
On Semi Generalization of Compatible Ideals Regarding Semi
Generalised Open Sets

ALI BULAMA MAMMAN1,ABDUL IGUDA2,
ENOCH SULEIMAN3, HARUNA USMAN IDRISS4, KAZE ATSI5.

Department of Mathematics
1,3,4,5 Federal University Gashua, Yobe State

2Bayero University Kano, Kano State
NIGERIA
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x such that U ∪ A ∈ I , then A ∈ I . It is a generalization of the existing generalized compatible ideal. We
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1 Introduction
[1] was the first person that presented the concept
of ideal in topological space in the year 1930 as a
nonempty collection of subset of a topological space
(X,τ ) that is closed under heridity and finite additive
properties. It is denoted by I . The notion of ideal
in topological space was introduced in two ways:The
first way was concerned with the study of local prop-
erties of topological space that may be extended to
global properties. While the second way was con-
cerned with ideals to generalize certain properties of
topological space, such as compactness and separa-
tion axioms [2]. When a topological space is endowed
with an ideal, it is called an ideal topological space
denoted by (X , τ , I). In 1933 [3] first presented the
notion of local function ()∗ : P (X) −→ P (X) de-
fined such as A⋆(I, τ) = {x ∈ X : U ∩ A ̸∈ I}
where U is open neighborhood of x andA is any sub-
set of X . When there is no uncertainty, we use A∗

instead ofA⋆(I, τ). In 1944 [4] studies the local func-
tion introduced by Kuratowski and investigate some
of its properties. [5] in 1987 gave the concept of semi
generalized closed and open sets. In 2010 [6] pre-
sented the notion of semi-local function and semi-
compatible ideals by using ideal and semi-open sets
in an ideal topological space. In 2013 [7] presented
the notion of local closure function as generalization
of local function and explored the closure compatible
ideal in ideal topological space. In 2013 [8] used gen-
eralised open sets to gave the concept of generalised

local function in ideal topological space. In 2014 [9]
used a-open sets to presented the concept of a-local
function and characterized a-compatible ideal with a-
local function. In 2017 [10] presented a new class
of closed sets called semi generalized ωα-closed sets
in topological spaces which properly lies between the
class of semi-closed sets and the class of gs-closed
sets. Further defined sgωα-closure and sgωα-interior
in topological spaces and obtained some of their prop-
erties. In 2019, [11] presented the notion of gener-
alized compatible ideal with generalized-open sets in
codense ideal topological space. Therefore, in this pa-
per we presented semi generalised local function and
semi generalised compatible ideal.
The followings are very important in this paper.

1.1 Definition[1]
An ideal in topological space is defined as a collection
I of nonempty subset of a topological space (X,τ ) sat-
isfying the following conditions.

1. If A ∈ I and B ⊆ A, then B ∈ I (heredity)

2. If A ∈ I and B ∈ I , then A ∪ B ∈ I
(finite additivity)

1.2 Definition [12]
A topology on a nonempty set X is a collection τ of
subsets of X , that satisfies the following.

1. ∅ and X belong to τ ;
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2. The union of any collection of sets in τ belong to
τ ;

3. The intersection of any finite number of sets in τ
also belong to τ .

1.3 Remark
The space (X , τ ) is called a topological space and also
the space (X, τ , I) is called an ideal topological space.
The members of topology τ are called open subsets of
X . If A ⊆ X , the interior of A denoted as int(A) is
the union of all open subsets of X contained in A.

1.4 Definition [13]
Let (X , τ , I) be defined as an ideal topological space.
An ideal I is said to be compatible with respect to
open subsets ofX , denoted by τ ∼ I if the following
condition is satisfied for every A ⊆X: if for every x
∈ A there exists an open set U containing x such that
U ∩ A ∈ I , then A ∈ I .

1.5 Definition [14]
Let (X, τ) be a topological space. A subsetA ofX is
said to be generalized open (g-open ) if F ⊆ int(A)
and F ⊆ A whenever F is closed in (X, τ).
And A is said to be a generalized closed (g-closed )
if Cl(A) ⊆ U and A ⊆ U whenever U is open in (X ,
τ ).
Complement of a g-open set is g-closed and comple-
ment of g-closed set g-open. A collection of all gen-
eralized open sets in a topological space (X, τ) is de-
noted as τg.

