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1. Introduction 
Since the mid-20th century to date, renewable power 
sources have attracted so much attention, partly due to 
the increasing power needs by the fast growing world 
population in the face of fast depleting fossil fuel 
sources, making fossil fuels consumption 
unsustainable. The other part of the push for renewable 
power sources is the concern over large volumes of 
greenhouse gas (GHG) emission from fossil fuel 
consumption, which is the key player in temperature 
increases that causes global warming. These concerns 
have made global renewable power supply to sore 
geometrically over the last two decades. For instance, 
renewable power contributed up to 26.2 % of global 
electricity generation in 2018 and is projected to 
increase to 45% by 2040 [21]. Similarly, the global 
non-hydro renewable power generation capacity grew 
by a record 184 GW in 2019, an increase of 20 GW 
(12%) over the generation capacity of 2018 [1]. 
Wind power is a major player in the renewable power 
market. Wind and hydroelectricity made up two-thirds 

of the total renewable power generation in 2018 in the 
27-member EU countries [22]. Wind power installed 
capacity in 2018 exceeded 563 GW and accounted for 
approximately 24% of the world’s total renewable 
power generation capacity [20]. In 2020 wind power 
generation capacity grew by 53 %, an increase of 93 
GW of new installations [33]. The year 2021 saw 
global grid connected increase in wind generated 
energy of 94.3 GW, giving a cumulative total of 838.9 
GW [30]. 
The intermittent nature of renewable power sources 
poses a major challenge in the planning and operation 
of their power systems. Hence, probability models 
come in handy to characterize renewable power 
sources in the face of this intermittency. A mixture 
probability density provided the modeling capability 
for determining uncertainty in loads on onshore and 
offshore wind turbines [25]. There are many other 
extensive literature on the use of parametric 
probability models such as the Weibull, Raleigh, 
lognormal, generalized extreme value, exponentiated-
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epsilon and gamma distributions in the modeling of 
renewable power potentials of many locations. See for 
examples [12, 13, 23, 29]. 
One of the intermittent properties of wind speed as a 
major renewable power contributor is that it changes 
abruptly over short time period. It is hard to tell 
whether a particular rate of wind speed will decrease, 
remain same or increase within any time interval. The 
stochastic nature of this intermittency can be captured 
by Markov chain models. Consequently, time 
homogeneous Markov chain models are used [19] in 
the literature for modeling wind speed time series data 
mainly for the purpose of forecasting. Markov chain 
models are also useful in the determination of the 
reliability indices of wind power systems [9]. A 
Markov-based Back Propagation (BP) neural network 
optimized by the Particle Swarm Optimization (PSO) 
used for wind power prediction showed a non-
significant improvement over the traditional Markov 
chain [31]. A semi-Markov model was also used to 
evaluate the performance of wind turbine systems 
[26]. 
In order to characterize wind power more accurately 
forecast [2, 10, 15] and simulation [18, 24] are two 
methods mainly used. Discrete time Markov chain has 
been used for the generation of synthetic wind speed 
and wind power time series [24, 27] as well as for 
short term Wind Power Forecasting (WPF) with good 
performance. Other methods for wind speed series can 
be found in Mycielski Algorithm [5, 6]. 
These WPF methods use only onsite information in 
forecasting targeted wind farms. Currently there is 

ever-increasing number of wind farms over a region 
prompting researchers to explore the spatio-temporal-
interdependence structure between wind farms in 
improving WPF performance [28]. Towards the end 
different artificial intelligence methods [3, 7], regime-
switching space-time methods [11], multichannel 
adaptive filters [8], sparse vector autoregressive 
(VAR)-based model [4, 34], and so on, have been 
developed. The idea of spatial Markov chain used in 
geo-statistical modeling has inspired the development 
of a first order discrete spatio-temporal Markov chain 
model for short term wind power forecasting (WPF) 
[32]. 
Here, our focus is to use the time homogeneous 
Markov chain model in modeling the performance of a 
wind turbine in a specific location. We are interested 
in showing how to characterize the salient features in 
the power curve specific to a turbine using Markov 
chain method. This will help system operators and 
marketers make informed optimal decisions regarding 
its likely performance, particularly when it concerns 
investment in planning and development of wind farm 
in a location. 

2 Materials and Methods 
2.1 Markov chain model 

For the purpose of illustration we use the power curve 
of a 1.8 MW wind turbine with 100 m rotor diameter 
at 100 m turbine hub height and 1.225 kg/m3 air 
density. The details are given in Table 1 below.

