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Abstract: Underwater environments are more challenging than that of terrestrial. The performance of a controller or the augmented 
system as a whole depends on the real measured data, so noise on data readings can be fatal. To effectively and adaptively control 
lower and higher frequency noise, the Active Noise Cancellation (ANC) was developed. Designing a system and the parameter of 
modified FxLMS for reducing noise, and disturbance of sensor data is the primary focus of this paper. The required equation will be 
analyzed and discussed briefly. Moreover, the system will be simulated in MATLAB and then the filtered result will be analyzed. 
Based on the simulation results, the proposed model can filter out signals with noise, particularly when there is a significant variation 
in the data and no knowledge of the noise frequency that might affect sensor readings. 
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1. Introduction 

It becomes very challenging to eliminate noise 
without losing some signal information if noise and 
signal share the same frequency band. As a result, it is 
difficult to remove noise from a signal in an underwater 
environment without losing some of its original 
characteristics. Acoustic noise cancellation (ANC) has 
received a lot of attention as a technique for removing 
noise from signals. The adaptive filter is a critical 
component of ANC because it provides noise reduction 
without prior knowledge of the noise and signal [1]. In 
ANC, a 180-degree phase signal (anti-noise) is 
generated and used to interfere destructively with the 
unnecessary noise. Bernard Widrow et al. pioneered the 
core concept [2]. 

Various methods have been proposed in order to 
improve the performance of ANC. RLC, LMS, and 
their variants (NLMS, VLMS, and so on) are popular 
because they have fewer complications [1]. Despite 
maintaining an excellent rate of convergence, the RLS 
algorithm fails to track the Estimation because the 
algorithm is dependent on its model, input data as the 
computation progresses, and the correlation matrix [3]. 
As a result, the LMS and its successor algorithms are 
most likely the most widely used algorithms. The 
Filtered-X LMS (FxLMS) algorithm is a simple variant 
of the LMS algorithm, which was developed 
independently in the context of adaptive control 
systems, and originally introduced as a modification in 
applications where an intervening system exists in the 
error path [4] [5]. 

LMS is based on the steepest descent method but 
does not account for secondary path effects, making it 
impossible to generate a precise anti-noise signal. The 
FxLMS algorithm is computationally simple and 
includes secondary path effects [6]. Several ANC 
algorithms with improved convergence properties have 
been proposed, including ANC systems in the 

frequency domain (Kuo & Tahernezhadi, 1997); 
Recursive Least Squares (RLS) based algorithms called 
filtered-x RLS (FxRLS) (Kuo & Morgan, 1996) and 
Filtered-x fast transversal filter (FxFTF) (Bouchard & 
Quednau, 2000); Lattice ANC systems (Park & 
Sommerfeldt, 1996) and Infinite impulse response (IIR) 
filter based LMS algorithms called filtered-u recursive 
LMS (FuRLMS) (L. J. Eriksson and Allie, 1987), and 
filtered-v algorithms (Crawford & Stewart, 1997). The 
basic problems in the above approaches are inherent 
stability problems in IIR-based structures, increment in 
the computational requirement and numerical instability 
problems in RLS based ANC systems [7]. For these 
reasons, FxLMS remains a viable option for ANC 
applications. 

The step size is the most inherent feature of the 
Least Mean Squares (LMS) algorithm that FxLMS 
inherited, and it requires careful adjustment. The Small 
step size, required for small excess mean square error, 
results in slow convergence. Large step size, needed for 
fast adaptation, may result in loss of stability. For 
controlling the step size and making it variable rather 
than fixed, we used the Kalman filter. Kalman filter was 
proposed by R. E. Kalman in 1960 [8] is popular for 
having easy computation, memory requirements and 
good capability on overcoming noises. There are 
various types of Kalman Filter, such as standard 
Kalman Filter, Extended Kalman Filter, Unscented 
Kalman Filter etc [9]. The paper used standard Kalman 
filter since it contains enough part of equation for noise 
reducing. 