1.6 Definition [15]
Let (X , τ ) be defined as a topological space. A subset
A of X is said to be Semi-open set if the following
holds A ⊆ cl(int(A)). The family of all semi-open
subsets ofX is denoted by τs. The union of all semi-
open subsets of X contained in A is called the semi-
interior of A denoted by sint(A) or ints(A).

1.7 Definition [15]
Let (X , τ ) be defined as a topological space. A subset
A of X is said to be a Semi-closed set if int(cl(A))
⊆ A. The family of all semi-closed subsets of X is
denoted by τs-closed. The intersection of all semi-
closed sets containing a subset A of X is known as
semi-closure ofA and is denoted by scl(A) or cls(A).

1.8 Definition [5, 15, 16]
Let (X , τ ) be defined as a topological space. A sub-
set A of X is said to be a semi-generalized open (sg-
open) set if F ⊆ ints(A) whenever F ⊆ A and F
is semi-closed set in (X , τ ). The family of all semi
generalized open subsets of X is denoted as τsg. The
union of all semi-generalized open subsets ofX con-
tained in A ⊆ X is called semi generalized-interior
of A denoted by intsg(A).

1.9 Remark
The complement of sg-open set is sg-closed and com-
pliment of sg-closed set is sg-open.

1.10 Definition [15, 16]
Let (X , τ ) be a topological space. A subset A of X
is said to be a semi-generalized closed (sg-closed) set
if Cls(A) ⊆ U whenever A ⊆ U and U is semi-open
in (X , τ ). The family of all semi- generalized closed
subsets of X is denoted by τsg-closed. The intersec-
tion of all semi-generalized closed subsets of X con-
taining a subsetA ofX is called semi-generalized clo-
sure of A denoted by clsg(A).

1.11 Definition
If (X, τ, I) is an ideal topological space. A subset A
of X is said to be [17]

1. L∗-perfect if A−A∗ ∈ I

2. R∗-perfect if A∗ −A ∈ I

3. C∗-perfect if A is both L∗-perfect and R∗-
perfect.

1.12 Definition [13, 16]
LetX be a topological space and x ∈X . A subsetN
of X is said to be semi-generalized - neighbourhood
(sg - neighbourhood) of x if there exist sg -open set
G such that x ∈ G ⊂ N .

1.13 Definition [3]
Let (X , τ ) be a topological space and A ⊆ X , then
a point x ∈ A is said to be semi-generalized interior
(sg - interior ) point of A if A is sg - neighbourhood
of x. The set of all Sg - interior point of A is called
the sg - interior of A and is denoted by sg - int(A) or
intsg(A).

1.14 Definition [3]
Let (X ,τ ) be a topological space and A ⊆X , the in-
tersection of all sg - closed sets containingA is called
sg - closure of A denoted by sg-cl(A). i.e. clsg(A) =
∩ {F : A ⊂ F ∈ sgc(X)}.

1.15 Lemma [16]
If A is a subsets of X , then g-int(A) ⊂ sg-int(A),
where g-int(A) is given by g-int(A) = ∪{G :
G is g-open, G ⊂ A}.

1.16 Proof
Let A be the subset of X .
Let x ∈ int(A) ⇒ x ∈ ∪{G : G is g-open, G ⊂ A}
⇒ there exists a g-open set G such that x ∈ G ⊂ A
⇒ there exists a sg-open set G such that x ∈ G ⊂ A,
as every g-open set is sg-open set in X
⇒ x ∈ ∪{G : G is sg-open, G ⊂ A}. Hence g-
int(A) ⊂ sg-int(A).
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1.17 Example [10]
Let X = {a, b, c} with topology τ =
{X, ∅, {a}, {c}, {a, c}}. Then τsg =
{X, ∅, {a}, {c}, {a, b}, {a, c}, {b, c}} and
τg = {X, ∅, {a}, {c}, {a, c}}. If A = {b, c}, then
sg-int(A) = {b, c} and g-int(A) = {c}. It follows
g-int(A) ⊂ sg-int(A).