Table 1 Power curve of a 1.8 MW wind turbine 
Wind speed 
(m/s)  

< 3  3.5  4.5  5.5  6.5  7.5  8.5  9.5  10.5  11.5  12  > 20  

Power, 𝑷𝒆, 
(kW) 

0 51 175 346 584 913 1313 1660 1784 1799 1800 0 

Definition 1 

Notice, from Table 1, that the turbine has cut-in and 
cut-out wind speeds of 3 m/s and 20 m/s, respectively, 
for which times the turbine power generation is zero. 
Also, notice that the wind speed between 12 m/s and 
20 m/s, inclusive, gives the optimal turbine 
performance. 
As interest lies in a model that can capture the 
intermittent nature of the wind speed that give rise to 

this power curve, we employ a Markov chain model. 
Wind speed at specified time intervals are captured in 
order to create a discrete state space for the model. It 
should be noted that although wind speed is a 
continuous real-valued random variable, a discrete 
state space Markov model is chosen in order to make 
the model mathematically tractable. Also the states 
chosen are not sacrosanct but sufficiently reflective of 
the change of status of the Markov chain for modeling 
purpose. The construction of the states of the Markov 
chain are presented in Table 2 below.  
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Table 2  States of the Markov chain 
State 1 2 3 4 5 6 7 8 9 10 11 12 
Wind speed 
range (m/s) 

< 3 3 – 4  4 – 5  5 – 6  6 – 7  7 – 8  8 – 9  9 - 10 10 – 11  11 – 12  12 – 20  > 20 

Note: Upper bounds exclusive except state 11 

The usual assumption of a Markov chain model 
obtains. That is, there is Markov dependence and time 
homogeneity of the Markov chain.  

2.2 The problems 
Pertinent questions that are of interest to wind power 
developers, investors and manufacturers, specific to 
the wind speed in a location for a given wind turbine, 
are given below. 
i. What is the downtime of the wind turbine? That is, 

the estimate of the proportion of its idle time in the 
long run due to intermittency of wind speed.  

ii. What time duration will it take a wind turbine to 
return to optimal, or near-optimal, power 
generation having moved to an idle state or low 
power generation state? 

iii. What is the amount of power that a wind turbine 
will be able to generate in the long run, in a given 
location? 

iv. What is the average extract-able power a given 
turbine can generate in a given location? 

The model can provide answers to these questions 
thereby enabling interested persons make informed 
decisions regarding the location-specific performance 
of a wind turbine. 

2.3 The Data 
The wind speed time series data used in this study for 
illustration are real-time average wind speed recorded 
at every 5-minute interval from the 1st  hour of January 
1, 2010 to the 24th hour of December 31, 2012. They 
are 315,360 data values of wind speed time series for a 
location near San Angelo, Texas, with site ID 998289 
on latitude 31.3983oN and longitude 101.1654oW. 
The data were recorded at 100 m above ground level 
with no missing value. They were obtained at 
http://www.wind.nrel.gov.  
The data were processed for analysis as follows. The 
data were classified into 12 states of the Markov chain 
according to Table 2 above. The transition matrix is of 
the form 

 , , 1,2,...,12ijn i j N    1 

where ijn   is the number of transitions from state 𝑖 to 
state 𝑗. This is given in Table 3 below.

Table 1 Transition matrix of the wind speed data 
State [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] 

[1,] 23776 1004 47 8 7 1 1 1 0 1 0 0 
[2,] 1011 17163 1540 49 6 3 5 2 0 0 0 0 
[3,] 34 1532 23183 2050 57 17 7 1 0 0 0 0 
[4,] 7 43 1997 27444 2536 61 16 6 1 0 0 0 
[5,] 8 18 77 2449 31081 2876 56 9 2 1 0 0 
[6,] 4 4 27 81 2790 32434 3024 67 14 4 0 0 
[7,] 1 6 4 14 54 2938 31533 2980 62 11 10 0 
[8,] 1 4 1 9 20 84 2884 28935 2459 42 17 0 
[9,] 1 2 3 3 11 16 60 2360 21780 1784 62 0 
[10,] 1 0 3 1 6 7 16 64 1690 14042 1188 0 
[11,] 2 2 1 3 9 11 11 31 74 1132 20140 30 
[12,] 0 1 0 0 0 0 0 0 0 0 29 71 

  
2.4 Test of the time homogeneity of the model 
The maximum likelihood estimator of the elements of 
the one-step transition probability matrix of the 

Markov chain can be obtained from Table 3, and is 
computed from 
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The result is given as matrix 𝑷 below. 