The paper is organized in the following way: 
Section II presented all the necessary equations of 
FxLMS and linear Kalman filter, and also devoted to 
the developing of a modified FxLMS with Kalman filter 
to reduce active noises. Section III is devoted to the 
simulation and discussions of the obtained results. The 
conclusion section closes the paper.
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2. Materials and Methods 

The aim of this paper is to demonstrate a 
simulation, where we proposed a noise reduction model 
by modifying existing FxLMS algorithm, employing 
Kalman filter. The step size of FxLMS needs to be 
carefully adjusted. We replaced step size  with kalman 
gain in each iteration. There are two step sizes in 
FxLMS, one in LMS part and another in the secondary 
noise path. So, in that case, the whole simulation based 
on three assumptions: using  during LMS and 
Kalman-Gain at secondary noise path, using Kalman-
Gain during LMS and  at secondary noise path, and 
using Kalman-Gain during both in LMS and in 
secondary noise path. Finally, we compared data with 
novel FxLMS algorithm based on Signal to noise ratio 
(SNR). Our experimental data shows that after using 
kalman, it filtered noisy signal more efficiently than 

before. All the simulations are carried away by 
MATLAB R2015b on a Windows 10 PC (x64) with an 
Intel i3-7100U CPU and an Nvidia GeForce 920MX 
GPU card. 

2.1. FxLMS Algorithm 

 
Figure 1. Block diagram of FxLMS algorithm 

Widrow, Shur & Shaffer proposed the integration 
of a secondary path model in the reference signal path 
(from speaker to error microphone) [11]. Figure 1 
shows the block diagram of FXLMS algorithm on how 
the noise reduction algorithm works and the definition 
of each symbol is shown in Table 1. 

ANC has commonly used in two different 
configurations of the FxLMS algorithm, one is a 

feedback ANC approach proposed by Olson and May in 
1953 [12], in this model, a microphone is used as an 
error sensor, and also as a reference sensor. The second 
is a feed-forward ANC approach, which uses two 
sensors, an error sensor, and a reference sensor. This 
setup is used for narrow-band noise control using a non-
acoustic reference sensor [13]. 

 
Table 1. Symbols and Definitions for Figure 1 

Symbols Definitions 

x(k) Noise signal 
xs(k) Noise signal combined with assumed Sh(z) based on S(z) 
P(z) Primary path transfer function 
yp(k) Primary noise signal at the error microphone 
e(k) Modified error signal 
S(z) Secondary path transfer function 

C(z), Sh(z) Controller for the FxLMS algorithm 
yw(k) Generated noise based on C(z) controller 
ys(k) Output of adaptive filter 

Figure 1 shows the general how the feedforward 
approach uses a different microphone to measure the 
signal at the output. It is significant to know the 
software elements that are part of the ANC controller, 
these are the LMS adaptive algorithm that updates the 
coefficients of the W(z) adaptive filter, which in this 
case is represented as an FIR filter. The C(z) filter 
represented the secondary path estimation or the 
transfer function between the secondary source (control 
source) and the error microphone. To derive the FxLMS 
algorithm, a similar method of the LMS algorithm is 
utilized but with the steepest descent, the following 
update equation can lead to this minimization: 

 𝑊𝑁𝑒𝑤 =  𝑊𝑂𝑙𝑑 + ∇J(n)    
(

1) 
Where W is the controller weight error, 
µ is an adaption step size (scalar), 
J(n) is the power of error signal. 

The derivation of ∇J(n), 
𝐽(𝑛) = 𝐸{𝑒2(𝑛)} 

Where E{.} denotes statistical expectation 
operator and E{.} is a theoretical function. To avoid this 
operator, J(n) is approximated by 

𝐽(𝑛) ≈ 𝑒2(𝑛) 
Then, estimate ∇J(n) as follows, 

∇𝐽(𝑛) =  ∇𝑒2(𝑛) 

 ∇𝐽(𝑛) = 2𝑒(𝑛)∇𝑒(𝑛) 
 

(
2) 

Now to estimate ∇e(n), the derivation is as follows 
based on the block diagram, 

𝑒(𝑛) = 𝑑(𝑛) + 𝑠(𝑛) ∗ 𝑦(𝑛) 
Where s(n) is the secondary path impulse 

response. 

