
1 Introduction

The current classical theory of probability distribu-
tions is based on the presumptive Euclidean space
of parameters and random variables. In this sense,
the joint probability densities are derived from se-
quential partial derivatives of the corresponding cu-
mulative distribution function [7],[12],[15],[17]. The
non-Euclidean manifolds endowed with Riemannian
metrics in the context of probability theory have
been introduced by many authors for phase and pa-
rameter space [1],[2],[9],[13]. Moreover using dif-
ferential geometry, some variations of information
theory having been devised on non-Euclidean (Rie-
mannian) metric spaces by Fisher, Rao, Amari and
others [2], [4]. In these approaches, probability dis-
tributions of various models exhibited as points on
some Riemannian manifolds. By this background,
differential geometry technique could be applied to
analyze the probability distribution manifolds. The
most applicable metric tensor on these spaces that
first introduced by Fisher and Rao, is the so-called
Fisher information metric [14]. Applying the Rie-
mannian metric to define the basic concepts in

statistics such as mean and covariance matrix of
random variable, has also been introduced in other
works [3], [9] and [13]. The basic need for a pre-
cise formalism for joint probability densities on non-
Euclidean spaces appears in the problems related to
diffusion phenomena on surfaces such as spheres and
other non-Euclidean surfaces [10],[11],[5]. In this
short article, we introduce a new model based on
binary data arrays and matrices to analyze the vari-
ables distributions of a system of particles on the
Riemannian manifold. A cloud of a large number
of particles at a certain time is considered in the
space of variables without analysis of its dynamical
evolution and quantum physics uncertainties restric-
tions. The coordinates of variables in this space, is
divided to infinitesimal intervals while each interval
labelled by an ordered integer number. The vari-
ables of each particle occupies just one infinitesimal
interval on each variable coordinate xν labeled by
some integer number i. For any specified infinites-
imal interval on each coordinate, there is a specific
array with binary entries {0, 1} that determines the
particles whose variable xν is restricted to this in-
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terval. Based on this background, in Section (2) we
develop the concept of particle oriented coordinates
which span a flat Euclidean space on which we em-
bed Riemannian manifolds of variable coordinates.
The collection of all binary arrays of all variables
yields a binary matrix containing the entire infor-
mation of the particles system. By introducing a
generalized inner product for a set of vectors, joint
probability densities of variables are calculated as
inner product of the binary arrays that stands for
some vectors in cotangent space at each point on
manifold and consequently the tensor density prop-
erties of joint probability density are proved. In Sec-
tion (3) based on the tensor density property of the
joint probabilities of variables at any point in the
manifold, we present a new definition of joint prob-
ability densities by symmetrized covariant deriva-
tive of the cumulative distribution function. A new
method to connect concepts in continuous and dis-
crete probability theory and a novel interpretation
of covariant derivative by generalized inner product
has been proposed. In Section (4) some examples
are presented that reveal the tensor density proper-
ties of famous physical entities.

Definition 1. The space (manifold) M of variables
spanned by coordinates xν with 1 ≤ ν ≤ d where
d is the dimension of manifold. So the number of
involved independent variables (degree of freedom)
is d .The variable space M in present article, gen-
erally presumed to be a Riemannian manifold with
local coordinates xν and basis vectors eν = ∂

∂xν at
any point p ∈ M . If we divide the coordinate xν

into mν small intervals ∆xν (i) , while mν is a large
number, then integer i refers to the ith interval of
this parameter. This means that i stands for the
coordinate value of point p along xν and ranges be-
tween 0 and a large integer mν :

1 ≤ i ≤ mν (1)

The whole manifold includes all coordinates xν

and associated basis vectors. The overall number of
intervals reads as follows:

m =

d∑
ν=1

mν (2)

In this setting the vector space M is a lattice
space where the coordinates of points on manifold
specified by d digit numbers, therefor the related
field of M will be Z. The limit manifold mν → ∞
M, is smooth.

Definition 2. Regarding the definition of cu-
mulative distribution or joint distribution func-
tion (CDF) [7], [15]. We may define a function
F
(
x1, x2, ..., xd

)
at any point P

(
x1, x2, ..., xd

)
∈ M

as follows:

0 ≤ F ≤ 1

lim
xi→∞

F = 1, 1 ≤ i ≤ d

lim
xi→−∞

F = 0, 1 ≤ i ≤ d

(3)

Axiom For a system consisting of a large num-
ber of particles, there is a smooth and differentiable
probability density function in the manifold M that
yields the density of particles in any volume element
dV in the manifold. This postulate is consistent
with the accepted postulates of the kinetic theory
of gases and the Maxwell-Boltzmann distribution.

