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Abstract: - Modern intelligent transportation systems heavily rely on vehicle-type classification technology. Deep 

learning-based vehicle-type categorization technology has sparked growing concern as image processing, pattern 

recognition, and deep learning have all advanced. Over the past few years, convolutional neural work, in 

particular You Only Look Once (YOLO), has shown to have considerable advantages in object detection and 

image classification. This method speeds up detection because it can predict objects in real time. High accuracy: 

The YOLO prediction method produces accurate results with low background errors. YOLO also understands 

generalized object representation. This approach, which is among the best at object detection, outperforms R-

CNN approaches by a wide margin. In this paper, YOLOv5 is used to demonstrate vehicle type detection; the 

YOLOv5m model was chosen since it suits mobile deployments, the model was trained with a dataset of 3000 

images, where 500 images were allocated for each class with a variety of vehicles. Hyperparameter tuning was 

applied to optimize the model for better prediction and accuracy. Experimental results for a batch size of 32 

trained for 300 epochs show a precision of 98.2%, recall of 94.9%, mAP@.5 of 97.9%, mAP@.5:.95 of 92.8%, 

and overall accuracy of 95.3% trained and tested on four vehicle classes. 
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1 Introduction 
Various advancements in the field of machine vision 

have fundamentally transformed the world. 

Technology has had an impact on various industries, 

including transportation. Because of population 

increase and human requirements, the use of vehicles 

has risen dramatically. As a result of the increased 

difficulties in controlling these vehicles, Intelligent 

Traffic Systems were developed, Vehicle Type 

Detection systems are critical components of 

intelligent traffic systems, and they have a wide range 

of applications [17], including highway toll 

collection, traffic flow statistics, and urban traffic 

monitoring. The development of autonomous driving 

technology has given people a new knowledge of 

high-level computer vision, and intelligent 

transportation and driverless driving technologies 

have drawn an increasing amount of interest. Vehicle 

Type Detection is a relatively significant technology 

in intelligent transportation and autonomous driving. 

Thanks to the rapid development of large-scale data, 

computer hardware, and deep learning technologies, 

there are now several techniques for classifying 

various types of vehicles. Most methodologies that 

can be implemented have been employed by CNN, 

Faster RCNN, YOLO, and SSD [2,18]. The 

shortcomings of current object detection systems are 

addressed in this work using the most recent real-time 

object detection method, namely YOLO.  

A. YOLO 

You only look once (YOLO) is a state-of-the-art, 

real-time object detection system introduced in 2015 

by [13]. YOLO proposes using an end-to-end neural 

network that provides predictions of bounding boxes 

and class probabilities all at once as opposed to the 

strategy used by object detection algorithms before it, 

which repurpose classifiers to do detection. R-CNNs 

are a type of two-stage detector and one of the early 

deep learning-based object detectors. The major issue 

with the R-CNN family of networks is their speed. 

However, though they frequently produce very 

accurate results, they were incredibly slow, averaging 

barely 5 FPS on a GPU. YOLO employs a one-stage 

detector technique to aid in accelerating deep 

learning-based object detectors. YOLO has the 

natural advantage of speed, better Intersection over 

Union in bounding boxes, and improved prediction 

accuracy compared to real-time object detectors. 

YOLO runs at up to 45 FPS, making it a far faster 

algorithm than its competitors. The GoogleNet 

architecture inspired YOLO’s architecture, YOLO’s 

architecture has a total of 24 convolutional layers 

with 2 fully connected layers at the end. The main 
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problems with YOLO, the identification of small 

objects in groups and the localization accuracy—

were supposed to be addressed by YOLOv2 [14]. By 

implementing batch normalization, YOLOv2 raises 

the network's mean Average Precision. The addition 

of anchor boxes, as suggested by YOLOv2, was a 

considerably more significant improvement to the 

YOLO algorithm. As is well known, YOLO predicts 

one object for every grid cell. Although this 

simplifies the constructed model, it causes problems 

when a single cell contains several objects because 

YOLO can only assign one class to the cell. 

