMs of size n coincides with the
number of Walsh systems of order N and is
determined by expression (3). Knowing the IM J,
one can easily find the matrix W corresponding to it.
For this purpose, it is enough to use the formula

w pk k= J , (12)

where pk - rows of the Walsh-Paley matrix P are
transferred to wk - rows of the matrixW.

Naturally, the Cooley-Tukey FFT tree remains
unchanged regardless of the basis realized by the
FFT processor. At the same time, for the processor to
form the signal spectrum on one or another basis, the
time samples of the signal at the input of the
processor must be subjected to a permutation
depending on the chosen transformation basis (see,
for example, Fig. 6). Using the relation (12), let us
show what permutations should be subjected to the
numbers of the signal samples at the input of the FFT
processor to obtain the spectrum of the signal in the
Walsh-Cooley function basis. For this purpose, let us
refer to Fig. 15. As we can see, the transition from
the Walsh-Paley system (P) to the Walsh-Cooley
system (C) is carried out as a result of the
rearrangement of row numbers of the Walsh-Paley
matrix by the inverse Gray's transformation right-
sided (whose numerical symbol is 5). The latter
means that the IM of the Walsh-Cooley system cJ is
(see Table 6) the matrix

1 0 0
5 1 1 0

1 1 1
c = =J . (13)

Substituting matrix (13) into formula (12) and
taking into account that the sequence of numbers pk
is formed by DIP of the sequence of natural
numbers hk , we come to the summary Table 8 of
permutations of the signal samples at the input of the
eight-point FFT processors, providing the formation
of DES spectra (8) in the corresponding bases.

Table 8: Rearrangement of signal count numbers
at the input of FFT processors in basis H, P, and C

hk 0 1 2 3 4 5 6 7
pk 0 4 2 6 1 5 3 7
сk 0 4 6 2 7 3 1 5

Among the numerous Walsh systems, the Walsh-
Cooley systems are the only ones that provide
delivers linear coherence to the frequency scales of
the DFT processor. As a consequence, the frequency
of the input signal can be unambiguously determined
by the number of processor output channels in which
the response with maximum modulus and negative
phase is observed. None of the remaining Walsh
systems provides similar linear coherence to the
frequency scales of DFT processors. This is the
uniqueness of Walsh-Cooley systems.

Let us use the graph-analytical method of
calculating the harmonics of the complex-
exponential signal (11) in the Walsh-Cooley function
basis (10), assuming the sample size to be eight. An
example of harmonic calculation 1(1)X& is shown in
Fig. 16.

Fig. 16. Harmonic definition 1(1)X&

Summing up the marked vectors and
distinguishing the real and imaginary parts, we
obtain:

1(1) 2(1 2, 1)X = + -& .
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The results of similar calculations of harmonics of
"even" signals are summarized in Table 9 and of
"odd" signals ̶ in Table 10.

Table 9: Harmonics of "even"
signals in the Walsh-Cooley basis

m (0)mX& (2)mX& (4)mX& (6)mX&

0 8 0 0 0
2 0 4(1, - 1) 0 4(1, 1)
4 0 0 8 0
6 0 4(1, 1) 1) 0 4(1, - 1)

Table 10. Harmonics of "odd"
signals in Walsh-Cooley basis

m (1)mX& (3)mX&

1 2(1 2, 1)+ - 2(1 2, 1)-
3 2(1, 1 2)-
5 2(1 2, 1)- - 2(1 2,1)+
7 2(1, 1 2)+ 2(1, 2 1)-
m 1(5)X& 1(7)X&

1 2(1 2, 1)- - 2(1 2,1)+
3 2(1, 1 2)+ 2(1, 2 1)-
5 2(1 2, 1)+ - 2(1 2, 1)-
7 2(1, 1 2)- 2(1, (1 2))- +

The analysis of Tables 9 and 10 shows that on the
main diagonals of the matrices of spectra, there are
harmonics with maximum modulo and negative
phases. The harmonics 0 (0)X& and 4 (4)X& are
natural, and their phases are equal to zero.