2 Introducing Particle De-
pendent Coordinates

Assume a system consisting of a large number N of
particles confined in an interval of space-time. Tak-
ing into account of such a system of particles, brings
us the advantage of choosing a sufficient huge num-
ber of particles, moreover we could substitute par-
ticles by any kind of systems defined by their arbi-
trary points in parametric space. Suppose that a
set of independent parameters labeled by ν is to be
considered in a small interval of time ∆τ . We label
the particles by integer numbers up to N , and di-
vide the possible range of each parameter into such
small intervals that satisfy the accuracy of the ex-
periment. These intervals are defined as in Defini-
tion 1, denoted by ∆xν (i) where i stands for the
ordered location number of an intervals on the co-
ordinate xν :

xν (i− 1) < xν (i) < xν (i+ 1) (4)

So the variable’s value of each particle falls in
just one of these intervals.

Definition 3. Let the basis vectors ε1 =
(1, 0, 0, ..) , ε2 = (0, 1, 0, ..) , .. εN = (0, 0, 0, .., 1)
span a vector space V of the dimension N over the
field Z, where N is the number of particles. V is
regarded as a lattice Euclidean space endowed with
Cartesian coordinates. The particles are labeled by
ordered integer numbers; therefore, we set ε1 as the
basis for the first particle and ε2 as the basis for
the second particle, and so on. Here any particle
specifies an independent (basis) coordinate with two
possible values 0 and 1. Obviously these basis are
orthogonal. We call these set of basis as parti-
cle oriented coordinate that as a coordinate chart is
homeomorphic to a sub-space of Euclidean lattice
space ZN . In this case the dual basis presentation
coincides the same original basis i.e. ε∗i = εi. The
dual basis could also be represented as a binary ar-
ray like ; ε∗3 = (0, 0, 1, .., 0). At any point on the
manifold M the basis

(
∂

∂x1 ,
∂

∂x2 , ..,
∂

∂xd

)
spans the

tangent space TPM. The basis ε∗µ acts on the basis
∂ν = ∂

∂xν of tangent space at the point P ∈ M by
the relation ε∗µ (∂ν) = δµν because ε∗µ is specified to
the variable xν and acts on ∂ν to return the compo-
nent ”1” for the related particle, while its action on
∂µ which is independent from ∂ν returns ”0”. Con-
sequently, the vectors ε∗µ are living in cotangent
space T ∗

PM.
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For each interval ∆xν (i), there are some par-
ticles that their variable xν places in this interval.
Let record the results of these outcomes in an array
whose entries are 0 or 1 in such a way that for par-
ticles with parameter value in interval ∆xν (i),the
corresponding value in array reads 1 and otherwise
0. For example, for the first particle, if its parame-
ter value xν falls in the range of ∆xν (i), it returns
1, and otherwise 0. If this process iterates for all
particles, then we obtain an array of entries for this
interval which could be arranged as a vector eν (i).
This vector is a binary array which carries the in-
formation of this interval for a system of particles,
e.g.

eν (i) = (1, 0, 0, 1, 1, 0, 1, ...) (5)

Each of these 0 and 1 connected to a specific par-
ticle in the system and the total number of entries
equals the total number of particles N . In this ex-
ample, the first entry 1 means that the value of the
variable xν for the particle with label 1 is in the ith
interval. Hence, these vectors are members of a vec-
tor space of dimension N . As defined in Definition
3, one may attribute to any particle an independent
basis εν for i th particle as

εν = (0, 0, 0, ..1, ..0, 0) (6)

where only the i th entry takes the value 1. The
result of projection of a set of εν on the coordi-
nate xν turns out the array eν (i) in equation (5).
This means that the sum of basis εν of all particles
with the common value of xν yields the vector eν (i).
For example, the vector in Equation (5), is the sum
eν (i) = ε1 + ε4 + ε5 + ...

The vectors eν (i) at each point on xν be-
longs to a sub-space N of V defined in definition
3. Obviously, the dimension of N is d. At any
point P on M, if the tangent space spanned by(

∂
∂x1 ,

∂
∂x2 , ..,

∂
∂xd

)
denoted by TPM and the tangent

space at the same point onN denoted by TPN , then
there is a one-to-one mapping between these spaces.