1.18 Remark
Every g-open set is sg-open set inX . But the converse
is not true.

2 Semi-generalized local function
2.1 Definition
Let (X ,τ ,I) be an ideal topological space. A set
operator ()∗sg : P (X) −→ P (X) is called semi-
generalized local (sg-local) function of A with re-
spect to τ and I is defined as A∗

sg(I, τ) = {x ∈
X : U ∩ A ̸∈ Ifor every U ∈ N(sg)x} where
N(sg)x is called a semi-generalized neighbourhood
(sg-neighbourhood ) system of x. i.e the collection of
all semi generalized open (sg-open ) sets containing
x. N(sg)x = {U ∈ τsg : x ∈ U}. Where τsg is the
set of all semi generalized open sets in (X, τ, I).

2.2 Lemma
Let (X, τ, I) be an ideal topological space and
A,B ⊆ X . Then the following holds:

1. ∅∗sg = ∅;

2. A ⊆ B ⇒ A∗
sg ⊆ B∗

sg;

3. A∗
sg ⊆ A;

4. If I1 ⊆ I2 ⊆ I , then A∗
sg (I2) ⊆ A∗

sg (I1);

5. (A∗
sg)

∗
sg ⊆ A∗

sg;

6. A∗
sg ∪ B∗

sg= (A ∪B)∗sg;

7. (A∗
sg-B∗

sg) ⊆ (A-B)∗sg-B∗
sg= (A-B)∗sg;

8. If I1, I2 ⊆ I , thenA∗
sg(I1)∪A ∗

sg(I2)⊆A∗
sg(I1∩

I2);

9. A∗
sg = clsg(A

∗
sg) ⊆ clsg(A).

2.3 Proof
Let (X, τ, I) be an ideal topological space. IfA,B ⊆
X .

1. ∅∗sg = ∅ is obvious.

2. Let A ⊆ B, then we want to show that A∗
sg ⊆

B∗
sg. Thus, if x ∈ A∗

sg, then there exist sg-open
set U which contain x such that U ∩A /∈ I . Since
A ⊆ B, then clearly U ∩A ⊆ U ∩B by heredity
property of ideal U ∩B /∈ I . Hence A∗

sg ⊆ B∗
sg.

3. Let A ⊆ X , if x ∈ A∗
sg, then there exist sg-open

set U which contain x such that U ∩A /∈ I . Since
U ∩A ⊆ A, then clearly A∗

sg ⊆ A.

4. Let I1, I2 ⊆ I and I1 ⊆ I2, if x ∈ A∗
sg(I1), then

there exist sg-open set containing x such thatU∩
A /∈ I1 and also x ∈ A∗

sg(I2), implies here exist
sg-open set containing x such that U ∩ A /∈ I2,
but I1 ⊆ I2 implies U ∩ A /∈ I2 ⊆ U ∩ A /∈ I1.
Hence A∗

sg(I2) ⊆ A∗
sg(I1).

5. LetA⊆X and x ∈A∗
sg, then there exist sg-open

set U containing x such that U ∩A /∈ I . Since by
our lemma 2.2 (3) A∗

sg ⊆ A implies U ∩ A∗
sg ⊆

U ∩ A /∈ I by considering the heredity property
of ideal U ∩A∗

sg /∈ I . Hence (A∗
sg)

∗
sg ⊆ A∗

sg.

6. Let A,B ⊆ X . Then since A ⊂ A ∪B and B ⊂
A ∪B. By lemma 2.2 (2) A∗

sg ⊂ (A ∪B)∗sg and
B∗

sg ⊂ (A ∪B)∗sg. Clearly,
A∗

sg ∪B∗
sg ⊂ (A∪B)∗sg. conversely, Suppose x∈

(A∪B)∗sg, then there exist sg-open set containing
x such that U ∩ (A ∪B) /∈ I . Thus,
U ∩ (A∪B)⊂ U ∩A ∪ (U ∩B) by considering
the heredity and finite additive properteis of ideal
U ∩ (A ∪ B) ⊂ U ∩ A ∪ (U ∩ B) /∈ I implies
U ∩ A /∈ I and U ∩ B /∈ I . Clearly, (A ∪ B)∗sg
⊂ A∗

sg ∪ B∗
sg. consequently,

A∗
sg ∪ B∗

sg = (A ∪B)∗sg.

