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Abstract: - A single species model with Holling II type cannibalism term is proposed and studied in this paper.
Local and global stability property of the system are investigated. By applying the iterative method, we show that
the system always admits the unique globally asymptotically stable positive equilibrium. A threshold value R0,
which depends on the cannibalism rate and the transform rate, is obtained. Depending on R0 > 1, R0 = 1 or
R0 < 1, the final density of the species will smaller or equal to or bigger than the systemwithout cannibalism. Our
study shows that if the cannibalism rate is too large, and transform rate is too small, thenR0 > 1 and cannibalism
has negative effect on the final density of the species, which increase the extinction property of the species.
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1 Introduction
The aim of this paper is to investigate the dynamic
behaviors of the following single species model in-
corporating the nonlinear cannibalism rate

dx

dt
= x(a+ c− bx)− hx2

d+ x
, (1.1)

where a is intrinsic rate of the species, a/b is the envi-
ronment carrying capacity, h is the cannibalism rate.
C(x) = h × x × x

x+d is the the generic cannibalism

term. cx is the new offsprings due to the cannibalism.
Obviously, c < h.

During the last decades, mathematics biology be-
comes one of the important research area ([1]-[43]),
specially, many scholars investigated the dynamic be-
haviors of the ecosystem with cannibalism, see [34]-
[43] and the references cited therein. Cannibalism
often occurs in plankton[34], fishes[35], spideres[36]
and social insect populations[37]. It is a behavior that
consumes the same species and helps to provide food
sources.

In 2018, Basheer et al.[43] proposed the prey-
predator model with both predator and prey cannibal-
ism as follows:

du

dt
= u(1 + c1 − u)− uv

u+ αv
− c

u2

u+ d
,

dv

dt
= δv

(
β − v

γu+ ρv

)
,

(1.2)
where c1 < c, u and v represent the densities of prey
and predator at time t, respectively. The parameters
c1, α, c, d, δ and β , γ, ρ are all nonnegative constants.
Basheer et al.[43] used the Holling II type functional
response to describe the cannibalism of prey species.
Here the generic cannibalism term C(u), is added in

the prey equation, and is given by

C(u) = c× u× u

u+ d
, (1.3)

where c is the cannibalism rate. This term has a
clear gain of energy to the cannibalistic prey. This
gain results in an increase in reproduction in the prey,
modeled via adding a c1u term to the prey equation.
Obviously, c1 < c, as it takes depredation of a num-
ber of prey by the cannibal to produce one new off-
spring. The authors of [43] tried to investigated the
local and global stability property of the equilibrium
of the system (1.2). Indeed, they used the Iterative
method to prove the global stability property of the
positive equilibrium, they first applying differential
inequality theory to the first equation of (1.2) and ob-
tained

lim sup
t→+∞

u(t) ≤ 1 + c1. (1.3)

Hence, for ε > 0 enough small, there exists a T1 > 0
such that

u(t) ≤ 1 + c1 + ε
def
= M

(1)
1 . (1.4)

By using (1.4), from the second equation of (1.2), one
could obtain

lim sup
t→+∞

v(t) ≤ βγM
(1)
1

1− βρ
. (1.5)

Hence, for above ε > 0, there exists a T2 ≥ T1, such
that

v(t) ≤ βγM
(1)
1

1− βρ
+ ε

def
= M

(1)
2 . (1.6)

Equation (1.6) together with the first equation of (1.2)
leads to

du

dt
≥ u(1 + c1 − u)− v − cu

≥ u
[
(1 + c1 −M

(1)
2 )− (1 + c)u

]
.

(1.7)
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Here, in (1.7), the authors had used the fact

v ≤ uM
(1)
2 (1.8)

However, from the proof of the theorem, more pre-
cisely, from (1.6), we could only obtain the fact

v(t) ≤ M
(1)
2 for all t ≥ T2, hence, the deduction

of (1.7) is incorrect, or at least is not strictly. Some
other similar mistakes also happened in their deduc-
tion. Hence, the conclusion of Theorem 3.3 in [43]
may not hold. One natural issue is to revisit the sta-
bility property of the system (1.2), and to give the
right conditions to ensure the stability of the positive
equilibrium. However, at present we have difficulty
in dealing with this matter. So, we try to study some
more simple model, i.e., single species model (1.1),
we hope that our study will bring some light to this
issue, and finally could solve the stability problem of
system (1.2).