4 Walsh-Tukey singular systems
At least these properties are characteristic of classical
Walsh systems:

1. The weight of each basis function of the system,
except for the null order function (let us call it the
zero function), is equal to N / 2;

2. All non-zero basis functions in both the left and
right halves contain the same number, equal to N / 4,
of 0 and 1 elements except for the function whose
left half consists of only zeros and whose right half
consists of only ones;

3. The Hemming distance between any pair of
basis functions included in the system is N / 2.

The so-called Walsh-like systems of (0,1)-
sequential functions are alternatives to the classical
Walsh systems. We will refer to Walsh-like systems
that preserve the first and third properties of classical
Walsh systems mentioned above but in which the
second property is not satisfied for all basis functions.
Or, in other words, to Walsh-like systems, we will
refer to such (0, 1)-sequent systems [12], in whose
basis functions the number of zeros and ones in each
half of the definition interval is not necessarily the
same as in the classical Walsh functions.
Let us estimate the number of symmetric

orthogonal Walsh-like systems (0,1) - of the eighth
order [24]. Let us form the set of sequential
functions, including only those that begin with zero,
i.e., the sequential left digit contains the digit 0, and
the remaining lower seven digits contain three zeros
and four ones. Hence, the complete 8L set contains
35 non-zero eighth-order sequents, which is
determined by the number of seven-by-three
combinations. All these functions are summarized in
Table 11.

Table 11. Set of sequential functions of the eighth order

#
Discharge number

#
Discharge number

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0 18 0 1 0 1 1 0 0 1
1 0 1 1 1 1 0 0 0 19 0 0 1 1 1 0 0 1
2 0 1 1 1 0 1 0 0 20 0 1 1 0 0 1 0 1
3 0 1 1 0 1 1 0 0 21 0 1 0 1 0 1 0 1
4 0 1 0 1 1 1 0 0 22 0 0 1 1 0 1 0 1
5 0 0 1 1 1 1 0 0 23 0 1 0 0 1 1 0 1
6 0 1 1 1 0 0 1 0 24 0 0 1 0 1 1 0 1
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7 0 1 1 0 1 0 1 0 25 0 0 0 1 1 1 0 1
8 0 1 0 1 1 0 1 0 26 0 1 1 0 0 0 1 1
9 0 0 1 1 1 0 1 0 27 0 1 0 1 0 0 1 1
10 0 1 1 0 0 1 1 0 28 0 0 1 1 0 0 1 1
11 0 1 0 1 0 1 1 0 29 0 1 0 0 1 0 1 1
12 0 0 1 1 0 1 1 0 30 0 0 1 0 1 0 1 1
13 0 1 0 0 1 1 1 0 31 0 0 0 1 1 0 1 1
14 0 0 1 0 1 1 1 0 32 0 1 0 0 0 1 1 1
15 0 0 0 1 1 1 1 0 33 0 0 1 0 0 1 1 1
16 0 1 1 1 0 0 0 1 34 0 0 0 1 0 1 1 1
17 0 1 1 0 1 0 0 1 35 0 0 0 0 1 1 1 1

Let us match to each sequential function from
Table 11 a set of sequents (highlighted by shading)
separated from the forming sequents located in the

diagonal elements of Fig. 17 by the Hamming distance
d = 4.

Fig. 17: Set of functions distant from the forming sequent at Hamming distance 4d =
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The left column of Fig. 17 shows the numbers of
the forming sequents, and the top row shows the
numbers of sequents that are the Hamming distances
away from the forming sequents, equal to 4.

In the following, we will stick to the following
notations: the lowercase letter js will denote a

specific j-th sequent, 0, Nj L= , representing an N-bit
vector (in this article, it is a byte), and the uppercase
letter i -S the set of all sequents located in the
shaded elements of the i-th row of the table in Fig. 17,

1,35i = , including the zero sequent not shown in this
figure 0s . Let, in addition, €i -s be a sequent forming
j - the complete group of functions for which we
introduce the symbol ,i jSF (Sequence Full).