 
𝑷

=

(

 
 
 
 
 
 
 
 
 

. 95694 . 04041 . 00189

. 05112 . 86774 . 07786

. 00126 . 05699 . 86240

. 00032 . 00028 . 00004

. 00248 . 00030 . 00015

. 07262 . 00212 . 00067
. 00022 . 00134 . 06219
. 00022 . 00049 . 00211
. 00010 . 00010 . 00070

. 85466 . 07897 . 00190

. 06695 . 84974 . 07863

. 00211 . 07257 . 84356

. 00004 . 00004 . 00000

. 00025 . 00010 . 00000

. 00026 . 00004 . 00000

. 00004 . 00000 . 00000

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000
. 00050 . 00019 . 00003
. 00153 . 00025 . 00005
. 07865 . 00174 . 00037

. 00000 . 00000 . 00000

. 00003 . 00000 . 00000

. 00010 . 00000 . 00000
. 00003 . 00016 . 00011
. 00003 . 00011 . 00003
. 00004 . 00008 . 00011

. 00037 . 00143 . .07811

. 00026 . 00058 . 00244

. 00012 . 00042 . 00061
. 00006 . 00000 . 00017
. 00009 . 00009 . 00005
. 00000 . 00990 . 00000

. 00006 . 00035 . 00041

. 00014 . 00042 . 00051

. 00000 . 00000 . 00000

. 83835 . 07923 . 00165

. 08370 . 83977 . 07137

. 00230 . 09048 . 83506

. 00029 . 00027 . 00000

. 00122 . 00049 . 00000

. 06840 00238 . 00000
. 00094 . 00376 . 09931
. 00051 . 00145 . 00345
. 00000 . 00000 . 00000

. 82513 . 06981 . 00000

. 05279 . 93910 . 00140

. 00000 . 28713 . 70297)

 
 
 
 
 
 
 
 
 

 

 
To test for the assumption of time homogeneity, the 
entire dataset is divided into three subsamples, one for 
each of the three years (2010, 2011, 2012) for which the 

data were generated. The transition probability matrix 
for each of these years are similarly estimated and 
given as 𝑷1, 𝑷2 and 𝑷3 below. 

 

𝑷1

=

(

 
 
 
 
 
 
 
 
 

. 96069 . 03746 . 00123

. 04803 . 87024 . 07984

. 00097 . 05335 . 87223

. 00037 . 00012 . 00000

. 00126 . 00031 . 00000

. 07182 . 00162 . 00000
. 00037 . 00119 . 05758
. 00017 . 00050 . 00215
. 00000 . 00008 . 00045

. 86120 . 07766 . 00155

. 06739 . 84736 . 08128

. 00181 . 07147 . 84333

. 00000 . 00000 . 00000

. 00016 . 00016 . 00000

. 00000 . 00000 . 00000

. 00012 . 00000 . 00000

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000
. 00018 . 00018 . 00009
. 00091 . 00017 . 00000
. 08082 . 00158 . 00038

. 00000 . 00000 . 00000

. 00008 . 00000 . 00000

. 00008 . 00000 . 00000
. 00000 . 00008 . 00008
. 00000 . 00017 . 00000
. 00000 . 00011 . 00000

. 00015 . 00108 . .07909

. 00026 . 00078 . 00259

. 00000 . 00011 . 00100
. 00000 . 00000 . 00037
. 00000 . 00016 . 00000
. 00000 . 00000 . 00000

. 00000 . 00075 . 00037

. 00016 . 00033 . 00082

. 00000 . 00000 . 00000

. 83875 . 07886 . 00138

. 08558 . 83394 . 07478

. 00177 . 09165 . 83413

. 00031 . 00023 . 00000

. 00130 . 00060 . 00000

. 06934 00189 . 00000
. 00056 . 00522 . 10916
. 00098 . 00230 . 00345
. 00000 . 00000 . 00000

. 81265 . 07091 . 00000

. 05857 . 93273 . 00049

. 00000 . 33333 . 66667)

 
 
 
 
 
 
 
 
 

 