YOLOv2 removes this restriction by allowing the 

prediction of several bounding boxes from a single 

cell. The network is instructed to anticipate five 

bounding boxes for each cell to do this. YOLO9000 

[14] was presented as a technique to discover more 

classes than COCO as an object detection dataset 

could have made possible, using a similar network 

design to YOLOv2. Although YOLO9000 has a 

lower mean Average Precision than YOLOv2, it is 

still a powerful algorithm because it can identify over 

9000 classes. YOLOv3 [15] was proposed to enhance 

YOLO with modern CNNs that utilize residual 

networks and skip connections. YOLOv2 employs 

DarkNet-19 as the model architecture, but YOLOv3 

uses the significantly more intricate DarkNet-53, a 

106-layer neural network with residual blocks and 

up-sampling networks, as the model backbone. With 

the feature maps being extracted at layers 82, 94, and 

106 for these predictions, YOLOv3's architectural 

innovation allows it to forecast at three different 

sizes. 

YOLOv4 [16] is built using CSPDarknet53 as the 

backbone, SPP (Spatial pyramid pooling), and PAN 

(Path Aggregation Network) for what is known as 

"the Neck," and YOLOv3 for "the Head" following 

recent research findings. This system uses the latest 

algorithm, YOLOv5, which uses the PyTorch 

framework possessing many advantages such as 

smaller size, higher performance, and better 

integration than YOLOv4. 

 

2 Related Works  
In the works of [2][6], the authors have presented 

experimental results that that YOLOv4 had better 

performance, F1 score, precision, recall, and mAP 

values compared to other models in [2] and YOLOv3 

has demonstrated better results in performance and 

accuracy than R-CNN and Fast R-CNN [6]. Yanhong 

Yang [3] uses the SSD algorithm to achieve vehicle 

classification and positioning, from picture 

collection, picture calibration, model training, and 

model detection, several aspects of the detailed 

introduction of the vehicle classification process. 

THE PASCAL VOC dataset was used, and the 

TensorFlow framework and SSD model with the 

VGG16 model were used for model training. In [2-9] 

[11][12] Common vehicle categories are bus, car, 

truck, bus, and motorbikes. In [6-7] limitations were 

how to effectively detect vehicles in complex 

environments. Due to the limitations of hardware and 

time, in-depth research can be conducted in the future 

on the aspects of improving accuracy, improving 

detection accuracy, and improving calibration 

methods. A combination of YOLOv4 and 

DeepSORT has been used in [7] for vehicle detection 

and real-time object tracking, respectively. 

In [8] proposes a CNN model for vehicle 

classification with low-resolution images from a 

frontal perspective. The model was trained as a 

multinomial logistic regression where the cross-

entropy of the ground truth labels and the model's 

prediction estimate the error. Data augmentation was 

performed to prevent overfitting. A leaky rectifier 

activation function (LReLU) instead of (ReLU) was 

set up for the convolution output. However, [10] 

proposed a CNN architecture for vehicle type 

classification. The system requires only one input, a 

vehicle image. The model consists of two 

convolution layers, 1st, and 2nd layers. Two pooling 

layers and four activation functions (ReLU) The 3rd, 

4th, and 5th layers are fully connected. In [12] 

proposed the network developed has a total of 13 

layers, 1 convolutional input layer, 11 intermediate 

layers including a combination of Rectified Linear 

Unit (ReLU) activation, convolutional, dropout, 

max-pooling, flatten, and densely-connected layers, 

and 1 Softmax output layer.  In the works [6][11] the 

gathered datasets from public sources such as COCO, 

OpenImage, PASCAL VOC, and some works their 

traffic data collected from camera sources. The 

dataset split was 80:20 80% for training and 20% for 

testing [6][9]. 