Let us note such features of Fig. 17. Firstly, the
table is symmetric concerning the main diagonal.
Second, each table row, except for the forming

sequent €ks (the light diagonal element of the table,
highlighted by the bold frame), includes 18 sequents
js , separated from the forming element €ks by the

Hamming distance €( , ) 4k jd =s s . Finally, third, the
entire set W of rows iS of the table can be
partitioned into ten non-overlapping subsets lW ,

1,10l = , with l-th subset including consecutive rows

iS containing the same number ln of sequents to the
left of the sequent €ks . For example, the subset 1W is

generated by the sequents €js , 1, 5j = , with 1 0n = ; a
second subset 2W is formed by the sequents €js ,

6, 9j = , for which 2 3n = , etc.
Information about the subsets lW is contained in

Table 12

Table 12. Composition of subsets of lW sequential functions

Numbers of l subsets of the sequent lW
1 2 3 4 5 6 7 8 9 10

# sequent €ks 1-5 6-9 10-12 13-15 16-19 20-22 23-25 26-28 29-31 32-35
ln 0 3 5 6 9 11 12 15 16 18

The forming sequents €ks , together with the zero
sequential function 0s and 18 sequents located in the
rows of the table in Fig. 17, form six complete
groups of pairwise equidistant code combinations.

The groups of sequential functions , ,i jSF formed by
the forming sequents €is of the subset 1,W are given
in Table 13.

Table 13. Composition of groups formed by the forming sequences of the subset 1W

1, jSF Group Sequences
0 1 10 11 12 13 14 15 20 21 22 23 24 25 26 27 28 29 30 31

1
2
3
4
5
6
2, jSF 0 2 7 8 9 13 14 15 17 18 19 23 24 25 26 27 28 32 33 34
1
2
3
4
5
6
3, jSF 0 3 6 8 9 11 12 15 16 18 19 21 22 25 26 29 30 32 33 35
1
2
3
4
5
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6
4, jSF 0 4 6 7 9 10 12 14 16 17 19 20 22 24 27 29 31 32 34 35
1
2
3
4
5
6
5, jSF 0 5 6 7 8 10 11 13 16 17 18 20 21 23 28 30 31 33 34 35
1
2
3
4
5
6

Sequent js , included in the groups ,i jSF , are
marked with gray cells in the rows of Table 13, and
their corresponding j function numbers are in the
black rows of the table above the sequences, with the
row element containing the number i of the forming
sequent €is , lightened. The left column of Table 13
contains the numbers of 1,6j = groups ,i jSF ,

formed by the sequents €is , 1,5i = , constituting a
subset of 1W . The 30 groups summarized in Table 13,

corresponding to the subset of sequential functions
1W , constitute the complete set of groups of pairwise

equidistant sequential functions. That means, in
particular, that the group of functions formed by any
sequent €js , 6 35j , is absorbed by one of the
groups of the subset ,i jSF of 1W . Let us confirm
the above statement. For this purpose, let us choose,
for example, as forming sequents 17€s and 33€s ,
whose complete groups of equidistant functions are
presented in Table 14.

Table 14. Composition of sequential function groups formed by the elements 17€s and 33€s

Groups Group Sequences
17, jSF 0 2 4 5 6 8 9 10 13 14 17 21 22 25 27 28 31 32 33 35
1
2
3
4
5
6
33, jSF 0 2 3 5 6 7 9 11 13 15 16 17 19 21 23 25 27 29 31 33
1
2
3
4
5
6 0

From the data comparison, we can easily see that
any group from Table 14 is in one of the rows of
Table 13. The correspondence between the groups

17, jSF , 33, jSF , 1, 6j = , and the groups ( , )i j of the
subset 1W is shown in Table 15.

Table 15. Correspondence of groups of sequential
functions, formed by the elements 17€s and 33€s

17, jSF 1 2 3 4 5 6
( , )i j 2,3 2,5 4,1 4,6 5,1 5,6

33, jSF 1 2 3 4 5 6
( , )i j 2,2 2,5 3,2 3,5 5,1 5,3
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Let us notice the mosaic of rectangular squares
(Table 13), in which the groups of equidistant
sequents of the subset 1W are placed. The coloring of
all the squares turns out to be the same, which
provides an opportunity to significantly reduce the
labor intensity of the computation of the composition
of the groups of the subset 1W . Indeed, suppose that
a site mosaic is composed for groups 1, jSF for
which the constituent is a sequent of 1€s . To compute
the sequents of any groups ,i jSF , 1i , is enough to
replace the top line 1S in the group pad 1, jSF by
line 1S , composed of the sequents of the i-th line of
Table 13, excluding all its empty elements.