 ∇𝑒(𝑛) = 𝑠(𝑛) ∗ ∇𝑦(𝑛) 
(

3) 
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Now to estimate ∇𝑦(𝑛), the derivation is as 
follows based on the block diagram, 

𝑦(𝑛) = 𝑊𝑇𝑥(𝑛) 
Where W is the controller weight vector and x is 

the reference signal tap vector (of the same length as the 
controller length) 

Now ∇𝑦(𝑛) can be expressed by, 

∇𝑦(𝑛) =
𝜕𝑦(𝑛)

𝜕𝑊
 

 ∇𝑦(𝑛) = 𝑥(𝑛) 
(

4) 
Substitute (4) into (3) 

 ∇𝑒(𝑛) = 𝑠(𝑛) ∗ 𝑥(𝑛) 
(

5) 
Substitute (5) into (2) 

 ∇𝐽(𝑛) = 2𝑒(𝑛). 𝑠(𝑛) ∗ 𝑥(𝑛) 
(

6) 
Substitute (6) into (1) 

 𝑊𝑁𝑒𝑤 =  𝑊𝑂𝑙𝑑 + 2𝑒(𝑛). 𝑠(𝑛) ∗ 𝑥(𝑛) 
(

7) 
The reference signal is filtered by ŝ(n) before 

passing through the standard LMS algorithm. 
Therefore, resulting the compensation for secondary 
path. ŝ(n) should be estimated through off-line or online 
secondary path techniques. If ŝ(n) denotes an estimate 
of s(n), then 

𝑊𝑁𝑒𝑤 =  𝑊𝑂𝑙𝑑 + 2𝑒(𝑛). ŝ(𝑛) ∗ 𝑥(𝑛) 
OR 

𝑊𝑁𝑒𝑤 =  𝑊𝑂𝑙𝑑 + 2𝑒(𝑛). 𝑥𝑓(𝑛) 
The stability of the FxLMS algorithm is highly 

dependent on the x_f(n) power where it directly 
proportional to the step-size . So, Step-size is 
indirectly proportional to the steady state performance. 

FxLMS is simple, fast, and surprisingly robust. 
Despite its straightforwardness, FxLMS acquired the 
most central feature of the Least Mean Squares (LMS) 
algorithm is the step size, and it undoubtedly requires 
precise adjustment. To properly control step size, we 
utilized the Kalman filter. 

2.2. Kalman Filter 

The paper will use a standard Kalman filter since 
it contains enough parts of the equation for noise 
cutting. Kalman Filter has two parts, the predicted part, 
and the update part. The standard Kalman Filter 
equation is shown in (11) – (15). 

Predict: 

 ẋ𝑡|𝑡−1 = 𝐹𝑡ẋ𝑡−1|𝑡−1 + 𝐵𝑡𝑢𝑡 (
8) 

 𝑃𝑡|𝑡−1 = 𝐹𝑡𝑃𝑡−1|𝑡−1𝐹𝑡
𝑇 + 𝑄𝑡 (

9) 
Update: 

 ẋ𝑡|𝑡 = ẋ𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝐻𝑡ẋ𝑡|𝑡−1) 

10) 

 𝐾𝑡 = 𝑃𝑡|𝑡−1𝐻𝑡
𝑇(𝐻𝑡𝑃𝑡|𝑡−1𝐻𝑡

𝑇 + 𝑅𝑡)−1 
11) 

 𝑃𝑡|𝑡 = (1 − 𝐾𝑡𝐻𝑡) 𝑃𝑡|𝑡−1 
12) 

where 𝑥 is estimated state, 𝐹 is state transition 
matrix, 𝑢 is control variables, 𝐵 is control matrix, 𝑃 is 
state variance matrix, 𝑄 is process variance matrix, 𝑦 is 
measurement variables, 𝐻 is measurement matrix, 𝐾 is 
Kalman gain, 𝑅 is measurement matrix, 𝑡|𝑡 is current 
time period, 𝑡 - 1|𝑡 - 1 is previous time period, and 𝑡|𝑡 - 
1 is intermediate steps. 

To implement Kalman Filter algorithm, so that it 
can be used to reduce noise of sensor-readings, some 
adjustments for the conditions are needed. Those 
adjustments are as follows [14]. 

2.2.1. Predicting the state 

On this stage, adjustments are done in (11) by 
giving the score Ft = 1 because there is no state 
transition. Thus, reducing the system’s input component 
Bt because the used system does not have any input ut. 
The adjusted equation is shown in (6).   

