
The trajectory tracking problem for repetitive nonlinear
systems has been important subject research in the control
theory field. In fact, Iterative Learning Control (ILC) is the
best technique to deal with this problem [1], [2], [3], [4],
[5]. The basic idea of this approach is to use the information
from the previous iterations to generate a better controller
through the iterations. In general, there are two approaches to
studying the asymptotic stability of nonlinear systems based
on the ILC scheme. The first is the theory of Lyapunov,
which based on the construction of a scalar energy-like
function and showing that to be monotonically decreasing
under the control design scheme [6], [7], [8]. The second
approach is the λ-norm. This method has been defined and
used in the first publication of the ILC technique [9], and
many works employ this method, see for example [10],
[11], [12], [13]. In our work, we use λ-norm to prove the
asymptotic stability of the closed loop system.

In addition, in accordance with the learning action type
in the ILC schemes, we have mainly four types of ILC: P-
type ILC [14], [15], D-type ILC [16], PD-type ILC [17]
and PID-type ILC [18]. Indeed, numerical methods can be
applied to obtain the error derivative in the implementation
of a derivative action. However, the numerical error differ-
entiation might be a source of several noises if the output
is contaminated with measurement noise. In fact, due to
this action (derivative), the measurement noise amplification
accumulates and increases through iterations for repetitive
systems. Thus, it is preferred to use only proportional action
in the controller scheme. In our paper, we use P-type ILC.
On the other hand, and according to the information used in
the controller, the ILC is classified into two types: one order
and high order. For the one order type, the information used
in the controller comes only from one iteration. For the high
order type, the information used in the controller comes from

several iterations. In the literature, some studies have been
done to compare the two types [19], [20]. It is shown that the
performances of the systems are better with the high order
type. In our work, we use the high order type, in which
the information obtained from previous and current trials are
used to improve the control input for next trial to achieve a
fast convergence rate.

Furthermore, the most systems that existed in the industry
can be affected by nonsmooth and non-affine input uncertain-
ties such as the saturation. The presence of saturation may
limit the performance of the system and even worse may
lead the system unstable. However, owing to the difficulty
of guaranteeing the stability of the closed-loop system in
the presence of input saturation, there are little studies based
on the ILC method to deal with this problem. For example,
an iterative learning control for single input single output
systems with input saturation is presented in [21], [22], [23].
There are other works on the ILC that have studied the
input saturation for linear time-invariant system [24] and
for differential and discrete linear systems [25]. Differently
to these studies, we proposed a high order P-type ILC for
multi-input multi-output nonlinear systems in the presence
of unknown input saturation.

In this paper, we present a simple high order P-type
ILC scheme to solve the trajectory tracking problem of
multi input multi output (MIMO) non-linear systems with
unknown input saturation. To achieve a fast convergence rate,
the information obtained from previous and current trials
are used to improve the control input for next trial. The
asymptotic stability of the closed system under unknown
input saturation over the whole finite time is guaranteed by
using the λ-norm method. Finally, an illustrative example is
presented to demonstrate the effectiveness of the proposed
controller. The rest of this paper is organized as follows: the
problem formulation of the nonlinear systems with unknown
input saturation is presented in Section II. The high order
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P-type ILC scheme for the system and its convergence
analysis is proposed in Section III. An illustrative example
is presented in Section IV and conclusions are discussed in
Section V.

Now, we consider the unknown MIMO nonlinear system
with unknown input saturation:

ẋk = f
(
xk(t), t

)
+B

(
t
)
sat(uk(t), u

∗) (1)
where: t ∈ [0, T ], k denotes the iteration index. xk ∈ IRn is
the state of the system.f(xk) ∈ IRn is an unknown function,
B(t) ∈ IRn×n is an unknown input matrix. sat(uk(t), u

∗) is
the vector-valued of the saturation function, which can be
defined as follows

sat(uk(t), u
∗) =

 uk(t) |uk(t)| 6 u∗

sgn(uk(t))u
∗ else

(2)

Lemma 1: [26] For saturation function w = sat(u,m)+ d,
we can obtain(

sat(w,m)− w)T (sat(w,m)− w) 6 dT d (3)
where w, u,m and d ∈ IRm

Lemma 2: [27] Let x(t) = [x1(t), x2(t), . . . , xn(t)]
T ∈ IRn

be defined for t ∈ [0, T ], then we have(∫ t

0

‖x(τ)‖ dτ
)
e−λt 6

1

λ
‖x(t)‖λ , λ > 0. (4)

Lemma 3: [Gronwall-Bellman] [26] Suppose that f(t) and
g(t) > 0 are real and locally integrable scalar functions, L is
a constant. If f(t) satisfies

f(t) 6 L+

∫ t

0

g(τ)f(τ)dτ, t ∈ [a, b] (5)

then, on the same interval, f(t) satisfies

f(t) 6 L exp
(∫ t

0

g(τ)dτ
)
. (6)

The following assumptions for system (1) are made.
Assumption 1: The function f(xk(t), t) satisfies the Lips-

chitz condition in x for t ∈ [0, T ] that means
‖f(x1(t), t)− f(x2(t), t)‖ 6 α ‖x1(t)− x2(t)‖ (7)

where α is the Lipschitz constant.
Assumption 2: The identical initialisation condition is sat-

isfied, i.e., xk(0) = xd(0).
Our objective in this work is to find a sequence of updating

control along with iteration such that, the real state trajectory
xk(t) follows exactly the desired trajectory xd(t) when the
number of iteration k tends to infinity.