Generating basis function (1, )tt of Walsh-like
systems of order N is defined by the expression

( /2) ( /2 1)(1, ) 01 0 , 0, 1N Nt t Nt -= = - , (14)

where ( )

times

m

m

a a a a= K14243 .

When forming the Walsh-Tukey systems, we will
consider such features of these systems.

First, the even basis functions (2 , )k tt are
defined in a way similar to the way of calculating the
even basis functions in Walsh-Cooley systems, i.e.

(2 , ) ( , (2 ) )Nk t k tt t= . (15)

Second, the elements of the left and right halves
of odd basis functions are mutually complementary,
i.e.

(2 1, / 2) (2 1, ),

0, / 2 1

k t N k t

t N

t t+ + « +

= -
, (16)

where ф denotes the function complementary to the
function ф.

Based on expressions (14) and (15), let us
compose the partially unfilled matrix 8T of the
Walsh-Tukey system of the eighth order.

(1)
8

3 5 6 7
0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0
0 1 1 0 0 1 1 0

3 0 1 0 1
. (17)

0 1 0 1 0 1 0 1
5 0 0 1 1
6 0 0 1 0
7 0 0 0 1

t

k

®

=

0 1 2 4
0
1
2

4
T

The numbers of rows and columns to be filled in
at the first stage of matrix formation are marked in
bold in (18) (1)

8 .T Using the relation (16), we restore
some of the missing elements in the matrix (17) and,
thus, come to the matrix, in which the numbers of
those rows and columns are highlighted, which
underwent changes during the second stage of
transformation.

(2)
8

0 1 2 4
0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0
2 0 1 1 0 0 1 1 0

0 1 0 1 0 1
. (18)

4 0 1 0 1 0 1 0 1
0 0 1 0 1 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 1 1

t

k

®

=

3 5 6 7

3

5
6
7

T

As a result of the second stage of transformation,
the fifth and sixth rows (as well as columns) of
matrix (18) turned out to be filled. The uncertainty
concerning the empty elements in the third and
seventh rows of the matrix (18) is easily resolved in
this way. Let us construct (see Fig. 18) a system
consisting of eight vectors corresponding to the input
signal samples on the complex plane, the normalized
frequency of which equals three. Let us mark the
vectors with the elements of the third row of the
matrix (18), thus calculating the harmonic 3 (3).&X
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Figure 18: To calculate the harmonic 3 (3)&X

According to Fig. 18, the maximum of the
harmonic 3 (3)&X can only be under the condition that
the third and seventh elements of the third row of the
matrix (19) are 0 and 1, respectively, which
completes the formation of the matrix 8T , which will
take the form

8

0 1 2 4
0 0 0 0 0 0 0 0 0
1 0 1 1 1 1 0 0 0
2 0 1 1 0 0 1 1 0

0 1 0 0 1 0 1 1
. (19)

4 0 1 0 1 0 1 0 1
0 0 1 0 1 1 0 1
0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0

t

k

®

=

3 5 6 7

3

5
6
7

T

From the comparison of the Walsh-Cooley (10)
and Walsh-Tukey (19) matrices, one can easily
establish both similarities and differences in the
algorithms forming the non-zero basis functions of
the systems (see Table 16).

Table 16. Comparison of methods of formation
of the eighth-order basis functions

k ( , )c k t ( , )k tt

1 00111100 01111000
2 8(2, ) (1, (2 ) )f t f t=

3 (1 2) (1 6)
4 8(4, ) (2, (2 ) )f t f t=

5 (1 4) (1 4)
6 8(6, ) (3, (2 ) )f t f t=

7 (1 6) (1 2)

In Table 16, the symbol f denotes the basis
functions c or ф , and the expression (1 )l denotes
the bitwise sum of functions of the first- and l-th
orders. The same for the Walsh-Cooley and Walsh-
Tukey systems is the method of recurrent
computation of even order basis functions, since their
definition formulas (11) and (16) are equivalent.

The difference manifests itself in the fact that if in
the Walsh-Cooley system, when calculating odd
basis functions (2 1, )с k t+ , 0k > , the first order
function (1, )с t is bitwise summed with the functions
(2 , )с k t of even order, then in the Walsh-Tukey

system the sequence of even functions participating
in bitwise addition operations at the stages of
function definition (2 1, )k tt + , is inverse to the
sequence of even functions in the Walsh-Cooley
system.