In the works [1][12] The test data gave it had 

produced better accuracies with pictures with high 

definition while for the pictures with low definition, 

the recognition accuracy decreases. It is also 

observed that the probability of identifying small cars 

as medium-sized vehicles is only 8.69%, and the 

probability of identifying large cars is lower, 2.14% 

only in [1] and. Further improvements in prediction 

accuracy include training on more quality images to 

allow it to extract more features from the data and 

further divide it into more classes [12]. In [5][10] the 

authors wish to aim for better accuracies and stability 

by searching for suitable hyperparameters. Research 

gaps in [5-7] show the need to cover more variations 

of vehicles, Cars Image datasets need more data to 

classify, train, and real-time data analysis of the 
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traffic and also more complex environmental 

conditions such as night-time and heavy rain. In [8-

9][11] images that could be produced were replicated 

using data augmentation to improve precision and [4] 

stated image processing techniques were used to 

improve prediction accuracy. In [11] the authors have 

used Faster R-CNN, for shareable convolutional 

layers of RPN and detection network, the improved 

ZF net is applied on the PASCAL VOC2012 as the 

backbone network. 

In [12] the authors have developed a CNN, to detect 

types of vehicles commonly found on the road for 

database collection purposes and improve the 

existing vehicle recognition for advanced 

applications. [10] To avoid overfitting Dropout 

method has been used, and the final layer is the 

predictor. TensorFlow was used to implement the 

CNN structures. The hyperparameters for the CNN 

model were also mentioned which can affect the 

performance of the CNN. The dataset mentioned was 

obtained from extracted frames of a video source.  In 

works [11] RPN is trained by using Stochastic 

Gradient Descent (SGD).  The method has better 

detection average precision for cars and trucks, while 

the average precision of minivans and buses is lower. 

The result might be caused by a little training set of 

minivans and buses. 

Some knowledge gaps were identified in the 

literature review conducted; many authors have 

included foreign datasets, resulting in fewer 

accuracies when tested over real-time data. Some 

researchers are trying to improve the performance 

and recognition accuracies by considering images of 

different lighting, weather conditions, noise 

reduction, etc. which had been a challenge. 

According to the works in [2], it is clear that YOLO 

had outperformed other models such as Faster-

RCNN and SSD. 

 

3 Framework Design and 

Methodology 

 
 This section outlines the methodology employed for 

collecting and constructing the dataset required for 

model training and testing. It also delves into the 

exploration and comprehension of the architecture 

underlying YOLOv5, while determining the optimal 

approach for achieving the desired output. 

 

 

 

3.1 Dataset  
 

 

In this experiment, the gathered dataset was from 

public sources such as Kaggle, Stanford Cars 

Dataset, vehicle images scraped from stock photo 

websites, and traffic data collected from a video 

source with the following characteristics: Video 

duration: 300 seconds, resolution: 1080x2340 pixels, 

frame rate: 30 FPS. The dataset was prepared for six 

major types of vehicles: car, three-wheel, bus, truck, 

motorbike, and van. These images are of different 

illumination, angle, and different vehicle models. 

The total dataset size is 3,000 images of different 

resolutions, with 500 images allocated for each class. 

The gathered dataset was annotated in YOLO format 

using a free open source called Labelling to 

graphically label the images. For each image file in 

the same directory, a text file with the same name is 

created in the YOLO labeling format. Each text file 

provides the object class, object coordinates, height, 

and width for the accompanying image file. The 

dataset was split into train and valid, which are 70% 

(2,100 images) and 30% (900 images) respectively 

 

 
 

Fig. 1.  Sample images from the training dataset 

B. YOLOv5 

 