The high order P-type ILC scheme at the (k + 1)th iteration
is developed as follows

uk+1(t) = sat(uk(t), u
∗) + P1ek(t) + P2ek+1(t) (8)

where P1 and P2 are positive gains, ek(t) = xd(t)−xk(t) and
ek+1(t) = xd(t)− xk+1(t).

Theorem 1: Applying the controller law (8) to the MIMO
nonlinear systems (1). Under Assumptions 1 and 2, we get,

lim
k→∞

xk(t) = xd(t), ∀t ∈ [0, T ].

Proof: From (1), the state vector at the (k+1)th iteration
can be written as

xk+1(t) = xk+1(0)+

∫ t

0

(
f(xk+1)+B(t) sat(uk+1, u

∗)
)
dτ (9)

Applying (8) and (9), we obtain

xk+1(t) = xk(0) +

∫ t

0

(
f(xk+1) +B(t)

sat(sat(uk, u
∗) + P1ek + P2ek+1, u

∗)
)
dτ (10)

Adding and subtracting f(xk) +B(t)(sat(uk, u
∗) + P1ek +

P2ek+1), we get

xk+1(t) = xk(0) +

∫ t

0

(f(xk+1)− f(xk))dτ +

∫ t

0

(
f(xk)

+B(t)(sat(uk, u
∗) + P1ek + P2ek+1)

)
dτ

+

∫ t

0

B(t)
(
sat(sat(uk, u

∗) + P1ek + P2ek+1, u
∗)

− (sat(uk, u
∗) + P1ek + P2ek+1)

)
dτ (11)

Using Lemma 1, (11) is transformed into

xk+1(t) 6 xk(0) +

∫ t

0

(
f(xk+1)− f(xk)

)
dτ

+

∫ t

0

(
f(xk) +B(t) sat(uk, u

∗)
)
dτ

+

∫ t

0

(
P1ek + P2ek+1

)
dτ

+

∫ t

0

µ
(
P1 ‖ek‖+ P2 ‖ek+1‖

)
dτ (12)

where µ = max(‖B(t)‖).
From (1) and using Assumption 2, we have

xk+1(t) 6 xk(t) +

∫ t

0

(
f(xk+1)− f(xk)

)
dτ

+

∫ t

0

(
P1ek + P2ek+1

)
dτ

+

∫ t

0

µ
(
P1 ‖ek‖+ P2 ‖ek+1‖

)
dτ (13)

Taking the norm of both sides of (13) and using the
Assumption 1, we obtain

‖xk+1 − xk‖ 6 α

∫ t

0

‖xk+1 − xk‖ dτ

+

∫ t

0

(
P1 ‖ek‖+ P2 ‖ek+1‖

)
dτ

+

∫ t

0

µ
(
P1 ‖ek‖+ P2 ‖ek+1‖

)
dτ (14)

Using Lemma 3, (14) can be rewritten as

‖xk+1 − xk‖ 6
∫ t

0

((
P1 + P1µ

)
‖ek‖

+
(
P2 + P2µ

)
‖ek+1‖

)
dτ exp(α) (15)

Multiplying the both side of (15) by e−λt and according
to Lemma 2, we find

‖xk+1 − xk‖λ 6

((
P1 + P1µ

λ

)
‖ekl‖λ

+

(
P2 + P2µ

λ

)
‖ek+1‖λ

)
exp
(α
λ

)
(16)

Knowing that ek+1 − ek = xk − xk+1. (13) can be written
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as:

−ek+1−
∫ t

0

(
P1ek+P2ek+1

)
dτ−

∫ t

0

µ
(
P1 ‖ek‖+P2 ‖ek+1‖

)
dτ

6 −ek −
∫ t

0

(
f(xk+1)− f(xk)

)
dτ (17)

According to Assumption 1 and Lemma 2, (17) becomes(
P1 + P1µ

λ

)
‖ek‖λ +

(
1 +

P2 + P2µ

λ

)
‖ek+1‖λ

6 ‖ek‖λ +
α

λ
‖xk+1 − xk‖λ (18)