Based on relations (15) and (16) and relying on
the rules given in Table 16, it is no problem to arrive
at an algorithm (see Fig. 19) for synthesizing systems
of Walsh-Tukey functions of arbitrary orders.

Fig. 19. The block diagram of the algorithm
synthesis of Walsh-Tukey function systems

Following the proposed synthesis algorithm, the
matrix of the Walsh-Tukey system of arbitrary
degree can be easily generated. As empirically
established, the formation of matrices NT of order

2 nN = takes n-2 computation cycles.
The amplitude and phase characteristics of the

16-point discrete Fourier transform processor in the
Walsh-Cooley and Walsh-Tukey function bases are
shown in Fig. 20 and Table 17, respectively.
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Table 17. Phase-frequency characteristics of 16-point
DFT processors in Walsh-Cooley and Walsh-Tukey bases

Basis 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 k®

Cooley
-0
.2
0

-0
.3
9

-0
.6
5

-0
.7
9

-0
.9
2

-1
.1
8

-1
.3
7

0

-0
.2
0

-0
.3
9

-0
.6
5

-0
.7
9

-0
.9
2

-1
.1
8

-1
.3
7

Tukey

-1
.3
7

-1
.1
8

-0
.9
2

-0
.7
9

-0
.6
5

-0
.3
9

-0
.2
0

0

-1
.3
7

-1
.1
8

-0
.9
2

-0
.7
9

-0
.6
5

-0
.3
9

-0
.2
0

Fig. 20: Amplitude-frequency characteristics of 16-point
DFT processors in Walsh-Cooley and Walsh-Tukey bases

As Fig. 20 and Table 17 show, the amplitude
spectra of discrete complex-exponential signals in
the Walsh-Cooley and Walsh-Tukey bases coincide.
In contrast, the phase spectra are opposite: so if in
some k-th output channel of an N-point DFT
processor, the phase response in the Walsh-Cooley
basis is c kj ( ) , then in the Walsh-Tukey basis

ck Н ktj ( ) = j ( - ) .

5 Discussion and Further Research
Let us note the peculiarities that can be drawn from
comparing the data in Table 13 and Figure 17.

First, the number of groups of equidistant
(according to Hamming) code combinations placed
in Table 13 (and there are five groups for N = 8)
coincides with the number of diagonal elements in
the upper part of Fig. 17, to the left of which there is
not a single non-zero sequent.

Second, the Hamming distance between the fifth
boundary sequent 5€s , which closes Table 11, and the

nearest to it sixth sequent 6€s is four,
i.e., 5 6€ €( , ) 4.d =s s The above numerical
characteristics make it possible to outline approaches
to constructing an algorithm for synthesizing the
complete set of sequent Walsh-like systems of
arbitrary order 2 ,nN = 4n , which includes such
basic computational steps.

At the first stage of the sliding window mode for
the chosen order N of the matrices of the Walsh-like
function systems, we find the minimum value ofM at
which equality 1€ €( , ) / 2M Md N+ =s s is achieved. The
parameter M determines the number of sequents €is ,

1,i M= , each of which forms functions ,i jSF ,

1,j R= , where R is the number of complete sets of
equidistant sequents generated by each forming
sequent €is . In particular, for N = 8, according to
Table 13, M = 5 and R = 6. All remaining sequents
€is , i M> , can be excluded from further
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consideration, since, as it was shown earlier, none of
them gives rise to any new Walsh-like systems.

In the second step, all sequents that are distant
from any selected parent sequent €is by the
Hamming distance / 2d N= are determined. Finally,
in the third step, the composition of pairwise
equidistant sequents generated by sequents €is ,

1,i M= , is instantiated from the set of sequents
selected in the second computational step.

Given the above, it seems appropriate to outline
such directions for further research.

1. Obtain analytical estimates of the number of
symmetric systems of Walsh-like functions of
arbitrary order N.

2. Find out whether there are indicator matrices
for the systems of Walsh-like functions similar to
those by which the classical Walsh systems are
interconnected.