7. Suppose A,B ⊆ X , since A ⊂ (A−B) ∪ B by
our
lemma 2.2 (2) A∗

sg ⊂ (A−B)∗sg ∪ B∗
sg implies

A∗
sg - B∗

sg ⊂ (A−B)∗sg ∪ B∗
sg - B∗

sg implies
A∗

sg - B∗
sg ⊂ (A − B)∗sg. conversely, since A −

B ∪B ⊂ A by
lemma 2.2 (2) (A−B)∗sg ∪B∗

sg ⊂ A∗
sg

implies (A−B)∗sg ∪B∗
sg - B∗

sg ⊂ A∗
sg - B∗

sg im-
plies
(A−B)∗sg ⊂ A∗

sg - B∗
sg. Therefore,

A∗
sg - B∗

sg = (A−B)∗sg.

8. Suppose I1, I2 ⊆ I , then we want to show that
A∗

sg(I1) ∪A∗
sg(I2)⊆A∗

sg(I1∩ I2). Since I1∩ I2
⊆ I1 and I1∩I2 ⊆ I2 by lemma 2.2 (4)A∗

sg(I1)⊆
A∗

sg(I1∩I2) andA∗
sg(I2)⊆A∗

sg(I1∩I2). Clearly
A∗

sg(I1) ∪ A∗
sg(I2) ⊆ A∗

sg(I1 ∩ I2).

9. Let A ⊆ X and since A∗
sg ⊂ clsg(A

∗
sg) hold in

general. Let x ∈ clsg(A
∗
sg), then there exist sg-

open set U which contain x such that A∗
sg ∩U ̸=

∅. Therefore, there exist some y ∈ A∗
sg ∩ U and

U ∈ τsg(x). Since
y ∈ A∗

sg A ∩ U /∈ I and so x ∈ A∗
sg. Thus

clsg(A
∗
sg) ⊂ A∗

sg. Hence
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A∗
sg = clsg(A

∗
sg) since by lemma 2.2 (3) A∗

sg ⊆
A implies
clsg(A

∗
sg) ⊆ clsg(A). Consequently A∗

sg =
clsg(A

∗
sg) ⊆ clsg(A).

2.4 Example
Let X = {a, b, c}, τ =
{X, ∅, {b}, {c}, {a, b}, {b, c}}
τ − closed = {∅, X, {a, c}, {a, b}, {c}, {a}}.
P (X) = {X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}
τs = {X, ∅, {b}, {c}, {a, b}, {b, c}, {a, c}}
τs-closed= {X, ∅, {a, c}, {a, b}, {c}, {a}, {b}}.
τsg = {∅, X, {b}, {c}, {a, c}, {b, c}, {a, b}}.
Taking I = {∅, {b}, {a, b}},A = {c} andB = {a, c}
then we have
A∗

sg = {c} and B∗
sg = {a, c}. Hence A∗

sg ⊆ B∗
sg

2.5 Example
Let X = {a, b, c, d}, τ =
{X, ∅, {a}, {b}, {a, b}, {a, b, c}}
τ − closed = {∅, X, {b, c, d}, {a, c, d}, {c, d}, {d}}.
P (X) = {X, ∅, {a, }, {b}, {c}, {d}, {a, b}, {b, c}, {c, d},
{a, c}, {a, d}, {b, d},
{a, b, c}, {b, c, d}, {c, d, a}, {a, b, d}}
τs = {X, ∅, {a}, {b}, {a, b}, {a, b, c}, {b, c, d}, {a, c, d}}
τs-closed= {∅, X, {b, c, d}, {a, c, d}, {c, d}, {d}, {a}, {b}}.
τsg = {∅, X, {a}, {b}, {a, b}, {a, b, c}, {b, c, d}, {a, c, d}}.
Taking I = {∅, {a}, {b }, {a, b}} and A = {a, b, c},
then A∗

sg = {c}, clearly A∗
sg ⊆ A.