Substituting (15) in (18), we get(
P2 + P2µ

λ
+ 1

)
‖ek+1‖λ 6

(
P1 + P1µ

λ
− 1

)
‖ek‖λ

+
α

λ

((
P1 + P1µ

λ

)
‖ek‖λ

+

(
P2 + P2µ

λ

)
‖ek+1‖λ

)
exp
(α
λ

)
(19)

Equation (19) can be simplified as

‖ek+1‖λ 6

1− P1 + P1µ

λ

1 +
P2 + P2µ

λ

 ‖ek‖λ
+

α exp
(α
λ

)
λ

(
1 +

P2 + P2µ

λ

)((P1 + P1µ

λ

)
‖ek‖λ

+

(
P2 + P2µ

λ

)
‖ek+1‖λ

)
(20)

Choosing λ > 0 widely great, we have

‖ek+1‖λ 6

1− P1 + P1µ

λ

1 +
P2 + P2µ

λ

 ‖ek‖λ (21)

This implies
‖ek+1‖λ 6 η ‖ek‖λ , η < 1 (22)

Thus, it is clear that
lim

k→+∞
‖ek+1(t)‖λ = 0, ∀t ∈ [0, T ] (23)

This completes the proof.

We consider the nonlinear systems with the following
dynamics [29]:ẋ1k(t)

ẋ2k(t)

 =

 x2k

−J−1
m S sin(x1k)

+

 0

−J−1
m

 sat(uk(t), u
∗)

(24)
where: t ∈ [0, 2], Jm = 14 kg m2, S = 6 kg m and g =

9.8 m/s2. Let the desired trajectory be xd(t) = sin(2πt) and
y(t) = x2(t).

By applying the high order P-type ILC (3) to the system
(19), we get the simulation results shown in Figures 1, 2
and 3. where the parameters of the controller are chosen as
P1 = 100 , P2 = 25 and u∗ = 9.

From Figure 1, it is easily seen that the real tracking
trajectory follows exactly the desired trajectory after just 10th

iterations. Figure 2 presents the variations of the maximum
errors bounds through the iteration numbers, it is clear that
the maximum errors decreasing through the iterations and
tends to 0 after only 5th iterations. The control signal input
with saturation is presented in Figure 3, we can see that the
high order P-type ILC satisfy the constraints and can be
adapted gradually into the chosen boundary (u∗ = 9) along
with the iteration numbers.
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Fig. 1. The real and desired trajectories of the 1st, 2nd and 10th iterations
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Fig. 3. Control signals input through the iterations
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We consider the MIMO nonlinear systems with input
iteration [30]:ẋ1k(t)
ẋ2k(t)

 =

f1(xk)
f2
(
xk
)
+
1.5 + t 0

0 2− 0.3t

 sat(uk, u
∗) (25)

where
f1(xk) = (2 + 0.3t)x1,k + (2.2 + 0.5t)x1,kx2,k

+
(
0.8− 0.1 cos(4t)

)
x21,k (26a)

f2(xk) = (2 + 0.3t) +
(
0.7 + 0.08 sin(3t)

)
x22,k

+ (2.2 + 0.5t)
(
x2,k − x1,k

)
+
(
0.8− 0.1 cos(4t)

)(
x1,k − x2,k

)2 (26b)

The desired trajectories are given asx1d(t)
x2d(t)

 =

sin (2πt)
cos
(
2πt
)
 (27)

Applying the high order P-type ILC (3) to the system (20),
where the parameters of the controller are chosen as P1 = 18,
P2 = 9 and u∗ = 5. The simulation results are shown in
Figures 4-7.

Figures 4 and 5 present the maximum tracking error
through the iterations for the first and the second outputs,
respectively. It is clear that the maximum errors decreasing
through the iteration, in which, after 30th iteration the maxi-
mum error for the first and the second outputs are less than
4× 10−3 and 1.3× 10−2, respectively.

The control signal for the first and the second inputs are
presented in Figures 6 and 7, respectively. We can see that
the high order P-type ILC satisfy the constraints and can
be adapted gradually into the chosen boundary (u∗ = 5) for
both inputs along with the iteration numbers.
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Fig. 4. The Sup-norm of the first tracking errors through the iterations
numbers

From these simulation results, it is clear that the proposed
controller works well.

In this paper, the trajectory tracking problem for MIMO
nonlinear systems with unknown input saturation is solved
by introducing a novel hight order P-type ILC. In order to
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Fig. 5. The Sup-norm of the second tracking error through the iterations
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Fig. 6. The first control input signals through the iterations

achieve a fast convergence rate, the information obtained
from previous and current trials are used to improve the
control input for next trial. The λ-norm method is used to
guarantee the asymptotic stability of the closed-loop system
over the whole finite time. Finally, in order to evaluate the
effectiveness of the method proposed, simulation results are
presented, in which we conclude that the proposed controller
works well.
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