3. Develop methods for constructing FFT
algorithms on the basis of Walsh-like functions.

4. Identify areas of practical applications of
systems of Walsh-like functions.

6 Conclusion
The main scientific results achieved by the present
study are as follows.

First, based on the Cooley-Tukey FFT algorithm,
an FFT basis called the Walsh-Cooley basis has been
developed, which is unique in that it is the only one
in the set of classical Walsh bases that delivers linear
coherence to the frequency scales of FFT processors.
None of the canonical Walsh bases ordered by
Hadamard, Kaczmage, or Paley provides such
coherence to frequency scales, which brings specific
difficulties in realizing such devices, for example,
spectrometers.

Second, an algorithm has been developed to
synthesize new Walsh-like systems that retain all the
properties of classical Walsh systems but
significantly exceed the latter in power. For example,
there are 28 classical Walsh systems of the eighth
order in total, whereas there are 840 Walsh-like
systems. The basis functions forming Walsh-like
(and classical) systems constitute bases with all the
properties necessary for constructing fast Fourier
transform algorithms. Namely, the systems are
complete, orthogonal, symmetric, and involution,
i.e., such that they allow fast and efficient transformation
of signals between time and frequency domains and
provide good separation of different signal frequency
components.

Third, in the set of Walsh-like bases of arbitrary
degree order, a single basis exists called the Walsh-
Tukey basis. Like the Walsh-Cooley basis, it
provides linear coherence of frequency scales to FFT
processors. The spectra of discrete complex-
exponential signals in these bases are such that their
AFCs coincide, and their PFCs are inverted relative
to each other.

The developed Walsh-Cooley and Walsh-Tukey
functions systems have certain advantages over the
canonical Walsh systems and on this basis, in our
opinion, can replace the latter in many applications.

References:

[1] Karpovsky M. G., Moskaliev E. S., Spectral
methods of analysis and synthesis of discrete
devices. Leningrad, Energizer, 1973.

[2] Xinyi Li, Shan Yu, et al., Nonparametric
Regression for 3D Point Cloud Learning. JMLR,
25(102), 2024, pp. 1 − 56.

[3] Trakhtman A. M., Trakhtman V. A.,
Fundamentals of the Theory of Discrete Signals
on Finite Intervals.Moscow: Sov. Radio, 1975.

[4] Richard E. Blahut, Theory and Practice of
Error-Controlling Codes. Publisher, Addison-
Wesley Publishing Company, 1983.

[5] Vasilii Feofanov, Emilie Devijver, Massih-
Reza Amini, Multi-class Probabilistic Bounds
for Majority Vote Classifiers with Partially
Labeled Data. JMLR, 25(104), 2024, pp. 1 − 47.

[6] Anatoly Beletsky, Cryptography applications
of indicator matrices of Walsh function systems.
Ukr. Inf. Sec. Res. J., Vol. 18, No. 1, 2016, pp. 5
− 20.

[7] Bechir Alaya, Lamri Laouamer, Nihel Msilini,
Homomorphic Encryption Systems Statement:
Trends and Challenges. Computer Science
Review, Volume 36, May 2020, 100235.

[8] Nikitin G. I., Application of Walsh functions in
cellular communication systems with code
division of channels. St. Petersburg: SPbSUAP,
2003.

[9] Zalmanzon L. A., Fourier, Walsh, Haar
transformations and their application in control,
communication and other fields.Moscow: Nauka,
1989.

[10] Loginov V. P., Fourier functions and their
applications. Zarubezhnaya Radioelectronika.
Vol. 4, 1973, pp. 73 − 101.

[11] John R. Turner and Rose M. Baker, Complexity
Theory: An Overview with Potential
Applications for the Social Sciences. Systems,
2019, 7, pp. 1 − 23.

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2024.4.8

Anatoly Beletsky, Mikolaj Karpinski, 
Arsen Kovalchuk, Dmytro Poltoratskyi

E-ISSN: 2769-2477 79 Volume 4, 2024 

https://www.sciencedirect.com/journal/computer-science-review
https://www.sciencedirect.com/journal/computer-science-review
https://www.sciencedirect.com/journal/computer-science-review/vol/36/suppl/C


[12] Harmuth H., Theory of sequential analysis:
bases and applications. New York: Academic,
1977.