 
  𝑷2 =

(

 
 
 
 
 
 
 
 
 

. 95600 . 04098 . 00191

. 04657 . 87193 . 07886

. 00141 . 05471 . 86356

. 00041 . 00027 . 00014

. 00186 . 00031 . 00031

. 07641 . 00250 . 00109
. 00009 . 00117 . 06229
. 00042 . 00042 . 00218
. 00008 . 00000 . 00081

. 85882 . 07485 . 00197

. 06813 . 85387 . 07298

. 00242 . 06875 . 85200

. 00014 . 00014 . 00000

. 00000 . 00016 . 00000

. 00033 . 00000 . 00000

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000
. 00063 . 00018 . 00000
. 00184 . 00008 . 00008
. 07385 . 00170 . 00032

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000

. 00008 . 00000 . 00000
. 00000 . 00018 . 00027
. 00000 . 00009 . 00000
. 00000 . 00011 . 00023

. 00062 . 00178 . .07970

. 00009 . 00035 . 00220

. 00011 . 00034 . 00000
. 00000 . 00000 . 00000
. 00011 . 00000 . 00000
. 00000 . 00990 . 00000

. 00016 . 00031 . 00063

. 00000 . 00057 . 00011

. 00000 . 00000 . 00000

. 83400 . 08147 . 00142

. 07855 . 84748 . 07045

. 00191 . 08678 . 83692

. 00036 . 00009 . 00000

. 00053 . 00026 . 00000

. 07158 00203 . 00000
. 00094 . 00220 . 09496
. 00023 . 00057 . 00260
. 00000 . 00000 . 00000

. 83205 . 06875 . 00000

. 04789 . 94690 . 00102

. 00000 . 32143 . 67857)
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𝑷3 =

(

 
 
 
 
 
 
 
 
 

. 95451 . 04251 . 00234

. 05811 . 86160 . 07514

. 00143 . 06350 . 85030

. 00021 . 00043 . 00000

. 00415 . 00029 . 00014

. 08098 . 00226 . 00095
. 00020 . 00170 . 06713
. 00008 . 00056 . 00199
. 00023 . 00023 . 00086

. 84287 . 08501 . 00220

. 06542 . 84811 . 08145

. 00211 . 07738 . 83565

. 00000 . 00000 . 00000

. 00057 . 00000 . 00000

. 00048 . 00012 . 00000

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000
. 00070 . 00020 . 00000
. 00183 . 00048 . 00008
. 08105 . 00195 . 00039

. 00000 . 00000 . 00000

. 00000 . 00000 . 00000

. 00016 . 00000 . 00000
. 00007 . 00022 . 00000
. 00009 . 00009 . 00009
. 00000 . 00000 . 00012

. 00037 . 00150 . .07582

. 00043 . 00061 . 00251

. 00024 . 00086 . 00086
. 00019 . 00000 . 00019
. 00015 . 00015 . 00015
. 00000 . 01562 . 00000

. 00000 . 00000 . 00019

. 00031 . 00031 . 00077

. 00000 . 00000 . 00000

. 84163 . 07761 . 00210

. 08689 . 83802 . 06885

. 00330 . 09323 . 83419

. 00022 . 00045 . 00000

. 00182 . 00061 . 00000

. 06391 00330 . 00000
. 00132 . 00416 . 09455
. 00046 . 00184 . 00460
. 00000 . 00000 . 00000

. 82943 . 06997 . 00000

. 05400 . 93450 . 00276

. 00000 . 26563 . 71875)

 
 
 
 
 
 
 
 
 

  

 
To test for the time homogeneity of the model, the 
following notations are adopted. 

Let 𝑵𝑡 be the matrix of the number of one step 
transitions at the time 𝑡 = 1, 2, 3 with elements, t ijn  
which are the number of one step transitions from state 
𝑖 to state 𝑗, 𝑖, 𝑗 = 1, 2, … , 12; and .t in is the 𝑖𝑡ℎ row total 
of 𝑵𝑡. 

Let 𝑷𝑡 denote the matrix of one step transition 
probabilities at time 𝑡, with elements t ijp . Then the 

estimates of t ijp   is given by 

.