2.6 Example
Let X = {a, b, c}, τ =
{X, ∅, {b}, {c}, {a, b}, {b, c}}
τ − closed = {∅, X, {a, c}, {a, b}, {c}, {a}}.
P (X) = {X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}
τs = {X, ∅, {b}, {c}, {a, b}, {b, c}, {a, c}}
τs-closed= {X, ∅, {a, c}, {a, b}, {c}, {a}, {b}}.
τsg = {∅, X, {b}, {c}, {a, c}, {b, c}, {a, b}}.
Taking I1 = {∅, {a}}, I2 = {∅, {a}, {b}, {a, b}} and
A = {b, c}, then A∗

sg(I1) = X and A∗
sg(I2) = {c}.

Hence A∗
sg(I2) ⊆ A∗

sg(I1)

2.7 Example
Let X = {a, b, c}, τ = {X, ∅, {a, b}, {b, c}, {b}}
τ − closed = {∅, X, {c}, {a, }, {a, c}}.
P (X) = {X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}
τs = {X, ∅, {a, b}, {b, c}, {b}}
τs-closed= {X, ∅, {c}, {a, }, {a, c}}.
τsg = {∅, X, {b, c}, {b}, {a, b}}.
Taking I = {∅, {a}, {b }, {a, b}} and A = {b, c}, then
A∗

sg = {c} and also (A∗
sg)

∗
sg = {c}. Therefore, (A∗

sg)
∗
sg

⊆ A∗
sg.

2.8 Example
Let X = {a, b, c}, τ =
{X, ∅, {b}, {c}, {a, b}, {b, c}}

τ − closed = {∅, X, {a, c}, {a, b}, {c}, {a}}.
P (X) = {X, ∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}}
τs = {X, ∅, {b}, {c}, {a, b}, {b, c}, {a, c}}
τs-closed= {X, ∅, {a, c}, {a, b}, {c}, {a}, {b}}.
τsg = {∅, X, {b}, {c}, {a, c}, {b, c}, {a, b}}.
Taking I = {∅, {a}, {b }, {a, b}} and A = {c}, B =
{a, c}, then A∗

sg = {c}, B∗
sg = {c} and (A ∪ B)∗sg =

({a, c})∗sg = {c}. Hence A∗
sg ∪ B∗

sg = (A ∪B)∗sg.

2.9 Example
Let X = {a, b, c}, τ = {X, ∅, {a}, {c}, {a, c}}
τsg = {∅, X, {a, c}, {b, c}, {a, b}, {a}, {c}}.
Taking I = {∅, {a}, {b }, {a, b}} and A = {a, b}, B =
{c}, then A∗

sg = ∅,
B∗

sg = {c} implies A∗
sg - B∗

sg = ∅ and since (A − B)
= ∅ implies (A−B)∗sg = ∅∗sg = ∅. Hence A∗

sg - B∗
sg =

(A−B)∗sg.

2.10 Example
Let X = {a, b, c}, τ =
{X, ∅, {b}, {c}, {a, b}, {b, c}}
τs-closed= {X, ∅, {a, c}, {a, b}, {c}, {a}, {b}}.
τsg = {∅, X, {b}, {c}, {a, c}, {b, c}, {a, b}}.
Taking I1 = {∅, {a}}, I2 = {∅,} and A = {a, c}, then
A∗

sg(I1) = {c} and
A∗

sg(I2) = {a, c}, since I2 ⊆ I1 implies I1 ∩ I2 = I2,
thus,
A∗

sg(I1 ∩ I2) = A∗
sg(I2) = {a, c}. Hence A∗

sg(I1) ∪
A∗

sg(I2) ⊆ A∗
sg(I1 ∩ I2).

