
Deep Learning-Based Vehicle Type Detection and Classification.

NADIN PETHIYAGODA, MWP MADURANGA, DMR KULASEKARA, TL WEERAWARDANE

Department of Computer Engineering

General Sir John Kotelawala Defence Univerity

10390, Ratmalana,

SRI LANKA

Abstract: - Modern intelligent transportation systems heavily rely on vehicle-type classification technology. Deep

learning-based vehicle-type categorization technology has sparked growing concern as image processing, pattern

recognition, and deep learning have all advanced. Over the past few years, convolutional neural work, in

particular You Only Look Once (YOLO), has shown to have considerable advantages in object detection and

image classification. This method speeds up detection because it can predict objects in real time. High accuracy:

The YOLO prediction method produces accurate results with low background errors. YOLO also understands

generalized object representation. This approach, which is among the best at object detection, outperforms R-

CNN approaches by a wide margin. In this paper, YOLOv5 is used to demonstrate vehicle type detection; the

YOLOv5m model was chosen since it suits mobile deployments, the model was trained with a dataset of 3000

images, where 500 images were allocated for each class with a variety of vehicles. Hyperparameter tuning was

applied to optimize the model for better prediction and accuracy. Experimental results for a batch size of 32

trained for 300 epochs show a precision of 98.2%, recall of 94.9%, mAP@.5 of 97.9%, mAP@.5:.95 of 92.8%,

and overall accuracy of 95.3% trained and tested on four vehicle classes.

Key-Words: - You Only Look Once (YOLO), Deep Learning, Convolutional Neural Networks (CNN), Single

Shot Detector (SSD), Vehicle Detection, Vehicle Recognition

Received: June 7, 2022. Revised: March 16, 2023. Accepted: May 12, 2023. Published: June 2, 2023.

1 Introduction
Various advancements in the field of machine vision

have fundamentally transformed the world.

Technology has had an impact on various industries,

including transportation. Because of population

increase and human requirements, the use of vehicles

has risen dramatically. As a result of the increased

difficulties in controlling these vehicles, Intelligent

Traffic Systems were developed, Vehicle Type

Detection systems are critical components of

intelligent traffic systems, and they have a wide range

of applications [17], including highway toll

collection, traffic flow statistics, and urban traffic

monitoring. The development of autonomous driving

technology has given people a new knowledge of

high-level computer vision, and intelligent

transportation and driverless driving technologies

have drawn an increasing amount of interest. Vehicle

Type Detection is a relatively significant technology

in intelligent transportation and autonomous driving.

Thanks to the rapid development of large-scale data,

computer hardware, and deep learning technologies,

there are now several techniques for classifying

various types of vehicles. Most methodologies that

can be implemented have been employed by CNN,

Faster RCNN, YOLO, and SSD [2,18]. The

shortcomings of current object detection systems are

addressed in this work using the most recent real-time

object detection method, namely YOLO.

A. YOLO

You only look once (YOLO) is a state-of-the-art,

real-time object detection system introduced in 2015

by [13]. YOLO proposes using an end-to-end neural

network that provides predictions of bounding boxes

and class probabilities all at once as opposed to the

strategy used by object detection algorithms before it,

which repurpose classifiers to do detection. R-CNNs

are a type of two-stage detector and one of the early

deep learning-based object detectors. The major issue

with the R-CNN family of networks is their speed.

However, though they frequently produce very

accurate results, they were incredibly slow, averaging

barely 5 FPS on a GPU. YOLO employs a one-stage

detector technique to aid in accelerating deep

learning-based object detectors. YOLO has the

natural advantage of speed, better Intersection over

Union in bounding boxes, and improved prediction

accuracy compared to real-time object detectors.

YOLO runs at up to 45 FPS, making it a far faster

algorithm than its competitors. The GoogleNet

architecture inspired YOLO’s architecture, YOLO’s

architecture has a total of 24 convolutional layers

with 2 fully connected layers at the end. The main

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 18 Volume 3, 2023

problems with YOLO, the identification of small

objects in groups and the localization accuracy—

were supposed to be addressed by YOLOv2 [14]. By

implementing batch normalization, YOLOv2 raises

the network's mean Average Precision. The addition

of anchor boxes, as suggested by YOLOv2, was a

considerably more significant improvement to the

YOLO algorithm. As is well known, YOLO predicts

one object for every grid cell. Although this

simplifies the constructed model, it causes problems

when a single cell contains several objects because

YOLO can only assign one class to the cell.