The most cutting-edge object detection 

algorithm currently in use is the YOLOv5 [19], 

which Ultralytics introduced in June 2020. It is a 

novel convolutional neural network (CNN) that 

accurately detects objects in real-time. This 

method processes the entire image using a single 

neural network, then divides it into parts and 

forecasts bounding boxes and probabilities for 

each component. The predicted probability is 

used to weigh these bounding boxes. In the sense 

that it only performs one forward propagation 

cycle through the neural network, the approach 

"only looks once" at the image before making 

predictions. After non-max suppression, it then 

provides discovered items. YOLOv5 consists of: 

 Backbone: New CSP-Darknet53 

 Neck: SPPF, New CSP-PAN 

 Head: YOLOv3 Head 
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Fig. 2. YOLOv5 architecture [19] 

The overview of the YOLOv5 architecture is 

shown in Fig. 2. To understand the classes of 

objects in the data, YOLOv5 models need to be 

trained using labeled data. The custom dataset 

that was prepared was in the YOLO format with 

one text file per image. The text file 

specifications are: 

• One row per object 

• Each row is in class x_center y_center width 

height format. 

• Box coordinates must be in normalized xywh 

format (from 0 - 1). If your boxes are in pixels, 

divide x_center and width by image width, and 

y_center and height by image height. 

• Class numbers are zero-indexed (start from 

0). 

YOLOv5 provides pre-trained models: 

 
Fig. 3. YOLOv5 models [19] 

 

Larger models, such as YOLOv5x and 

YOLOv5x6, will almost always yield better 

results, but they contain more parameters, need 

more CUDA memory to train, and run more 

slowly. 

The YOLOv5 loss consists of three parts: 

 Classes loss (BCE loss) 

 objectless loss (BCE loss) 

 Location loss (CIoU loss) 

𝐿𝑜𝑠𝑠 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑜𝑏𝑗 +  𝜆3𝐿𝑙𝑜𝑐 (1) 

The abjectness losses of the three prediction 

layers (P3, P4, P5) are weighted differently. The 

balance weights are [4.0, 1.0, 0.4] respectively. 

𝐿𝑜𝑏𝑗 = 4.0 ∙ 𝐿𝑜𝑏𝑗
𝑠𝑚𝑎𝑙𝑙 + 1.0 ∙ 𝐿𝑜𝑏𝑗

𝑚𝑒𝑑𝑖𝑢𝑚 +  0.4 ∙

𝐿𝑜𝑏𝑗
𝑙𝑎𝑟𝑔𝑒

 (2) 

YOLOv5 uses the following formula to calculate 

the predicted target information: 

𝑏𝑥 = (2 ∙ 𝜎(𝑡𝑥) − 0.5) +  𝐶𝑥  (3)    

𝑏𝑦 = (2 ∙ 𝜎(𝑡𝑦) − 0.5) +  𝐶𝑦  (4) 

𝑏𝑤 = 𝑝𝑤 ∙ (2 ∙ 𝜎(𝑡𝑤))2  (5) 

𝑏ℎ = 𝑝ℎ ∙ (2 ∙ 𝜎(𝑡ℎ))2   (6) 

The build targets to match positive samples: 

Calculate the aspect ratio of GT and Anchor 

Templates. 

 

𝑟𝑤 = 𝑤𝑔𝑡/𝑤𝑎𝑡    (7) 

𝑟ℎ = ℎ𝑔𝑡/ℎ𝑎𝑡    (8) 

𝑟𝑤
𝑚𝑎𝑥 = max (𝑟𝑤,

1

𝑟𝑤
)   (9) 

𝑟ℎ
𝑚𝑎𝑥 = max (𝑟ℎ,

1

𝑟ℎ
)            (10) 

𝑟𝑚𝑎𝑥 = max (𝑟𝑤
𝑚𝑎𝑥, 𝑟ℎ

𝑚𝑎𝑥)           (11) 

𝑟𝑚𝑎𝑥 = 𝑎𝑛𝑐ℎ𝑜𝑟𝑡            (12) 

The final metric, the mAP across test data, is 

generated by averaging all mAP values for each 

class in order to determine the mAP across 

various Intersection over Union (IoU) 

thresholds. 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘=𝑛

𝑘=1
𝑘
 (13)  