Remark. With respect to the Definition 3, the
vectors e∗ν (i) as the sum of ε∗i at any point
P
(
x1, x2, ..., xd

)
∈ M are functional at P with local

coordinates
(

∂
∂x1 ,

∂
∂x2 , ..,

∂
∂xd

)
, thus belong to the

dual space of M i.e. e∗ν (i) ∈ T ∗
PM

Lemma 1. The set of basis eν (i) for fixed ν are
mutually orthogonal.

Proof. Any particle takes just one value and conse-
quently one interval on xν coordinate. So, as was
shown in Definition 4, columns of Dmν×N carry just
one entry 1 while other entries take 0. If the n th
component of eν (i) is denoted by [eν (i)]n, then the
inner product ⟨eν (i) , eν (j)⟩ can be read as a sum
over all particles:

⟨eν (i) , eν (j)⟩ =
N∑

n=1

[eν (i)]n [eν (j)]n (7)

The components [eν (i)]n and [eν (j)]n do not
take the 1 value simultaneously, because a particle
can not take two values on xν , thus it is easy to
conclude that inner product ⟨eν (i) , eν (j)⟩ vanishes
for i ̸= j

⟨eν (i) , eν (j)⟩ = δij (8)

The orthogonality of these bases is proved.

Definition 4. For a fixed ν, we define the matrix
Dmν×N with eν (i) as the ith row. mν as described
in Definition 1, is the number of infinitesimal inter-
vals in xν . Obviously each column of this matrix
contains just one entry 1 and other entries are 0,
because each column belongs to a particle which oc-
cupies just one value (interval) at ∆xν (i) .

Because of orthogonality, the set of
{eν (i) |1 ≤ i ≤ mν} for a fixed ν span a tangent
space T ν

PN which is in one to one mapping with
tangent T ν

PM with coordinates xν (i).

Span {eν} = T ν
PN (9)

T ν
PN ⊂ TPN (10)

The manifold N is a lattice Euclidean space, but
the manifold M as a lattice space is not necessarily
flat and may be endowed by a general Riemannian
metric.

The probability density of particles within inter-
val dxν (i) which will be denoted by fν (i), is pro-
portional to the ratio of total number of entry ”1”
in the eν (i), denoted by nν (i), to total particles
number N :

fν (i) dx
ν (i) =

nν (i)

N
(11)

It is straightforward to conclude that nν (i)
equals the inner product ⟨eν (i) , eν (i)⟩ . In an in-
finitesimal limit of ∆xν (i) the basis e∗ν (i) as the
dual vector of eν (i) approaches dxν (i) which be-
longs to the cotangent (dual) space basis of T ∗ν

P M
while it carries the information about that interval
in the system considered. With respect to coordi-
nate transformations xν → x̄ν in variable space, we
apply the rule of dxν (i) transformation with sum-
mation on ν:

dx̄µ =
∂x̄µ

∂xν
dxν (12)

In this equation and all tensor equations in the
next sections, we use Einstein’s summation con-
vention on repeated covariant and contravariant in-
dices.
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2.1 Binary Data Matrix

Combining all row vectors eν (i) for all d variables
of N particles gives a matrix Dm×N with m rows
defined in equation (2) and N as the total number
of particles. This matrix itself is also the combina-
tion of d matrices each for a specific variable. As an
example if for a variable with coordinate xν , there
are mν intervals, then a matrix Dmν×N with mν

rows and N columns could be identified as a part of
Dm×N where e∗ν (i) constitute the set of dual basis
for coordinates xν at any location i. The columns of
Dmν×N carries just one entry 1 , because each col-
umn corresponds to one particle that its variable’s
value falls in just one of intervals ∆xν , namely
∆xν (i). Obviously combining all Dmν×N results in
the data matrix Dm×N . As we showed in Equation
(9) the set of {eν (i)} spans a tangent space TPN
at a point P ∈ N .

Remark. The joint probability density of two vari-
ables xν (i) and xµ (j) is proportional to the number
of particles that simultaneously have the same pa-
rameter values of xν (i) and xµ (j) or equivalently
are confined in ∆xν (i) and ∆xν (j) where i and j
indicate the values of the coordinates xν and xµ (i.e.
coordinate values). If this number presented by nµν

the exact form of joint probability density reads as:

fµνdV =
nµν

N
µ ̸= ν (13)

dV = dxµ (i) dxν (j) is the volume element.
It is noteworthy to remind that for µ = ν the

joint density fµν and nµν reduce to fµ and nµ re-
spectively as will be shown in Lemma 3 .