YOLOv2 removes this restriction by allowing the

prediction of several bounding boxes from a single

cell. The network is instructed to anticipate five

bounding boxes for each cell to do this. YOLO9000

[14] was presented as a technique to discover more

classes than COCO as an object detection dataset

could have made possible, using a similar network

design to YOLOv2. Although YOLO9000 has a

lower mean Average Precision than YOLOv2, it is

still a powerful algorithm because it can identify over

9000 classes. YOLOv3 [15] was proposed to enhance

YOLO with modern CNNs that utilize residual

networks and skip connections. YOLOv2 employs

DarkNet-19 as the model architecture, but YOLOv3

uses the significantly more intricate DarkNet-53, a

106-layer neural network with residual blocks and

up-sampling networks, as the model backbone. With

the feature maps being extracted at layers 82, 94, and

106 for these predictions, YOLOv3's architectural

innovation allows it to forecast at three different

sizes.

YOLOv4 [16] is built using CSPDarknet53 as the

backbone, SPP (Spatial pyramid pooling), and PAN

(Path Aggregation Network) for what is known as

"the Neck," and YOLOv3 for "the Head" following

recent research findings. This system uses the latest

algorithm, YOLOv5, which uses the PyTorch

framework possessing many advantages such as

smaller size, higher performance, and better

integration than YOLOv4.

2 Related Works
In the works of [2][6], the authors have presented

experimental results that that YOLOv4 had better

performance, F1 score, precision, recall, and mAP

values compared to other models in [2] and YOLOv3

has demonstrated better results in performance and

accuracy than R-CNN and Fast R-CNN [6]. Yanhong

Yang [3] uses the SSD algorithm to achieve vehicle

classification and positioning, from picture

collection, picture calibration, model training, and

model detection, several aspects of the detailed

introduction of the vehicle classification process.

THE PASCAL VOC dataset was used, and the

TensorFlow framework and SSD model with the

VGG16 model were used for model training. In [2-9]

[11][12] Common vehicle categories are bus, car,

truck, bus, and motorbikes. In [6-7] limitations were

how to effectively detect vehicles in complex

environments. Due to the limitations of hardware and

time, in-depth research can be conducted in the future

on the aspects of improving accuracy, improving

detection accuracy, and improving calibration

methods. A combination of YOLOv4 and

DeepSORT has been used in [7] for vehicle detection

and real-time object tracking, respectively.

In [8] proposes a CNN model for vehicle

classification with low-resolution images from a

frontal perspective. The model was trained as a

multinomial logistic regression where the cross-

entropy of the ground truth labels and the model's

prediction estimate the error. Data augmentation was

performed to prevent overfitting. A leaky rectifier

activation function (LReLU) instead of (ReLU) was

set up for the convolution output. However, [10]

proposed a CNN architecture for vehicle type

classification. The system requires only one input, a

vehicle image. The model consists of two

convolution layers, 1st, and 2nd layers. Two pooling

layers and four activation functions (ReLU) The 3rd,

4th, and 5th layers are fully connected. In [12]

proposed the network developed has a total of 13

layers, 1 convolutional input layer, 11 intermediate

layers including a combination of Rectified Linear

Unit (ReLU) activation, convolutional, dropout,

max-pooling, flatten, and densely-connected layers,

and 1 Softmax output layer. In the works [6][11] the

gathered datasets from public sources such as COCO,

OpenImage, PASCAL VOC, and some works their

traffic data collected from camera sources. The

dataset split was 80:20 80% for training and 20% for

testing [6][9].