2.11 Definition
A subset A of an ideal topological space (X ,τ ,I) is
said to be
1. τ∗sg - closed if A∗

sg ⊆ A;
2. ∗-sg-dense in itself if A ⊆ A∗

sg;
3. I - sg-dense if A∗

sg = X;
4. ∗-sg-perfect if A = A∗

sg;
5. L∗

sg - perfect if A - A∗
sg ∈ I;

6. R∗
sg - perfect if A∗

sg - A ∈ I;
7. C∗

sg - perfect if A is both L∗
sg - perfect and R∗

sg -
perfect.

3 Semi-generalized compatible
(Sg-compatible) ideal

3.1 Definition
Let (X , τ , I) be an ideal topological space. An
ideal I is said to be semi generalized compatible (sg-
compatible) with respect to semi-generalized open
(sg-open) subsets of X , denoted by τ ∼sg I if the
following condition is satisfied for every A ⊆ X: if
for every x ∈ A, there exist sg-open set U containing
x such that U ∪ A ∈ I , then A ∈ I .
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3.2 Theorem
Let (X , τ , I) be an ideal topological space and A be
any subset of X, then the following are equivalent.

1. τ ∼sg I;

2. If U = {Uα : α ∈ ∆} is semi-generalized open
cover for A such that
cl(Uα) ∩A ∈ I, ∀α ∈ ∆, then A ∈ I;

3. A ∩A∗
sg = ∅, then A ∈ I;

4. A is L∗
sg - perfect set;

5. If A is R∗
sg- perfect set, then A ∆ A∗

sg ∈ I;

6. For every τ∗sg -closed subset of A, then A− A∗
sg

∈ I .

3.3 Proof
1. (1) ⇒ (2) Suppose A ⊆ X and for every x ∈ A,

there exist sg -open set U which contain x such
that U ∩A ∈ I , then A ∈ I . Implies (2)

2. (2) ⇒ (3) Suppose A ⊆ X has sg-open cover
whose intersection withA belongs to I . If x ∈ A,
there existU ∈ τsg(x) such thatU∩A∈ I . Since
x ∈ A clearly x /∈ A∗

sg and so A ∩ A∗
sg = ∅, then

A ∈ I . Implies (3)

3. (3)⇒ (4) Suppose for everyA ⊆ X andA∩A∗
sg

= ∅, then A ∈ I . Since A − A∗
sg ⊆ A, then by

lemma 2.2 (2) (A−A∗
sg)

∗
sg ⊆ A∗

sg clearly
(A − A∗

sg) ∩ (A − A∗
sg)

∗
sg ⊆ (A − A∗

sg) ∩ A∗
sg

since by lemma 2.2 (3) A∗
sg ⊆ A implies (A −

A∗
sg) ∩A∗

sg = ∅. Hence
(A−A∗

sg) ∩ (A−A∗
sg)

∗
sg = ∅, thenA−A∗

sg ∈ I .
Therefore, A is L∗

sg perfect set. Implies (4)

4. (4) ⇒ (5) Suppose for every A ⊆ X , A is L∗
sg-

perfect set. i.e A− A∗
sg ∈ I . If A is R∗

sg-perfect
set, then A∗

sg −A ∈ I . Therefore, by finite addi-
tive property of ideal (A−A∗

sg)∪(A∗
sg−A) ∈ I .

Hence AA∗
sg ∈ I . Implies (5)

5. (1)⇒ (5) Suppose for everyA ⊆ X : If for every
x ∈ A, there exist sg-open set which contain x
such that U ∩ A ∈ I , then A ∈ I . Since x ∈ A
andA ∈ I clearly x /∈ A∗

sg andA∩A∗
sg = ∅ also

we all know that A − A∗
sg ⊆ A and by lemma

2.2 (2) implies (A − A∗
sg)

∗
sg ⊆ A∗

sg. Thus,(A −
A∗

sg) ∩ (A−A∗
sg)

∗
sg ⊆ A ∩A∗

sg = ∅
implies (A − A∗

sg) ∩ (A − A∗
sg)

∗
sg = ∅ and A −

A∗
sg ∈ I . If A is R∗

sg-perfect set, then A∗
sg −A ∈

I . By finite additive property of ideal
(A−A∗

sg)∪(A∗
sg−A) ∈ I . HenceAA∗

sg. Implies
(5)