ˆ , 1,2,3; , 1,2,...,12t ij

t ij

t i

n
p t i j

n
  

 3 

The hypothesis for the test is given by 

0 ˆ: ; , 1,2,...,12t ij ijH p p i j   

against 

1 ˆ: ; 1,2,3t ij ijH p p t   

And the test statistic is given by 

 
2

3 12 12

.
1 1 1

ˆ ˆ
ˆ

t ij ij

t i

t i j ij

p p
Q n

p  




  4 

Q  is asymptotically chi-square distributed with 

 12t d   degrees of freedom, where 
12 12

1 1
ij

i j

d d
 

 is 

the number of positive entries, 0ijn   (that is, 1ijd   

if 0ijn  , and 0ijd  , otherwise). 

Here, 3t  and 112d  , hence the degrees of freedom 
for the test is 300 . The computed value of 

330.72Q   with a p-value of 0.107 , suggesting that 
the null hypothesis of time homogeneity should not be 
rejected. 

3 Results and discussion 
3.1 Computation of measures for assessing 

turbine performance 
Some of the properties of Markov chain can be used in 
assessing turbine performance particularly when 
directed in answering the questions posed in section 3. 
These are computed as follows. 

3.1.1 Limiting probability distribution vector and 
mean recurrence times 

The limiting probability distribution vector gives the 
proportion of times spent in each of the states of the 
Markov chain in the long run. 
Let x denote this vector. Then  

ˆx xP      5 
provides estimates for the elements of this vector. 
These estimates are given below. 

 
�̂� = [. 07886 . 06278 . 08533 . 10189 . 11602 . 12192 . 11924 . 1092 . 08263 . 05389 .06792 . 00032] 
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The inverse of the elements of this vector gives the 
mean recurrence time vector denoted by r . The 

estimate of r is given below. 

 
�̂� = (13 16 12 10 9 8 8 9 12 19 15 3125) 

By definition, the mean recurrence time gives the 
length of time it takes to return to a state jS  for the first 

time given it started in jS . 

3.1.2 Expected first passage times 

Definition 2 

If an ergodic Markov chain starts from state iS , the 

expected (or average) number of steps to reach state jS  
for the first time is called the expected first passage (or 
visit) time to state jS . 

It should be noted that when i j , the expected first 
passage time becomes the mean recurrence time. The 
mean (or expected) first passage time matrix, M , for an 
ergodic Markov chain is determined from the 
fundamental matrix, F . This is given [17] by 

 
1

  F I P X     6 

where I  is an identity matrix, P  is the one-step 
transition probability matrix for the Markov chain and 
X  is the matrix whose rows are the vectors of the 
limiting state transition probability distribution. 

Then the  , th
i j  component of M  is given by 

jj ij

ij

j

f f
m

x


     7 

where ijf  is the  , th
i j  component of F  and jx  is the 

thj  component of limiting state transition probability 
vector, x . 

The estimated values for the matrix of expected first 
passage times are computed from equations (6 and 7) 
and tabulated below. 

  Table 4  Matrix of expected first passage times 
State  ,𝟏   ,𝟐   ,𝟑   ,𝟒   ,𝟓   ,𝟔   ,𝟕   ,𝟖   ,𝟗   ,𝟏𝟎   ,𝟏𝟏   ,𝟏𝟐  

 𝟏,   13 36 57 84 115 153 201 260 345 472 666 11161 

 𝟐,   260 16 33 62 94 132 180 240 325 451 645 11141 

 𝟑,   406 156 12 36 69 108 156 216 302 428 622 11118 

 𝟒,   501 255 107 10 39 79 128 188 274 400 594 11090 

 𝟓,   565 320 176 77 9 45 95 156 241 368 562 11057 

 𝟔,   613 368 225 129 59 8 54 115 200 327 521 11017 

 𝟕,   648 404 262 167 101 45 8 64 151 278 472 10967 

 𝟖,   673 429 287 193 125 74 35 9 90 218 413 10909 

 𝟗,   691 448 307 213 146 96 60 31 12 133 330 10826 

 𝟏𝟎,   705 462 321 228 161 113 78 52 31 19 208 10704 

 𝟏𝟏,   715 472 332 239 173 126 93 69 54 41 15 10496 

 𝟏𝟐,   703 460 325 237 174 129 99 78 66 58 25 3125 

 
 