[13] Artemyev M. Yu., Gaev G. P., Krenkel T. E.,
Skotnikov A. P., Algorithm of formation of
symmetric systems of Walsh functions, Radio
Engineering and Electronics. Vol. 7, 1978. pp.
1432 − 1440.

[14] Hadamard M. J., Resolutiond'une question
relative aux determinants. Bull.Sc. Math. A17,
1893, pp. 240 − 246.

[15] Rabiner L., Gold B., Theory and application of
digital signal processing. New Jersey, Prentice-
hall, 1975.

[16] Ismagilov I. I., One approach to the ordering of
systems of discrete Walsh functions.
Radioelectronics, Vol. 1, 2006. pp. 65 − 72.

[17] Cooley J. W., Tukey J. W., An algorithm for
the machine calculation of the complex Fourier
series. Mathematics Computation, v. 19, 1965,
pp. 297 − 301.

[18] Walsh J. L. A closed set of normal orthogonal
functions. Amer. J. Math, v. 45, 1923, p. 5- 24.

[19] Shneider A.A., About series on Valyp
functions with monotone coefficients. Izv.
ANSSR, Ser. mat., Vol 12, 1948, pp 179 − 192.

[20] Paley R., A Remarkable, Series of Orthogonal
Functions. I, II. Proc. Lond. Math. Soc., 1932, p.
241 − 279.

[21] Anatoly Beletsky, Combinatorics of Gray
codes. Kyiv: KVIC, 2003.

[22] Anatoly Beletsky, Synthesis and analysis of the
system of Walsh-Cooly basis functions.
Wroclaw: XIII Int. Conference. NIKON-2000,
2000.

[23] Yen C., Walsh function and Gray code. IEEE
Trans, Vol. 1, EMC-13, 1971, pp. 68 − 73.

[24] Anatoly Beletsky, Systems of Discrete
Walsh-Like Sequential Functions. WSEAS
Int. J. of Applied Math. Computational
Science and Systems Engineering, Vol. 4,
2022, pp. 60 − 73.

Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
The authors equally contributed to the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No funding was received for conducting this study.

Conflict of Interest
The authors have no conflicts of interest to declare
that are relevant to the content of this article.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2024.4.8

Anatoly Beletsky, Mikolaj Karpinski, 
Arsen Kovalchuk, Dmytro Poltoratskyi

E-ISSN: 2769-2477 80 Volume 4, 2024 

https://wseas.com/journals/mathematics/2022.php
https://wseas.com/journals/mathematics/2022.php
https://wseas.com/journals/mathematics/2022/a465106-008%282022%29.pdf

	3  Walsh-Cooley singular systems
	The numbers 
	.
	Table 7. Rearrangement of rows 
	of the matrix P to the rows of the matrix 
	0
	1
	2
	3
	4
	5
	6
	7
	0
	6
	4
	2
	1
	7
	5
	3
	The analysis of Tables 9 and 10 shows that on the 
	4  Walsh-Tukey singular systems
	At least these properties are characteristic of cl
	1.The weight of each basis function of the system, e
	2.All non-zero basis functions in both the left and 
	3.The Hemming distance between any pair of basis fun
	The so-called Walsh-like systems of (0,1)-sequenti
	Generating basis function 
	,      (14)
	where  .
	When forming the Walsh-Tukey systems, we will cons
	First, the even basis functions 
	.                    (15
	Second, the elements of the left and right halves 
	,         (16)
	where  denotes the funct
	Based on expressions (14) and (15), let us compose
	The numbers of rows and columns to be filled in at
	As a result of the second stage of transformation,
	Figure 18: To calculate the harmonic 
	According to Fig. 18, the maximum of the harmonic 
	From the comparison of the Walsh-Cooley (10) and W
	Table 16. Comparison of methods of formation
	 of the eighth-order basis functions
	k
	1
	00111100
	01111000
	2
	3
	4
	5
	6
	7
	In Table 16, the symbol f denotes the basis functi
	The difference manifests itself in the fact that i
	Based on relations (15) and (16) and relying on th
	Fig. 19. The block diagram of the algorithm
	synthesis of Walsh-Tukey function systems
	Following the proposed synthesis algorithm, the ma
	The amplitude and phase characteristics of the 16-
	Table 17. Phase-frequency characteristics of 16-po
	Creative Commons Attribution License 4.0 (Attribut