Definition 5. We define the generalized inner
(scalar) product ⊙ for vectors U, V,W, .. in a vec-
tor space V with orthogonal local coordinates as a
multi-linear map:

Φ : Vm → R ; U ⊙ V ⊙W... =

m∑
n=1

unvnwn...

(14)
Where un, vn, .. are n − th components of U ,

V , .. respectively. This is simply a generalization
of inner products in the usual definition. For inner
product of two basis vector in Cartesian coordinate
on Euclidean tangent or cotangent space, results in
metric tensor. As an example, the inner product
for ei and ej ∈ TPM results in the metric tensor
gij =

〈
∂

∂xi ,
∂

∂xj

〉
Lemma 2. Generalized scalar operation ⊙ is linear
and commutative.

U ⊙ V = V ⊙ U

λ1U ⊙ λ2V = λ1λ2V ⊙ U

(U + V )⊙W = U ⊙W + V ⊙W

(15)

Proof. Due to Definition 5, it is straightforward
to derive the equations of linear and commutative
properties.

If the vector U is a binary vector, the idempo-
tent property also holds:

Lemma 3. For inner product ⊙ of k vectors when
k ≥ 3, the repeated vectors reduces to one vector

U ⊙ V ⊙ V ⊙W = U ⊙ V ⊙W (16)

Proof. Applying definition in equation (14) and
commutative property of ⊙ proves the equation
(16).

2.2 Joint probability densities as
tensor densities

Theorem 4. The joint probability density
fµνξ.. (i, j, k, ..) for particles with common co-
ordinate values xµ (i), xν (j), xξ (k)... can be
given by the generalized inner product of the ba-
sis {eµ (i) , eν (j) , eξ (k) , ..} via the equation:

fµνξ.. (i, j, k, ..) dV (i, j, k...) =

lim
N→∞

1

N
eµ (i)⊙ eν (j)⊙ eξ (k) ..

(17)

Proof. By using the equation (14) for basis
{eµ (i) , eν (j) , eξ (k) , ..} and by omitting the loca-
tion indices i , j , k , .. we have:

eµ ⊙ eν .. =

m∑
n=1

(eµ)n (eν)n .. (18)

Summation carried out on all particles. Since
components of (eµ)n take two values 0 or 1; the non-
vanishing terms are those with components that si-
multaneously take 1, and therefore right side sum
of equation (18) reduces to the number of particles
whose parameter values simultaneously are located
in the intervals i , j , k , .. in the corresponding
xµ, xν , xξ,.. coordinates. This number is denoted as
nµνξ. Normalization of nµνξ as defined in equations
(13) and (17) by 1/N yields the ratio of this number
to total number of particles and consequently gives
the joint probability fµνξ.. of particles with common
coordinate values xµ (i), xν (j) .. .

fµνξ..dV (i, j, k...) =
nµνξ..

N
=

1

N
eµ (i)⊙eν (j)⊙eξ (k) ..

(19)

Due to the mentioned axiom, the joint proba-
bility fµνξ..dV (i, j, k...) and

nµνξ..

N
are smooth dif-

ferential forms at the limit N → ∞ and dV → 0.
The equation (19) reveals a specific configuration
or state of related system for which there is a spe-
cific set of joint probabilities fµνξ.. that represents
the exact state of it. Any configuration (state) of
this system can be represented by such a specific
set {eµ (i) , eν (j) , eξ (k) ..} for all points on manifold
M and vice versa. Evidently the order of indices
µ, ν ξ .., does not affect on the related joint proba-
bility density. The example of this symmetry could
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be found in symmetric properties of metric tensors
gij = ⟨ei, ej⟩ or gij =

〈
e∗i, e∗j

〉
with respect to their

lower and upper indices, respectively. We show the
tensor properties of fµνξ.. in the next theorem.

Lemma 5.
nµνξ..

N
are covariant tensors.

Proof. Let Vν = T ν
PN ⊂ TPN and V ∗ν = T ∗ν

P N ⊂
T ∗
PN . From equation (19) we have the following.

nµνξ..