In the works [1][12] The test data gave it had

produced better accuracies with pictures with high

definition while for the pictures with low definition,

the recognition accuracy decreases. It is also

observed that the probability of identifying small cars

as medium-sized vehicles is only 8.69%, and the

probability of identifying large cars is lower, 2.14%

only in [1] and. Further improvements in prediction

accuracy include training on more quality images to

allow it to extract more features from the data and

further divide it into more classes [12]. In [5][10] the

authors wish to aim for better accuracies and stability

by searching for suitable hyperparameters. Research

gaps in [5-7] show the need to cover more variations

of vehicles, Cars Image datasets need more data to

classify, train, and real-time data analysis of the

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 19 Volume 3, 2023

traffic and also more complex environmental

conditions such as night-time and heavy rain. In [8-

9][11] images that could be produced were replicated

using data augmentation to improve precision and [4]

stated image processing techniques were used to

improve prediction accuracy. In [11] the authors have

used Faster R-CNN, for shareable convolutional

layers of RPN and detection network, the improved

ZF net is applied on the PASCAL VOC2012 as the

backbone network.

In [12] the authors have developed a CNN, to detect

types of vehicles commonly found on the road for

database collection purposes and improve the

existing vehicle recognition for advanced

applications. [10] To avoid overfitting Dropout

method has been used, and the final layer is the

predictor. TensorFlow was used to implement the

CNN structures. The hyperparameters for the CNN

model were also mentioned which can affect the

performance of the CNN. The dataset mentioned was

obtained from extracted frames of a video source. In

works [11] RPN is trained by using Stochastic

Gradient Descent (SGD). The method has better

detection average precision for cars and trucks, while

the average precision of minivans and buses is lower.

The result might be caused by a little training set of

minivans and buses.

Some knowledge gaps were identified in the

literature review conducted; many authors have

included foreign datasets, resulting in fewer

accuracies when tested over real-time data. Some

researchers are trying to improve the performance

and recognition accuracies by considering images of

different lighting, weather conditions, noise

reduction, etc. which had been a challenge.

According to the works in [2], it is clear that YOLO

had outperformed other models such as Faster-

RCNN and SSD.

3 Framework Design and

Methodology

 This section outlines the methodology employed for

collecting and constructing the dataset required for

model training and testing. It also delves into the

exploration and comprehension of the architecture

underlying YOLOv5, while determining the optimal

approach for achieving the desired output.

3.1 Dataset

In this experiment, the gathered dataset was from

public sources such as Kaggle, Stanford Cars

Dataset, vehicle images scraped from stock photo

websites, and traffic data collected from a video

source with the following characteristics: Video

duration: 300 seconds, resolution: 1080x2340 pixels,

frame rate: 30 FPS. The dataset was prepared for six

major types of vehicles: car, three-wheel, bus, truck,

motorbike, and van. These images are of different

illumination, angle, and different vehicle models.

The total dataset size is 3,000 images of different

resolutions, with 500 images allocated for each class.

The gathered dataset was annotated in YOLO format

using a free open source called Labelling to

graphically label the images. For each image file in

the same directory, a text file with the same name is

created in the YOLO labeling format. Each text file

provides the object class, object coordinates, height,

and width for the accompanying image file. The

dataset was split into train and valid, which are 70%

(2,100 images) and 30% (900 images) respectively

Fig. 1. Sample images from the training dataset

B. YOLOv5

The most cutting-edge object detection

algorithm currently in use is the YOLOv5 [19],

which Ultralytics introduced in June 2020. It is a

novel convolutional neural network (CNN) that

accurately detects objects in real-time. This

method processes the entire image using a single

neural network, then divides it into parts and

forecasts bounding boxes and probabilities for

each component. The predicted probability is

used to weigh these bounding boxes. In the sense

that it only performs one forward propagation

cycle through the neural network, the approach

"only looks once" at the image before making

predictions. After non-max suppression, it then

provides discovered items. YOLOv5 consists of:

 Backbone: New CSP-Darknet53

 Neck: SPPF, New CSP-PAN

 Head: YOLOv3 Head

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 20 Volume 3, 2023

Fig. 2. YOLOv5 architecture [19]

The overview of the YOLOv5 architecture is

shown in Fig. 2. To understand the classes of

objects in the data, YOLOv5 models need to be

trained using labeled data. The custom dataset

that was prepared was in the YOLO format with

one text file per image. The text file

specifications are:

• One row per object

• Each row is in class x_center y_center width

height format.