3.1.3  Expected Wind Power Generation 

Wind power is the amount of power derivable from the 
wind. Theoretically, only 59% of the power in the wind 
is extract-able [14]. However, in practical applications, 
the extract-able capacity of a wind turbine is 30% of the 
power in the wind [16].  Consequently, the 1.8 MW 
wind turbine power rating is not attainable in any given 

location. Like the power curve given in Table 1, it is 
more useful as a manufacturer’s index of specification 
of the performance of a wind turbine. 
The intermittent nature of the wind is a known factor 
that compounds wind power generation. This has been 
aptly described by the Markov chain model for the 
location here and its salient features captured in the 
limiting probability distribution vector, x , of the 
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Markov chain. It might be pertinent to state that x  
gives the limiting probability of finding the chain in 
state jS  ( 1,2,...,12j  ). Notice the correspondence 
between the wind speed and the states of the Markov 
chain as shown in Table 2 and the correspondence 
between the wind speed and the power from the turbine 
as shown in Table 1. Hence we can input the values of 
x  into the calculation of power generated by a turbine 
in a specified location, and consequently, make it more 
informative to marketers, developers and buyers. This 

computation is new and is described below. Here, we 
estimate the wind power generated from a turbine using 
this new method in two ways. 

i Based on the 1.8 MW turbine power curve 

The power curve output is given in Table 1. We create a 
new row to allow multiplication with the corresponding 
limiting probability values. This allows the 
characteristics in the intermittent nature of the wind in 
this location to be captured in the power curve.  This is 
shown in the table below. 

 

Table 5 Location specific power curve of a 1.8 MW win turbine 

Wind  < 3  3.5  4.5  5.5  6.5  7.5  8.5  9.5  10.5  11.5  12  > 20  
speed (m/s)            
Power,  0 51 175 346 584 913 1313 1660 1784 1799 1800 0 

jPe  (kW)            

jx  .07886 .06278 .08533 .10189 .11602 .12192 .11924 .1092 .08263 .05389 .06792 .00032 

 

Hence, the expected power that can be generated from 
the power curve for this location is given by 

12

1
j j

j

PE x Pe


    8 

937kW  

0.937MW  

ii Based on extract-able power 

Theoretically, the power in the wind is computed as 

31
2wP C Au   9 

where   is the air density, C  is the capacity factor 
that gives the practical amount of power a wind turbine 
can generate, A  is the swept area of the wind turbine 
blade and u  is the average wind speed. As explained 
earlier, there is a limited amount of power a turbine can 
generate from the wind. Allowing for the wind 
characteristics in this location as reflected by x, the 
expected extract-able power is given by 

12
3

1

1
2w f j j

j

EP C Ax u


   10 

where 
ju  is the mid-interval of the states of the Markov 

model. We assume 1 12 0u u   m/s, 11 12u   m/s, 
31.225 /kg m  , 0.3fC   and 𝐴 = 7854. 

Substituting these values into equation (10) gives the 
estimate of the extract-able power of 

826wEP kW  

0.826MW  

3.2 Discussion 
The test results show that a discrete state space discrete 
time Markov chain model fits the wind speed data. This 
enables the use of the features of this model to answer 
questions that may be of interest to a wind turbine 
marketer, investor or manager. 
The transition probability matrix 𝑷 shows that 
whenever the Markov chain is in any of the twelve 
states, it has a higher chance of remaining there and a 
very small chance of moving out to an immediate 
neighborhood of the given state. It is also very 
noticeable that it is almost impossible to move from any 
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of the states to any state farthest away in few 
transitions. This aptly describes the intermittent nature 
of the wind speed that can be experienced by a turbine 
in this location. That is, the wind speed variability is 
highly likely to be confined to within the speed limits 
defining a specified state and at every transition time, 
there is a very little chance of a drastic change in wind 
speed that is characteristic of a state farthest away from 
the given state. This is clearly exhibited in the 
simulated transitions presented for 10,000 realizations 
in Fig. 1. Two ideas are quickly identified from Fig. 1; 
(1) transitions from any state gravitates to the central 
states and their immediate neighborhoods, (2) the cut-
out state (state 12) is rarely visited. These information 
corroborates the results of the matrix of first passage 
times in Table 4. 
The results from the limiting probability distribution 
show that the turbine works for about 92 % of the time 
and is down about 8 % of the time. The cut-in speed 
(state 1) is mainly responsible for 7.8 % of the down-
time while the cut-out speed (state 12) is responsible for 
only 0.03 %. Note that at down-times, the power 
generated by the turbine is zero. States with the highest 
proportion of working times are states 5, 6, 7 and 8. 
Each contributes slightly above 10 % of the total 
working time of the turbine in the long run. 
The model allows only 5 minutes of dueling in any state 
before a change in status. That is, a transition time in 5 
minutes only is allowed. The result of the mean 
recurrence times shows that when in state 1 (cut-in 