N
=

1

N
eµ (i)⊙ eν (j)⊙ eξ (k) .. (20)

Since eµ ∈ Vµ, the equation (19) is a map ϕ from
Vµ × Vν × Vξ.. to R or in a brief notation:

ϕ : V d → R (21)

Respect to linear properties of ⊙ in equations
(14) ϕ is a multi-linear map with the following prop-
erty:

φ (e1, ..., aei + bεi, ..., ed) =

e1 ⊙ ...⊙ aei ⊙ ...⊙ ed + e1 ⊙ ...⊙ bεi ⊙ ...⊙ ed
(22)

φ (e1, ..., aei + bεi, ..., ed) =

aφ (e1, ..., ei, ..., ed) + bφ (e1, ..., εi, ..., ed)
(23)

There is a one to one map between local tangent
vectors ∂

∂x1 ,
∂

∂x2 , ..,
∂

∂xd on M and tangent vectors
e1, e2, .., ed on N at any point P . Since Z is the
common field of both vector spaces, therefore the
tangent spaces TPN and tangent space TPM are
isomorphic. The term

nµνξ..

N
, due to the axiom in

section (1) and equation (19) is a smooth differen-
tial form and as a multi-linear map defined in (20) is
transformed as covariant tensor at any point p ∈ M,
with the rank ≤ d similar to equation (12). Thus,
under the coordinate transformation xν → x̄ν we
have:

n̄µνξ..

N
=

(
∂xα

∂x̄µ

∂xβ

∂x̄ν

∂xγ

∂x̄ξ
..

)
nαβγ..

N
(24)

Theorem 6. The joint probability density fµνξ.. de-
fined in (19) is a covariant tensor density of weight
-1.

Proof. With the coordinate transformation xν →
x̄ν , the equations (19) and (24) give:

f̄µνξ..dV̄ =
n̄µνξ..

N
=

(
∂xα

∂x̄µ

∂xβ

∂x̄ν

∂xγ

∂x̄ξ
..

)
nαβγ..

N
(25)

Respect to equation (19) we have:

f̄µνξ..dV̄ =

(
∂xα

∂x̄µ

∂xβ

∂x̄ν

∂xγ

∂x̄ξ
..

)
fαβγ..dV (26)

Due to the definition of volume elements dV and
dV̄ , we obtain:

f̄µνξ.. = |J |−1

(
∂xα

∂x̄µ

∂xβ

∂x̄ν

∂xγ

∂x̄ξ
..

)
fαβγ.. (27)

Where |J | denoted as determinant of Jacobian.
With respect to the definition of the tensor density,
f̄µνξ.. in equation (27) is a tensor density of weight
-1.

Remark. Taking into account the commutative
property of ⊙ from equations (15), the tensor den-
sity fµνξ.. is symmetric with respect to the covariant
indices µ, ν, ξ. as expected for a joint probability.
On the other hand repeated covariant indices reduce
to non-repeated indices as we showed in Lemma 3:

fαββγ.. = fαβγ.. (28)

3 Joint Probability Den-
sities as Symmetrized
Covariant Derivatives of
Cumulative Distribution
Function

In the context of probability theory, the joint prob-
ability density of multiple (random) variables which
are defined on a flat Euclidean space equipped with
Cartesian coordinate, presented as a sequence of
partial derivative of cumulative distribution func-
tion [7],[12],[15] and [17]:

fijk.. =
∂nF

∂xi∂xj∂xk..
= (∂i∂j∂k..)F (29)

Where F stands for the cumulative distribution
function (CDF) and ∂i = ∂

∂xi . In this sequence
of partial derivatives, repetition of indices is not al-
lowed. Obviously fijk.. is not a tensor and does
not meet the transformation requirement of tensors.
Therefore, in a flat Euclidean space with Cartesian
coordinates

(
x1, x2, ..

)
, the joint probability den-

sity under coordinate transformation xν → x̄ν will
transform as [12]:

f̄
(
x̄1, x̄2, .., x̄d

)
= |J |−1 f

(
x1, x2, .., xd

)
(30)
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3.1 Taylor Expansion

fµνξ.. as a covariant tensor is full symmetric respect
to covariant indices and fulfils this property of joint
probability densities. Joint probability densities for
cumulative distribution function on Euclidean flat
manifolds, are derived by regular partial derivatives
respect to the contravariant coordinates xi .