• Box coordinates must be in normalized xywh

format (from 0 - 1). If your boxes are in pixels,

divide x_center and width by image width, and

y_center and height by image height.

• Class numbers are zero-indexed (start from

0).

YOLOv5 provides pre-trained models:

Fig. 3. YOLOv5 models [19]

Larger models, such as YOLOv5x and

YOLOv5x6, will almost always yield better

results, but they contain more parameters, need

more CUDA memory to train, and run more

slowly.

The YOLOv5 loss consists of three parts:

 Classes loss (BCE loss)

 objectless loss (BCE loss)

 Location loss (CIoU loss)

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑜𝑏𝑗 + 𝜆3𝐿𝑙𝑜𝑐 (1)

The abjectness losses of the three prediction

layers (P3, P4, P5) are weighted differently. The

balance weights are [4.0, 1.0, 0.4] respectively.

𝐿𝑜𝑏𝑗 = 4.0 ∙ 𝐿𝑜𝑏𝑗
𝑠𝑚𝑎𝑙𝑙 + 1.0 ∙ 𝐿𝑜𝑏𝑗

𝑚𝑒𝑑𝑖𝑢𝑚 + 0.4 ∙

𝐿𝑜𝑏𝑗
𝑙𝑎𝑟𝑔𝑒

 (2)

YOLOv5 uses the following formula to calculate

the predicted target information:

𝑏𝑥 = (2 ∙ 𝜎(𝑡𝑥) − 0.5) + 𝐶𝑥 (3)

𝑏𝑦 = (2 ∙ 𝜎(𝑡𝑦) − 0.5) + 𝐶𝑦 (4)

𝑏𝑤 = 𝑝𝑤 ∙ (2 ∙ 𝜎(𝑡𝑤))2 (5)

𝑏ℎ = 𝑝ℎ ∙ (2 ∙ 𝜎(𝑡ℎ))2 (6)

The build targets to match positive samples:

Calculate the aspect ratio of GT and Anchor

Templates.

𝑟𝑤 = 𝑤𝑔𝑡/𝑤𝑎𝑡 (7)

𝑟ℎ = ℎ𝑔𝑡/ℎ𝑎𝑡 (8)

𝑟𝑤
𝑚𝑎𝑥 = max (𝑟𝑤,

1

𝑟𝑤
) (9)

𝑟ℎ
𝑚𝑎𝑥 = max (𝑟ℎ,

1

𝑟ℎ
) (10)

𝑟𝑚𝑎𝑥 = max (𝑟𝑤
𝑚𝑎𝑥, 𝑟ℎ

𝑚𝑎𝑥) (11)

𝑟𝑚𝑎𝑥 = 𝑎𝑛𝑐ℎ𝑜𝑟𝑡 (12)

The final metric, the mAP across test data, is

generated by averaging all mAP values for each

class in order to determine the mAP across

various Intersection over Union (IoU)

thresholds.

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘=𝑛

𝑘=1
𝑘
 (13)

APk = the Average Precision of a class k

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 21 Volume 3, 2023

n = the number of classes

4 Model Training and Evaluation

3.1 Initial Training Results

The model was trained on a system equipped with

Ubuntu 20.04.3 LTS, CUDA 11.4, 32 GB RAM,

NVIDIA GeForce RTX 3090, Python 3.9.12,

PyTorch 1.12.0. The yolov5m model was used for the

training and test purpose, and a YAML file was

defined to configure the paths for the dataset and the

number of classes to train (car, three-wheel, bus,

truck, motorbike, and van). The model was trained

for 300 epochs with a batch size of 32, and (The

weights and Bias) Platform was used to visualize and

track data in real time.