 𝑥𝑡|𝑡−1 = 𝑥𝑡−1|𝑡−1 
13) 

2.2.2. Predicting the error 

Since Ft = 1, then (9) becomes (14) 

 𝑃𝑡|𝑡−1 = 𝑃𝑡−1|𝑡−1 + 𝑄𝑡 
14) 

2.2.3. Updating the state value 

From (10), 𝐻t = 1 since the sensor data that will be 
filtered is only consisted of one sensor reading. Hence, 
the equation can be written as (15). 

 𝑥𝑡|𝑡 = 𝑥𝑡|𝑡−1 + 𝐾𝑡(𝑦𝑡 − 𝑥𝑡|𝑡−1) 
15) 

2.2.4. Calculating the gain of Kalman 

Since Ht=1, then (11) can be written as (16) 

 𝐾𝑡 = 𝑃𝑡|𝑡−1(𝑃𝑡|𝑡−1 + 𝑅)−1 
16) 

2.2.5. Updating the error value 

Since Ht=1, then (12) can be written as (17) 

 𝑃𝑡|𝑡 = (1 − 𝐾𝑡) 𝑃𝑡|𝑡−1 
17) 

The Kalman Filter equation can be modified to 
reduce sensor reading noise once the necessary 
adjustments have been performed. The weights given to 
the data and the current-state estimate are represented 
by the Kalman-gain (at eq. 19), which can be "adjusted" 
to get a specific performance. We replaced the step-size 
 in the FxLMS with this Kalman gain so that the step 
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size is flexible according to the signal elements rather 
than being fixed. 

As we replaced step size,  with Kalman-gain in 
the original FxLMS algorithm, we needed to declare 
some necessary variables to calculate Kalman-gain out 
of the noisy signal. During calculating Kalman-gain, we 
had to specify the values for Q (process noise 
covariance) and R (measurement noise covariance). 

The value of Q and R are chosen according to the 
system operations. Covariance Q and R states may not 
be in general observable but the measurements should 
be related to the states [16]. 

Q, the process noise covariance, contributes to the 
overall uncertainty. When Q is large, the Kalman Filter 
more closely tracks large changes in the data than when 
Q is small. The measurement noise covariance R 
determines how much information is used from the 
measurement. When R is large, the Kalman Filter 
considers the measurements to be inaccurate. The three 
images below visualize the positional data. The red 
lines represent the measurement data, the green lines 
are the estimated states. [17] 

 

   
Q small, R large Q and R both equal  Q large, R small 

Figure 2. Relations between Q and R. 

We need to balance between Q and R according to 
our needs. The vast majority of noise estimation 
methods were designed with the assumption of 
uncorrelated state and measurement noise in mind [18]. 
For example, if kalman used in tracking cars on a road, 
then the constant velocity model should be reasonably 
good, and the entries of Q should be small. Else if it is 
used tracking people's faces, they are not likely to move 
with a constant velocity, so the Q need to cranked up 
[19]. 

In [14], author used kalman filter to denoising 
signals. During their operations, they discovered that 
the greater the difference between R and Q, the greater 
the mean error values. Furthermore, the same 𝑅 and 𝑄 
values result in similar value of mean error, whatever 
the values of 𝑅 and 𝑄. According to their analysis, the 
best parameters that provide results with their original 
data characteristics have mean error values ranging 
from 40 to 55 in the table below. 

Table 2. Ratio between R and Q and their yielding mean error 
No. of 

Analysis 

Kalman Filter 

Parameter Value 

R and Q 

Ratio 

Mean 

Error 

R Q 

1 1 1 1 26.0677 
2 1 0.1 10 44.7392 
3 1 0.01 100 53.4466 
4 10 0.1 100 53.4541 
5 100 0.1 1000 56.9959 

They experimentally showed that in case of signal 
denoising, the kalman filter yields best results if the 
ratio between R and Q are in 100:1. Therefore, in our 
operation, we kept R, Q ratio 100:1 too.  

The flowchart of our modified FxLMS is given 
below. When we replace step size  with kalman gain at 
secondary path operation, we get the best output by far. 

Reference signal x(n) is propagating from the 
source to the sensor, through the fluid medium P(z). 
The sensor measures the arriving noise as p(n). To 

reduce noise, we generate another 'noise' y(n) using the 
controller W(z). We hope that it destructively interferes 
x(n). It means that the controller has to be a model of 
the propagation medium P(z). Least mean square 
algorithm is applied to adjust the controller 
coefficient/weight. However, there is also fluid medium 
S(z) that stay between the actuator and sensor. We 
called it the secondary propagation path. So, to make 
the solution right, we need to compensate the 
adjustment process, estimate of Ŝ(z). 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2023.3.5 Md. Mostafizur Rahman, Sumonto Sarker

E-ISSN: 2769-2477 35 Volume 3, 2023 



 
Figure 3. Modified FxLMS algorithm. 