  

APk = the Average Precision of a class k 
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n = the number of classes 

 

4 Model Training and Evaluation 

 
3.1 Initial Training Results   
 

The model was trained on a system equipped with 

Ubuntu 20.04.3 LTS, CUDA 11.4, 32 GB RAM, 

NVIDIA GeForce RTX 3090, Python 3.9.12, 

PyTorch 1.12.0. The yolov5m model was used for the 

training and test purpose, and a YAML file was 

defined to configure the paths for the dataset and the 

number of classes to train (car, three-wheel, bus, 

truck, motorbike, and van). The model was trained 

for 300 epochs with a batch size of 32, and (The 

weights and Bias) Platform was used to visualize and 

track data in real time. 

 

 
Fig.4(a) 

 

 

 

 
Fig.4(b) 

 
Fig.4(c) 

 

 
Fig.4(d) 

 
Fig.4 (e) 
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Fig.4(f) 

Fig. 4. Training results 

 

Fig. 4 (a) shows the confusion matrix, 93% of 

samples were predicted as True Positives (TP) for 

car, 97% for three-wheel, 99% for both bus and truck, 

93% for motorbike, and 95% for van whereas 1% of 

the truck and 2 % of the car were confused. This is 

due to when viewed from the front, a car and a truck 

both have common details. Fig.4 (b) shows the 

weighted harmonic mean of a classifier's precision 

(P) and recall (R), considering = 1, which is known 

as the F-measure (F1 score). The F1-Confidence 

score was obtained as 0.96 at 0.498 confidence. Fig. 

4 (c) presents the precision of each class obtained 

after the completion of training; it is the proportion 

of correct identifications. The Precision-Confidence 

score was obtained as 1.00. Fig. 4 (d) presents the 

recall of each class; it is the proportion of actual 

positives which are identified correctly. The Recall-

Confidence score was obtained as 0.98. Fig. 4 (e) 

shows the precision/recall curve generated from the 

validation set after training completes with car: 0.969 

mAP@0.5, three-wheel: 0.994 mAP@0.5, bus: 0.994 

mAP@0.5, truck: 0.987 mAP@0.5, motorbike: 0.963 

mAP@0.5 and van: 0.985 mAP@0.5 and all classes: 

0.982 mAP@0.5. Fig. 4 (f) illustrates the regression 

losses for bounding box, object loss, and class loss, 

this includes training and validation and also the 

performance metrics for 300 epochs. 

 

B. Hyperparameter Evolution 

 

About 30 hyperparameters are employed in YOLOv5 

for diverse training settings. It is crucial to initialize 

these variables correctly before evolving since better 

initial assumptions will result in better final results. 

Hyperparameter evolution was carried out on the best 

model generated from the initial training results. The 

model evolved for 300 generations for 10 epochs 

with a batch size of 32. The best generation was 

produced at 169th output. Table 1 shows the initial 

values and the best-evolved values for the 

hyperparameters. 

 

Table. 1.  Initial and evolved hyperparameters 

Hyperparameter Initial value Evolved 

value 

initial learning rate (SGD=1E-2, 

Adam=1E-3) 

0.01 0.00554 

final OneCycleLR learning rate (lr0 * 

lrf) 

0.01 0.01 

SGD momentum/Adam beta1 0.937 0.96721 

optimizer weight decay 5e-4 0.0005 0.00043 

warmup epochs (fractions ok) 3.0 3.0585 

warmup initial momentum 0.8 0.8759 

warmup initial bias lr 0.1 0.1342 

box loss gain 0.05 0.03957 

cls loss gain 0.5 0.47055 

cls BCELoss positive_weight 1.0 1.0945 

obj loss gain (scale with pixels) 1.0 0.94503 

obj BCELoss positive_weight 1.0 0.91331 

IoU training threshold 0.20 0.2 

anchor-multiple threshold 4.0 4.7919 

anchors per output layer (0 to ignore) 3 3.1902 

focal loss gamma (efficientDet 

default gamma=1.5) 