Fig.4(a)

Fig.4(b)

Fig.4(c)

Fig.4(d)

Fig.4 (e)

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 22 Volume 3, 2023

Fig.4(f)

Fig. 4. Training results

Fig. 4 (a) shows the confusion matrix, 93% of

samples were predicted as True Positives (TP) for

car, 97% for three-wheel, 99% for both bus and truck,

93% for motorbike, and 95% for van whereas 1% of

the truck and 2 % of the car were confused. This is

due to when viewed from the front, a car and a truck

both have common details. Fig.4 (b) shows the

weighted harmonic mean of a classifier's precision

(P) and recall (R), considering = 1, which is known

as the F-measure (F1 score). The F1-Confidence

score was obtained as 0.96 at 0.498 confidence. Fig.

4 (c) presents the precision of each class obtained

after the completion of training; it is the proportion

of correct identifications. The Precision-Confidence

score was obtained as 1.00. Fig. 4 (d) presents the

recall of each class; it is the proportion of actual

positives which are identified correctly. The Recall-

Confidence score was obtained as 0.98. Fig. 4 (e)

shows the precision/recall curve generated from the

validation set after training completes with car: 0.969

mAP@0.5, three-wheel: 0.994 mAP@0.5, bus: 0.994

mAP@0.5, truck: 0.987 mAP@0.5, motorbike: 0.963

mAP@0.5 and van: 0.985 mAP@0.5 and all classes:

0.982 mAP@0.5. Fig. 4 (f) illustrates the regression

losses for bounding box, object loss, and class loss,

this includes training and validation and also the

performance metrics for 300 epochs.

B. Hyperparameter Evolution

About 30 hyperparameters are employed in YOLOv5

for diverse training settings. It is crucial to initialize

these variables correctly before evolving since better

initial assumptions will result in better final results.

Hyperparameter evolution was carried out on the best

model generated from the initial training results. The

model evolved for 300 generations for 10 epochs

with a batch size of 32. The best generation was

produced at 169th output. Table 1 shows the initial

values and the best-evolved values for the

hyperparameters.

Table. 1. Initial and evolved hyperparameters

Hyperparameter Initial value Evolved

value

initial learning rate (SGD=1E-2,

Adam=1E-3)

0.01 0.00554

final OneCycleLR learning rate (lr0 *

lrf)

0.01 0.01

SGD momentum/Adam beta1 0.937 0.96721

optimizer weight decay 5e-4 0.0005 0.00043

warmup epochs (fractions ok) 3.0 3.0585

warmup initial momentum 0.8 0.8759

warmup initial bias lr 0.1 0.1342

box loss gain 0.05 0.03957

cls loss gain 0.5 0.47055

cls BCELoss positive_weight 1.0 1.0945

obj loss gain (scale with pixels) 1.0 0.94503

obj BCELoss positive_weight 1.0 0.91331

IoU training threshold 0.20 0.2

anchor-multiple threshold 4.0 4.7919

anchors per output layer (0 to ignore) 3 3.1902

focal loss gamma (efficientDet

default gamma=1.5)

0.0 0.0

image HSV-Hue augmentation
(fraction)

0.015 0.01278

image HSV-Saturation augmentation

(fraction)

0.7 0.67957

image HSV-Value augmentation
(fraction)

0.4 0.41589

image rotation (+/- deg) 0.0 0.0

Fig.5(a)

Fig.5(b)

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 23 Volume 3, 2023

Fig.5(c)

Fig.5(d)

Fig.5(e)

Fig.5(f)

Fig. 5. Training results with evolved

hyperparameters

The class: car, bus, and truck had the same

predictions as from the initial training settings. 96%

of samples were predicted as TP for three-wheel,

91% for motorbikes, and 94% for vans whereas 1%

of the truck and 4 % of the car were confused as

Table. 2. Comparison of model results with

batch size, epochs, and hyperparameters

shown in Fig. 5 (a). Fig.5 (b) shows the F1-

Confidence score was obtained as 0.96 at 0.629

confidence. Fig. 5 (c) presents the Precision-

Confidence score obtained as 1.00 at 0.994

confidence. Fig. 5 (d) presents the Recall-Confidence

score obtained as 0.97. Fig. 5 (e) shows the

precision/recall curve generated from the validation

set after training completes with car: 0.969

mAP@0.5, three-wheel: 0.990 mAP@0.5, bus: 0.991

mAP@0.5, truck: 0.989 mAP@0.5, motorbike: 0.961

mAP@0.5 and van: 0.986 mAP@0.5 and all classes:

0.979 mAP@0.5. Fig. 5 (f) illustrates the final results

for regression losses and performance metrics from

training with evolved hyperparameters.