3. Results and Discussions 

The research scenario is by generating a signal 
with noise then it will be filtered by using both FxLMS 
and our modified FxLMS algorithm. The step size,   is 
used in two major operations in the FxLMS algorithm; 
one in the LMS calculating process which is run in the 
secondary path, and another one in the whole secondary 

noise path of FxLMS. So, in that case, we run whole 
simulation based on three assumptions: a) Use  during 
LMS and Kalman-Gain at secondary noise path, b) Use 
Kalman-Gain during LMS and  at secondary noise 
path, c) Use Kalman-Gain during both LMS and 
secondary noise path. 

Table 3.  SNR analysis between three assumption,: a) Use  during LMS and Kalman-Gain at secondary noise path, b) Use Kalman-
Gain during LMS and  at secondary noise path, c) Use Kalman-Gain during both LMS and secondary noise path. 

Use  during LMS and 

Kalman-Gain at secondary noise path 

Use Kalman-Gain during LMS and 

 at secondary noise path 

Use Kalman-Gain during both LMS and 

secondary noise path 

Sample 

no. 

SNR of 

FxLMS 

SNR of 

modified 

FxLMS 

Sample 

no. 

SNR of 

FxLMS 

SNR of 

modified 

FxLMS 

Sample 

no. 

SNR of 

FxLMS 

SNR of 

modified 

FxLMS 

1 12.41158 13.40830 1 11.48765 11.48765 1 12.39523 13.34103 
2 11.50421 12.46322 2 11.06984 11.06986 2 11.62135 12.43485 
3 12.10779 12.72214 3 10.97759 10.97759 3 12.02066 12.42624 
4 11.52281 12.35170 4 11.56018 11.56018 4 11.15641 11.55346 
5 12.16835 12.79602 5 11.73240 11.73242 5 10.33399 9.478464 
6 12.23658 13.26459 6 11.81109 11.81109 6 10.11580 11.03627 
7 11.09591 11.38486 7 11.73250 11.73251 7 11.80953 12.60883 
8 11.64333 11.96308 8 11.64378 11.64377 8 12.36314 13.29479 
9 11.64407 12.45536 9 11.31957 11.31932 9 11.59755 12.55345 

10 11.10289 11.52138 10 11.52379 11.52379 10 11.369437 12.10035 
In section (a), where we used  during LMS and 

Kalman-Gain at secondary noise path, yields better 
SNR value. In section (b), where we used Kalman-Gain 
during LMS and  at secondary noise path, we almost 
got same SNR in novel FxLMS and in our modified 
FxLMS algorithm. In section (c), we used Kalman-Gain 
during both LMS and secondary noise path. Here we 
got slightly better output than that of in section (b), but 
in some samples, we got less SNR than novel FxLMS. 
So, the operation here is considered unstable. 

So, we concluded, if we don’t change  during 
LMS operation and use Kalman-gain as a replacement 
of  during secondary noise path of FxLMS, we will get 
more stable and better output. In figure 4, existing 
FxLMS and modified FxLMS plots are shown. In this 
particular sample we have shown, having SNR of 
FxLMS is 11.706468 and modified FxLMS is 
12.226385. 
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Figure 4. Plot analysis between received noisy signal and filtered signal of (a) FxLMS (SNR = 11.706468), (b) modified FxLMS 

(SNR = 12.226385). 

As having higher SNR means more information, at 
figure 4(b) we got best output. In 4(a), filtered signal 
lost more information than that of 4(b). If we analysis 
noise residue plots at figure 5, modified FxLMS got 

relatively less noise after each iteration, and at the end 
of discrete time T, noise figures are way smaller than 
before that indicates, our modified FxLMS capable of 
reducing noises much efficiently. 

 

Figure 5. Plot analysis of noise residue after each filtering iteration of (a) FxLMS (SNR = 11.706468), (b) modified FxLMS 
(SNR = 12.226385). 