0.0 0.0 

image HSV-Hue augmentation 
(fraction) 

0.015 0.01278 

image HSV-Saturation augmentation 

(fraction) 

0.7 0.67957 

image HSV-Value augmentation 
(fraction) 

0.4 0.41589 

image rotation (+/- deg) 0.0 0.0 

 

 
Fig.5(a) 

 

 
Fig.5(b) 
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Fig.5(c) 

 
Fig.5(d) 

 

 
 

Fig.5(e) 

 
Fig.5(f) 

 

Fig. 5. Training results with evolved 

hyperparameters 

The class: car, bus, and truck had the same 

predictions as from the initial training settings. 96% 

of samples were predicted as TP for three-wheel, 

91% for motorbikes, and 94% for vans whereas 1% 

of the truck and 4 % of the car were confused as  

 

Table. 2.  Comparison of model results with 

batch size, epochs, and hyperparameters 

 
 

shown in Fig. 5 (a). Fig.5 (b) shows the F1-

Confidence score was obtained as 0.96 at 0.629 

confidence. Fig. 5 (c) presents the Precision-

Confidence score obtained as 1.00 at 0.994 

confidence. Fig. 5 (d) presents the Recall-Confidence 

score obtained as 0.97. Fig. 5 (e) shows the 

precision/recall curve generated from the validation 

set after training completes with car: 0.969 

mAP@0.5, three-wheel: 0.990 mAP@0.5, bus: 0.991 

mAP@0.5, truck: 0.989 mAP@0.5, motorbike: 0.961 

mAP@0.5 and van: 0.986 mAP@0.5 and all classes: 

0.979 mAP@0.5. Fig. 5 (f) illustrates the final results 

for regression losses and performance metrics from 

training with evolved hyperparameters. 
 

Table. 3.  Model results of each class 

 
 

The model was trained for batch sizes 32 and 64 for 

default and evolved hyperparameters. The number of 

epochs was determined during training to monitor if 

the model overfits. An accuracy of 93.2% was 

obtained for batch size 64 trained for 100 epochs, 

following the evolved hyperparameters trained with 

the same batch size for 300 epochs, an accuracy of 
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94.6% was obtained. Higher batch sizes usually do 

not achieve higher accuracies; therefore, the batch 

size was reduced to 32. An accuracy of 96% was 

obtained for 260 epochs with default 

hyperparameters. Final model accuracy was obtained 

as 95.3% where batch size: 32 and epochs: 300 

trained with the evolved hyperparameters. 

 

The final model results: precision, recall, mAP, 

and accuracies of each class are shown in Table. 

3. The overall precision of the model was 

obtained as 98.2%, the recall was obtained as 

94.9%, mAP@.5 was 97.9%, mAP@.5:.95 was 

92.8% and the model achieved overall 

recognition accuracy of 95.3%. The following 

experiment has shown satisfactory results, 

considering the knowledge gaps identified in the 

existing research. 

4 Conclusions  

 
This paper proposes a model for categorizing 

vehicle types utilizing the most recent state-of-

the-art object detection model, YOLOv5. With 

an overall mAP@.5 of 97.9% and accuracy of 

95.3%, the model's promising results. The model 

was very successful in recognizing the said 

vehicles on the road, as shown by the results. 

Any future transportation system that has to 

accurately identify the type of vehicle can easily 

incorporate it. While the classes can be further 

broken down into a more detailed manner, 

dividing classes of vehicles as SUVs, sedans, 

crossovers, jeeps, etc., Following the 

experiment, it was clear, that the model produced 

better results concerning the precision and recall, 

and it is determined that the model could achieve 

best results, greater quality photos must be 

utilized to train the model to allow it to extract 

more features from the data 
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