Table. 3. Model results of each class

The model was trained for batch sizes 32 and 64 for

default and evolved hyperparameters. The number of

epochs was determined during training to monitor if

the model overfits. An accuracy of 93.2% was

obtained for batch size 64 trained for 100 epochs,

following the evolved hyperparameters trained with

the same batch size for 300 epochs, an accuracy of

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 24 Volume 3, 2023

94.6% was obtained. Higher batch sizes usually do

not achieve higher accuracies; therefore, the batch

size was reduced to 32. An accuracy of 96% was

obtained for 260 epochs with default

hyperparameters. Final model accuracy was obtained

as 95.3% where batch size: 32 and epochs: 300

trained with the evolved hyperparameters.

The final model results: precision, recall, mAP,

and accuracies of each class are shown in Table.

3. The overall precision of the model was

obtained as 98.2%, the recall was obtained as

94.9%, mAP@.5 was 97.9%, mAP@.5:.95 was

92.8% and the model achieved overall

recognition accuracy of 95.3%. The following

experiment has shown satisfactory results,

considering the knowledge gaps identified in the

existing research.

4 Conclusions

This paper proposes a model for categorizing

vehicle types utilizing the most recent state-of-

the-art object detection model, YOLOv5. With

an overall mAP@.5 of 97.9% and accuracy of

95.3%, the model's promising results. The model

was very successful in recognizing the said

vehicles on the road, as shown by the results.

Any future transportation system that has to

accurately identify the type of vehicle can easily

incorporate it. While the classes can be further

broken down into a more detailed manner,

dividing classes of vehicles as SUVs, sedans,

crossovers, jeeps, etc., Following the

experiment, it was clear, that the model produced

better results concerning the precision and recall,

and it is determined that the model could achieve

best results, greater quality photos must be

utilized to train the model to allow it to extract

more features from the data

References:

[1] Lin, M. Zhao, X. (2019) ‘Application

Research of Neural Network in Vehicle

Target Recognition and Classification’, 2019

International Conference on Intelligent

Transportation, Big Data & Smart City

(ICITBS), 5–8. doi:

10.1109/ICITBS.2019.00010.

[2] Kim, J.-A., Sung, J.-Y. και Park, S.-H.

(2020) ‘Comparison of Faster-RCNN,

YOLO, and SSD for Real-Time Vehicle

Type Recognition’, 2020 IEEE International

Conference on Consumer Electronics - Asia

(ICCE-Asia), 1–4. doi: 10.1109/ICCE-

Asia49877.2020.9277040.

[3] Yang, Y. (2020) ‘Realization of Vehicle

Classification System Based on Deep

Learning’, 2020 IEEE International

Conference on Power, Intelligent Computing

and Systems (ICPICS), 308–311. doi:

10.1109/ICPICS50287.2020.9202376.

[4] Aishwarya, C. N., Mukherjee, R. Mahato, D.

K. (2018) ‘Multilayer vehicle classification

integrated with single frame optimized

object detection framework using CNN

based deep learning architecture’, 2018 IEEE

International Conference on Electronics,

Computing and Communication

Technologies (CONECCT). 1–6. doi:

10.1109/CONECCT.2018.8482366.

[5] Htet, K. S. Sein, M. M. (2020) ‘Event

Analysis for Vehicle Classification using

Fast RCNN’, 2020 IEEE 9th Global

Conference on Consumer Electronics

(GCCE), 403–404. doi:

10.1109/GCCE50665.2020.9291978.

[6] MWP Maduranga, Dilshan Nandasena,

"Mobile-Based Skin Disease Diagnosis

System Using Convolutional Neural

Networks (CNN)", International Journal of

Image, Graphics and Signal

Processing(IJIGSP), Vol.14, No.3, pp. 47-

57, 2022.DOI: 10.5815/ijigsp.2022.03.05

[7] Doan, T.-N. Truong, M.-T. (2020) ‘Real-

time vehicle detection and counting based on

YOLO and DeepSORT’, 2020 12th

International Conference on Knowledge and

Systems Engineering (KSE), 67–72. doi:

10.1109/KSE50997.2020.9287483.