6. (5) ⇒ (6) Suppose for every A ⊆ X and A is
R∗

sg-perfect set, then AA∗
sg ∈ I implies (A −

A∗
sg) ∪ (A∗

sg − A) ∈ I . Since by lemma 2.2 (3)
A∗

sg ⊆ A clearly A∗
sg −A ⊆ A−A∗

sg implies
(A − A∗

sg) ∪ (A∗
sg − A) ∈ I = A − A∗

sg ∈ I
implies A − A∗

sg ∈ I . Hence A is τ∗sg-closed
subset. Implies (6)

7. (1) ⇒ (6) Suppose for every A ⊆ X and for
every x ∈ A there exist sg-open set U which
contain x such that U ∩ A ∈ I , then A ∈ I .
Since x ∈ A and A ∈ I clearly x /∈ A∗

sg and
so A ∩ A∗

sg = ∅. Since A − A∗
sg ⊆ A, then by

lemma 2.2 (2) (A−A∗
sg)

∗
sg ⊆ A∗

sg implies
(A−A∗

sg) ∩ (A−A∗
sg)

∗
sg ⊆ A ∩A∗

sg = ∅
implies (A − A∗

sg) ∩ (A − A∗
sg)

∗
sg = ∅, then

A−A∗
sg ∈ I . Hence for every τ∗sg-closed subset

of A, then A−A∗
sg ∈ I Implies (6)

3.4 Theorem
Let (X , τ , I) be an ideal topological space. If τ ∼sg I ,
then the following properties are equivalent.

1. If for everyA ⊆ X andA∩A∗
sg = ∅, thenA∗

sg =
∅;

2. If for every A ⊆ X , then (A−A∗
sg)

∗
sg = ∅;

3. If for every A ⊆ X , then (A ∩A∗
sg)

∗
sg = A∗

sg.

3.5 Proof
1. (1) ⇒ (2)Suppose τ ∼sg I and if for every A ⊆

X , A ∩ A∗
sg = ∅, then A∗

sg = ∅. Since we all
know that A− A∗

sg ⊆ A, then by lemma 2.2 (2)
(A − A∗

sg)
∗
sg ⊆ A∗

sg implies (A − A∗
sg) ∩ (A −

A∗
sg)

∗
sg ⊆ A∩A∗

sg = ∅ implies (A−A∗
sg)∩(A−

A∗
sg)

∗
sg = ∅, then (A−A∗

sg)
∗
sg = ∅ implies (2).

2. (2)⇒ (3) Suppose τ ∼sg I and if for every A ⊆
X , then (A − A∗

sg)
∗
sg = ∅. Since by theorem

3.2(3) A ∩ A∗
sg = ∅, then A∗

sg = ∅ clearly
A = (A−A∗

sg) ∪ (A ∩A∗
sg) by lemma 2.2 (2)

A∗
sg = ((A−A∗

sg)∪ (A∩A∗
sg))

∗
sg impliesA∗

sg =
(A−A∗

sg)
∗
sg∪(A∩A∗

sg)
∗
sg since (A−A∗

sg)
∗
sg = ∅,

then clearly A∗
sg = (A ∩A∗

sg)
∗
sg implies (3).

3. (1)⇒ (3) Suppose τ ∼sg I and if for every A ⊆
X ,A∩A∗

sg = ∅, thenA∗
sg = ∅. Since by 4.2.1(3)

A∗
sg ⊆ A, then clearly A ∩ A∗

sg ⊆ A by lemma
2.2 (2) (A∩A∗

sg)
∗
sg ⊆ A∗

sg. Since A∩ A∗
sg = ∅,

then A∗
sg = ∅ by lemma 2.2 (1) ∅∗sg = ∅ and

A∗
sg = ∅∗sg implies (A ∩ A∗

sg)
∗
sg ⊆ A∗

sg = ∅.
Hence (A ∩A∗

sg)
∗
sg = A∗

sg implies (3).
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4 Conclusion
It is concluded that every generalized local function
is semi generalized local function but the converse is
not true. Every generalized compatible ideals is semi
generalized compatible ideals but the converse is not
true.
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