4. Conclusion 

To conclude, this paper demonstrated an 
underwater acoustic active noise cancellation (ANC) 

system using Filtered-x LMS and kalman filter. Based 
on the simulation and test results, proposed model of 
modified Filtered-x LMS is able to reduce noise in 
received signals. Performance of modified FxLMS is 
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best when we keep using step size  during LMS and 
replace it with kalman gain at secondary noise path 
calculation. The future recommendations that can be 
taken into consideration is by using various of kalman 
filter, multiple frequency tone testing, and also 
implementation towards the industrial system. 

Acknowledgment 

The authors gratefully acknowledge the Institute 
of Research and Training (IRT), Hajee Mohammad 
Danesh Science & Technology University for their 
support. 

 

References 

[1] Dewasthale, Mugdha M. and Kharadkar, R.D., "Acoustic 
Noise Cancellation Using Adaptive Filters: A Survey," in 
2014 International Conference on Electronic Systems, 
Signal Processing and Computing Technologies, 2014. 
DOI: 10.1109/ICESC.2014.11 

[2] M. Rajesh., J. Jeevamalar. and J. Jancirani, "Active noise 
reduction of automotive HVAC system using filtered 
LMS [Part-1 sound measurement]," in IEEE-
International Conference On Advances in Engineering, 
Science and Management (ICAESM -2012), 2012, 
Available: https://ieeexplore.ieee.org/document/6216261. 

[3] Madravam, Venu and Jagadeesha, S N and Yerriswamy, 
T, "An Analysis of LMS, NLMS and RLS Filters with 
Application to DOA Tracking," in 2nd International 
Conference on Innovative Mechanisms for Industry 
Applications (ICIMIA), 2020, DOI: 
10.1109/ICIMIA48430.2020.9074887. 

[4] Haykin, Simon S, "Adaptive filter theory", Pearson 
Education India, 2008, Available: 
https://books.google.com.bd/books/about/Adaptive_Filte
r_Theory.html?id=MdDi_PF7gMsC&redir_esc=y. 

[5] Mayyas, K. and Aboulnasr, T., "Comparative Study of 
the Filtered-X Lms and Lms Algorithms with 
Undermodelling Conditions," International Journal of 
Modelling and Simulation, vol. 22, pp. 159-166, 2002, 
DOI: 10.1080/02286203.2002.11442237. 

[6] Hirave, Bageshree Pathak & Padma. P., "FxLMS 
Algorithm for Feed Forward Active Noise Cancellation," 
in First International Conference on Advances in 
Computer, Electronics and Electrical Engineering - 
CEEE, 2012, DOI: 10.15224/978-981-07-1847-3-203. 

[7] Gupta, Sakshi Gaur and V. K., "A Review on Filtered-X 
LMS Algorithm," International Journal of Signal 
Processing Systems, vol. 4, no. 2, pp. 172-176, 2016, 
DOI: 10.12720/ijsps.4.2.172-176.  

[8] R. E. Kalman, "A New Approach to Linear Filtering and 
Prediction Problems," Journal of Fluids Engineering, 
Transactions of the ASME, vol. 82, no. 1, pp. 35-45, 
1960, DOI: 10.1115/1.3662552.  

[9] Kumari, N., Kulkarni, R., Ahmed, M.R., Kumar, N., 
"Use of Kalman Filter and Its Variants in State 
Estimation: A Review," in Artificial Intelligence for a 
Sustainable Industry 4.0, Springer International 
Publishing, 2021, pp. 213-230, DOI: 10.1007/978-3-030-
77070-9_13. 

[10] K. Paliwal, L Alsteris, "Usefulness of phase in speech 
processing," in IPSJ Spoken Language Processing 
Workshop, Japan, 2003, Available: 

https://www.semanticscholar.org/paper/Usefulness-of-
phase-in-speech-processing-
Paliwal/56385f10a46eef3b2195ba7dfe8389b50211a30a. 

[11] M. Bernard Widrow & Bilello, "Adaptive Inverse 
Control. - CONTROL ENG PRACTICE. 5. 1 - 6. .," 
Control Engineering Practice, vol. 5, pp. 1-6, 1993, DOI: 
10.1109/ISIC.1993.397732.  

[12] May, Harry F. Olson and Everett G., "Electronic Sound 
Absorber," The Journal of the Acoustical Society of 
America, vol. 25, no. 6, pp. 1130-1136, 1953, 
10.1121/1.1907249.  