[8] Roecker, M. N. (2018) ‘Automatic Vehicle

type Classification with Convolutional

Neural Networks’, 2018 25th International

Conference on Systems, Signals and Image

Processing (IWSSIP), 1–5. doi:

10.1109/IWSSIP.2018.8439406.

[9] Harianto, R. A., Pranoto, Y. M. Gunawan, T.

P. (2021) ‘Data Augmentation and Faster

RCNN Improve Vehicle Detection and

Recognition’, 2021 3rd East Indonesia

Conference on Computer and Information

Technology (EIConCIT), 128–133. doi:

10.1109/EIConCIT50028.2021.9431863.

[10] Maungmai, W. Nuthong, C. (2019)

‘Vehicle Classification with Deep Learning’,

2019 IEEE 4th International Conference on

Computer and Communication Systems

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 25 Volume 3, 2023

(ICCCS), 294–298. doi:

10.1109/CCOMS.2019.8821689.

[11] Wang, X. (2019) ‘Real-time vehicle

type classification with deep convolutional

neural networks, Journal of Real-Time

Image Processing, 16(1), 5–14. doi:

10.1007/s11554-017-0712-5.

[12] San, W. J., Lim, M. G. Chuah, J. H.

(2018) ‘Efficient Vehicle Recognition and

Classification using Convolutional Neural

Network’, 2018 IEEE International

Conference on Automatic Control and

Intelligent Systems (I2CACIS), 117–122.

doi: 10.1109/I2CACIS.2018.8603700.

[13] Redmon, J. (2015) ‘You Only Look

Once: Unified, Real-Time Object Detection’,

CoRR, abs/1506.02640.

http://arxiv.org/abs/1506.02640.

[14] W. T. S. Wickramanayake, P. K. T.

V. Kumararathhe, U. G. B. A. Jayashan and

M. Maduranga, "ParkMate: An Image

Processing Based Automated Car Parking

System," 2022 International Conference on

Communication, Computing and Internet of

Things (IC3IoT), 2022, pp. 1-5, doi:

10.1109/IC3IOT53935.2022.9767991.

[15] Redmon, J. Farhadi, A. (2018)

‘YOLOv3: An Incremental Improvement’,

CoRR, abs/1804.02767.

http://arxiv.org/abs/1804.02767.

[16] Bochkovskiy, A., Wang, C.-Y. και

Liao, H.-Y. M. (2020) ‘YOLOv4: Optimal

Speed and Accuracy of Object Detection’,

CoRR, abs/2004.10934.

https://arxiv.org/abs/2004.10934.

[17] Chen, Y. (2017) ‘Vehicle type

classification based on convolutional neural

network’, 2017 Chinese Automation

Congress (CAC), 1898–1901. doi:

10.1109/CAC.2017.8243078.

[18] Armin, E. U., Bejo, A. Hidayat, R.

(2020) ‘Vehicle Type Classification in

Surveillance Image based on Deep Learning

Method’, 2020 3rd International Conference

on Information and Communications

Technology (ICOIACT), 400–404. doi:

10.1109/ICOIACT50329.2020.9332047.

[19] Jocher, G., 2020. GitHub -

ultralytics/yolov5: YOLOv5 in PyTorch >

ONNX > CoreML > TFLite. [online]

GitHub. Available at:

<https://github.com/ultralytics/yolov5>

[Accessed 23 June 2022].

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

Nadin Pethiyagoda, carried out the dataset

preparation, model training and evaluation, MWP

Maduranga, methodology and technical writing.

DMR Kulasekara and TL Weerawardena overall

supervision of the work.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare

that are relevant to the content of this article.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2023.3.3

Nadin Pethiyagoda, Mwp Maduranga,
Dmr Kulasekara, Tl Weerawardane

E-ISSN: 2769-2477 26 Volume 3, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