speed) it takes 13 transitions, or 65 minutes, before the 
next return to state 1. That is, when down because of 
cut-in speed (state 1), it works for about 65 minutes 
before the next cut-in speed down-time. Whereas when 
down because of a cut-out speed (state 12), it takes 10.9 
days before experiencing the next cut-out down time. It 
is worthy of note that state 12 has the highest value of 
mean recurrence time while states 6 and 7 have the 
lowest, 40 minutes each. That is, state 12 is the least 
visited state and states 6 and 7 are the most visited 
states, as seen in Fig. 1. Consequently, power output of 
the turbine is mostly at the levels provided by the wind 
speeds for the states 6 and 7. These are 111.3 kW and 
156.56 kW, respectively. 
The results of the first passage times show a clear 
pattern; lowest times are recorded from any given state 
to its immediate neighborhood states. The values 
become higher the farther away the states get to the 
given state. Again this clearly depicts the intermittent 
nature of the wind speed in this location as mentioned 
earlier. 
Table 6 below shows clearly the working times of the 
turbine before any down time. It is clear from this table 
that the turbine will work for an average of 2.05 days 
starting from any of the states 2 to 12 before a first 
experience of a down-time due to cut-in speed. On the 
other hand, it takes an average of about 38 days, 
starting from any of the states 1 to 11, before a first 
experience of a cut-out speed down-time.

 

Fig. 1  Realizations of Transitions between Wind Speed Classifications
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           Table 6 First passage times to the two down-time states 

 
 

Two methods for power generated by a 1.8 MW turbine 
in the given location were computed and given below. 
1. The expected power that can be generated from the 

power curve using the added information of the 
expected probability distribution of the wind speed 
in the location. This is 937 kW. 

2. The expected extract-able power which is 826 kW. 
Again this involves using the estimated probability 
distribution of the wind speed in the location for its 
computation.  

Both can be used as indices for rating turbine 
performance in a given location. The extract-able power 
is a more realistic estimate of power. 

4 Conclusion 
In this study, it is shown how a 12 states Markov chain 
can be used to model the wind speed exposed to a 
turbine in a given location so as to use the features of 
the model in rating the turbine performance. A 1.8 MW 
wind turbine exposed to wind speed data at a location 
near San Angelo, Texas, USA is used for illustration. 
The model is compatible with the wind speed data in 
this location. Features of the model show that the 
turbine will, in the long run, work for 92 % of the time 

and experience 8 % down time. On the average it takes 
2.05 days of working starting from any of its states 
before a first experience of a down-time due to a cut-in 
wind speed and 38 days of working before a first 
experience of a cut-out wind speed down-time. The 
turbine power outputs are most times characterized by 
wind speed in the range for states 6 and 7. That is, 
111.31 kW and 156.56 kW, respectively. 
Two estimates of the power generation potentials of the 
turbine in this location are obtained. They both 
introduced the long-run probability distribution of the 
wind speed experienced by the turbine in the traditional 
method of obtaining such estimates. This is new. These 
estimates are: 
i. The expected power that can be generated from the 

turbine power curve; 937 kW. 
ii. The expected extract-able power; 826 kW. 

Taking an extract-able power of 826 kW as an hourly 
average, a turbine working at this capacity is able to 
generate 594,720 kWh of electric power in a 30 days a 
month basis. This is sufficient to power 685 average US 
homes per month on a consumption rate of 867 kWh 
per home. Consequently, a wind farm with 100 of such 
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turbines can power 68,500 average US homes in a 
month. 

These ratings of turbine performance are valuable 
indices that can provide informed policy decisions for 
any interested investors, marketers and wind turbine 
management planners in this location. 

The model has provided an understanding of the pattern 
of transition of the wind speed within the states 
described by the 1.8 MW turbine using discrete Markov 
chain. The major assumption was that the wind speeds 
are stationary. A study assuming the wind speeds to be 
non-stationary will be appropriate, especially to 
compare with the procedures in this research, to guide 
better decisions. In addition, the combination of this 
modeling procedure, or others, with artificial 
intelligence could provide mode informative ideas. 
These are suggested as future research areas. 
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