Lemma 7. If a differentiable smooth scalar func-
tion ϕ is defined on a d-dimensional Euclidean space
with Cartesian coordinates, then the Taylor expan-
sion of ϕ around a point

(
x1
0, x

2
0, .., x

d
0

)
when for all

ν, (xν − xν
0) → 0 will read as follows:

ϕ
(
x1, x2, .., xd

)
= ϕ

(
x1
0, x

2
0, .., x

d
0

)
+

∂ϕ

∂x1

(
x1 − x1

0

)
+

∂ϕ

∂x2

(
x2 − x2

0

)
+ ..+

∂dϕ

∂x1∂x2..∂xd

(
x1 − x1

0

)
..
(
xd − xd

0

)
(31)

Proof. For a function ϕ
(
x1, x2, .., xd

)
defined on a

d-dimensional space, at the limit (xν − xν
0) → 0 if

the order of
(
x1 − x1

0

)
.. (xν − xν

0) be higher than d,
it will be negligible. Therefor the expansion at this
limit will close at the d th order of the partial deriva-
tives.

Let ϕ = F be the cumulative distribution func-
tion. Because at the limit xν → xν

0 , the term(
x1 − x1

0

)
..
(
xd − xd

0

)
in Cartesian coordinates is the

volume element, its coefficient in the last term is the
joint probability density for variables d at xν → xν

0 ,
as shown in equation (31).

The Taylor expansion could be generalized to
the Taylor expansion on a Riemannian manifold
by means of symmetric (symmetrized) covariant
derivatives. Symmetrization of the multiple covari-
ant derivative (symmetrized covariant derivative)
could be accomplished by routine symmetrized form
[16],[19]:

Tµν..κ =
1

k!
∇(µ∇ν ..∇κ )F (32)

This notation with bracket around indices is the
abbreviation for the sum of all permutations over
1 ≤ k ≤ d indices. In this sequence of covari-
ant derivatives, the repetition of indices is not al-
lowed. Obviously Tµν..κ is a tensor. In the Tay-
lor expansion for F on a Riemannian manifold, the
last symmetrized consecutive covariant derivatives
is the coefficients of

(
x1 − x1

0

)
..
(
xd − xd

0

)
at the

limit xν → xν
0 where the coordinates xi are the lo-

cal coordinates of Riemannian manifold M. At this
limit the last term reads as:

Tµν..κdx
1dx2..dxd =

1

d!
∇(µ∇ν ..∇κ )Fdx1dx2..dxd

(33)

By multiplying and dividing to
√
g and taking

into account the property ∇µgνξ = 0, we get:

Tµν..κdx
1dx2..dxd =

1
√
gd!

∇(µ∇ν ..∇κ )F
√
gdx1dx2..dxd

(34)
In this equation the last term F

√
gdx1dx2..dxd is a

scalar density which is invariant under integration
on the possible domain and the term

√
gdx1dx2..dxd

is invariant volume element. Since
√
g is a tensor

density of weight 1, the term :

1
√
gd!

∇(µ∇ν ..∇κ )F (35)

is a tensor density of weight -1. Therefor respect
to equation (27), and the fact that this term is the
coefficient of invariant volume element, it equals to
the joint probability density:

fµν..κ =
1

√
gd!

∇(µ∇ν ..∇κ )F (36)

fµν..κ is symmetric with respect to the indices
as expected for a joint probability density. Actually
these covariant derivatives of any order remain as
tensors and preserve the tensor properties of fµν..κ.
The equation (36) after contraction by metric ten-
sors gαµ could be presented in the contravariant
form. We define gαµ∇µ = ∇α as ”contravariant
derivative” [18]. Because of the identity ∇ξg

αµ = 0
and the fact that covariant derivative of tensor prod-
ucts obey the Leibniz rule ([8] page110), the deriva-
tive ∇ξ and gαµ are commutative, thus after multi-
plying both side of equation (36) by gαµgβν ..gδκ we
obtain:

fαβ..δ =
1

√
gd!

∇(α∇β ..∇δ )F (37)

This is the joint probability density defined in dual
space of variables.

Regarding the definition of covariant derivative
of the scalar F , for the first order covariant deriva-
tive we have:

∇νF =
∂

∂xν
F (38)

Adding more symmetrized covariant derivatives
leads to the terms that contains Christoffel symbols
[20]:

∇(µ∇ν )F =
1

2
(∇µ∇ν +∇ν∇µ)F

= ∇µ∇νF = ∂µ∂νF − Γξ
µν∂ξF

(39)

Where, the identity ∇µ∇νF = ∇ν∇µF is used
in equation (39).