[13] Morgan, S. M. Kuo and D. R. "Active noise control: a 
tutorial review," Proceedings of the IEEE, vol. 87, no. 6, 
pp. 943-973, 1999, DOI: 10.1109/5.763310. 

[14] Alfian Ma’arif, Iswanto, Aninditya Anggari Nuryono, 
Rio Ikhsan Alfian, "Kalman Filter for Noise Reducer on 
Sensor Readings," Signal and Image Processing Letters, 
vol. 1, no. 2, pp. 50-60, 2019, DOI: 
10.31763/simple.v1i2.2. 

[15] Wojcicki, Kamil and Milacic, Mitar and Stark, Anthony 
and Lyons, James and Paliwal, Kuldip, "Exploiting 
Conjugate Symmetry of the Short-Time Fourier 
Spectrum for Speech Enhancement," IEEE Signal 
Processing Letters, vol. 15, pp. 461-464, 2008, DOI: 
10.1109/LSP.2008.923579.  

[16] M. R. Ananthasayanam, "Tuning of the Kalman Filter 
Using Constant Gains," in Introduction and 
Implementations of the Kalman Filter, IntechOpen, 2018, 
DOI: 10.5772/intechopen.81795.  

[17] D. K. Buckl, "Sensor Fusion using the Kalman Filter," 
TUM: The Entrepreneurial University, 2005, Available: 
https://campar.in.tum.de/Chair/KalmanFilter. 

[18] Dunik, Jindrich and Straka, Ondřej and Kost, Oliver and 
Havlík, Jindřich, "Noise covariance matrices in 
state‐space models: A survey and comparison of 
estimation methods—Part I," International Journal of 
Adaptive Control and Signal Processing, vol. 31, 2017, 
DOI: 10.1002/acs.2783. 

[19]  Cyberdyne, "Kalman filter in computer vision: the 
choice of Q and R noise covariances," 2014, Available: 
https://stackoverflow.com/questions/21245167/kalman-
filter-in-computer-vision-the-choice-of-q-and-r-noise-
covariances. 

Contribution of Individual Authors to the 
Creation of a Scientific Article (Ghostwriting 
Policy) 
The authors equally contributed in the present 

research, at all stages from the formulation of the 

problem to the final findings and solution. 

 
   

 

Sources of Funding for Research Presented in a 
Scientific Article or Scientific Article Itself 
No funding was received for conducting this study. 

  
Conflict of Interest
The authors have no conflicts of interest to declare 

that are relevant to the content of this article. 
 
Creative Commons Attribution License 4.0 
(Attribution 4.0 International, CC BY 4.0) 
This article is published under the terms of the 

Creative Commons Attribution License 4.0 

https://creativecommons.org/licenses/by/4.0/deed.en

_US 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2023.3.5 Md. Mostafizur Rahman, Sumonto Sarker

E-ISSN: 2769-2477 38 Volume 3, 2023 

https://ieeexplore.ieee.org/document/6216261
https://books.google.com.bd/books/about/Adaptive_Filter_Theory.html?id=MdDi_PF7gMsC&redir_esc=y
https://books.google.com.bd/books/about/Adaptive_Filter_Theory.html?id=MdDi_PF7gMsC&redir_esc=y
https://www.semanticscholar.org/paper/Usefulness-of-phase-in-speech-processing-Paliwal/56385f10a46eef3b2195ba7dfe8389b50211a30a
https://www.semanticscholar.org/paper/Usefulness-of-phase-in-speech-processing-Paliwal/56385f10a46eef3b2195ba7dfe8389b50211a30a
https://www.semanticscholar.org/paper/Usefulness-of-phase-in-speech-processing-Paliwal/56385f10a46eef3b2195ba7dfe8389b50211a30a
https://campar.in.tum.de/Chair/KalmanFilter
https://stackoverflow.com/questions/21245167/kalman-filter-in-computer-vision-the-choice-of-q-and-r-noise-covariances
https://stackoverflow.com/questions/21245167/kalman-filter-in-computer-vision-the-choice-of-q-and-r-noise-covariances
https://stackoverflow.com/questions/21245167/kalman-filter-in-computer-vision-the-choice-of-q-and-r-noise-covariances