Lemma 8. In a flat Euclidean manifold with Carte-
sian coordinates, equation (36) reduces to (29).

Proof. In an Euclidean space with Cartesian coor-
dinates all terms of Γξ

µν vanish and ∇µ reduces to
∂µ:

∇(µ∇ν ..∇κ ) = d!∂µ∂ν ..∂κ (40)
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Taking into account the identity g = 1 for this case,
the equation (36) becomes:

fµν..κ = ∂µ∂ν ..∂κF (41)

Therefore, the joint probability density in Equa-
tion (29) is a special case of Equation (36).

3.2 Equivalence of Symmetrized
Covariant Derivative and
Generalized Inner Product

In previous sections the joint probability densi-
ties have been derived by two distinct methods 1)
Symmetrized covariant derivatives on Riemannian
manifold 2) Generalized inner product defined on
”Particle-Oriented coordinates”. This conveys the
idea of equivalence of these two operation on ba-
sis vectors of connected and discrete spaces respec-
tively. Based on Equations (19) and (36) this equiv-
alence can be shown by the following notation:

∇µF ∼ eµ

∇(µ∇ν )F ∼ eµ ⊙ eν

∇(µ∇ν∇ξ )F ∼ eµ ⊙ eν ⊙ eξ

(42)

These relations suggest a new method to con-
nect the concepts in discrete and continuous proba-
bility theory and a novel interpretation of covariant
derivatives in differential geometry.

4 Examples

In this section, some examples of the application of
joint probability densities in physics and engineering
are presented. Actually the joint probability densi-
ties fµνξ.. and fµνξ.. as tensor densities, remind us
the physical tensors such as stress-energy tensor Tµν

which stands for definitions of energy density, mo-
mentum density or energy flow density in Rieman-
nian curved space-time manifold. Therefore these
type of tensors could exemplify a physical realiza-
tion of joint probability densities of two variables
on the Riemannian space. the following example re-
veals the physical interpretation of joint probability
densities as tensor density in various field of physics.

4.1 Example 1

Four-current density has many applications in engi-
neering and its transformation under xν → x̄ν on a
manifold with metric tensor gµν is represented as a
four-vector density by [6]:

j̄µ ≡ |J |−1 ∂x̄µ

∂xα
jα (43)

where jµ is a contravariant tensor density of rank -1.

4.2 Example 2

The stress-energy tensor T ij , with i, j ∈ {0, 1, 2.3}
that has been introduced in the context of general
relativity, as a contravariant tensor of rank 2 [21]
, µ, ν ∈ {1, 2.3}, comprises of five physically dif-
ferent components ; T 00 as energy density, Tµ0 as
energy flux density, T 0µ as momentum density, Tµµ

as pressure and Tµν with µ ̸= ν as shear stress den-
sity. Thus, the stress-energy tensor Tµν is a physical
example of a joint probability density tensor in a de-
terministic case of physics such as general relativity.
This fact conveys the idea that many deterministic
physical variables have a fundamentally probabilis-
tic origin.

5 Conclusion

This article introduces a general form of the joint
probability density of variables that are defined on
a Riemannian manifold. It is shown that the joint
probability densities on Riemannian manifold trans-
forms as tensor densities of weight -1. Approach to
these results facilitated by introducing a binary data
matrix that collects the variables information of a
system of particles on a lattice Euclidean space em-
bedded by the particle oriented coordinates where
the joint probability densities identified as a new
definition of generalized (multi-linear) inner prod-
ucts of basis vectors. By this method the tensor den-
sity properties of joint probability is proved. Based
on Taylor expansion of scalar field in a Riemannian
manifolds,it has been shown that the symmetrized
iterative covariant derivatives of cumulative proba-
bility function defined on the Riemannian manifold
also give the set of related joint probability den-
sities equivalent to the generalized inner products
method. As an outcome, the equivalence of sym-
metrized iterative covariant derivatives and multi-
linear inner product is proved. It has been shown
that, in Euclidean space of variables with Cartesian
coordinates, the generalized joint probability den-
sity reduces to the usual form of iterative partial
derivative of cumulative function. A new method to
connect concepts in continuous and discrete prob-
ability theory and a novel interpretation of covari-
ant derivative by generalized inner product has been
proposed. Some examples of well-known physical
tensors convey us that many deterministic physi-
cal variables may have fundamentally a probabilistic
origin that through the future work on this subject
will be more clarified.
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