The rest of the paper is arranged as follows. In
next section, we will investigate the existence and lo-
cal stability of the equilibrium of the system (1.1). In
Section 3, we will discuss the global stability of the
equilibrium by using the iterative method. Numeric
simulations are presented in Section 4 to show the fea-
sibility of the main results. We end this paper by a
briefly discussion.

2 The existence and local stability of

the equilibria of system (1.1)
Concerned with the existence of the equilibria of sys-
tem (1.1), we have the following result.

Theorem 2.1.System (1.1) admits the boundary equi-
librium x0 = 0 and the unique positive equilibrium
x∗1, where

x∗1 =
a+ c− h− bd+

√
δ

2b
,

δ = (a+ c− h− bd)2 + 4bd(a+ c).
(2.1)

Proof. The equilibria of system (1.1) satisfies the
equation

x(a+ c− bx)− hx2

d+ x
= 0. (2.2)

Equation (2.2) has three solution x0 = 0, and

x∗1 =
a+ c− h− bd+

√
δ

2b
,

x∗2 =
a+ c− h− bd−

√
δ

2b
.

(2.3)

where δ is defined by (2.1). Noting that
√
δ =

√
(a+ c− h− bd)2 + 4bd(a+ c)

> |a+ c− h− bd|,

hence

a+ c− h− bd+
√
δ > 0,

a+ c− h− bd−
√
δ < 0.

Therefore,
x∗1 > 0, x∗2 < 0.

Hence, system (1.1) admits a unique positive equilib-
rium x∗1.

Theorem 2.2. x0 = 0 is unstable equilibrium, and x∗1
is locally asymptotically stable equilibrium.

Proof. Set

F = x(a+ c− bx)− hx2

d+ x
. (2.4)

Then

F
′
= a+ c− 2bx− 2hx

d+ x
+

hx2

(d+ x)2
. (2.5)

Substituting x0, x
∗
1 into F

′
leads to

F
′ |x=x0

= a+ c > 0. (2.6)

So, x0 is unstable.

F
′ |x=x∗

1
= −a− c+

h(x∗1)
2

(d+ x∗1)
2

=
x∗1(a+ c− bx∗1)

d+ x∗1
− a− c

< a+ c− bx∗1 − a− c

= −bx∗1 < 0.

(2.7)

So, x∗1 is locally asymptotically stable.
This ends the proof of Theorem 2.2.

3 Global attractivity
Concerned with the global attractivity of the positive
equilibrium, we have the following result.

Theorem 3.1. The positive equilibrium x∗1 is globally
attractive.

Proof. From (1.1) we have

dx

dt
≤ x(a+ c− bx), (3.1)

Hence,

lim sup
t→+∞

x(t) ≤ a+ c

b
. (3.2)

For ε > 0 enough small, without loss of generality,

we may assume that ε < 1
2

a+ c

b+ h
d

, it follows from

(3.2) that there exists a T1 > 0 such that

x(t) <
a+ c

b
+ ε

def
= M1. (3.3)
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From (1.1) we also have

dx

dt
≥ x

(
a+ c− (b+

h

d
)x

)
, (3.4)

Hence,

lim inf
t→+∞

x(t) ≥ a+ c

b+
h

d

. (3.5)

For above ε > 0, it follows from (3.5) that there exists
a T2 > T1 such that

x(t) >
a+ c

b+
h

d

− ε
def
= m1. (3.6)

From (3.3), for t ≥ T2, we have

dx

dt
≤ x

(
a+ c− (b+

h

d+M1
)x

)
, (3.7)

Hence,

lim sup
t→+∞

x(t) ≤ a+ c

b+
h

d+M1

. (3.8)

For above ε > 0, it follows from (3.2) that there exists
a T3 > T2 such that

x(t) <
a+ c

b+
h

d+M1

+
ε

2
def
= M2. (3.9)

From (1.1) we also have

dx

dt
≥ x

(
a+ c− (b+

h

d+m1
)x

)
, (3.10)

Hence,

lim inf
t→+∞

x(t) ≥ a+ c

b+
h

d+m1

. (3.11)

For above ε > 0, it follows from (3.5) that there exists
a T2 > T1 such that

x(t) >
a+ c

b+
h

d+m1

− ε

2
def
= m2. (3.12)

Repeating the above procedure, we get four se-
quencesmi,Mi,i = 1, 2, .... such that

Mi =
a+ c

b+
h

d+Mi−1

+
ε

i
,

mi =
a+ c

b+
h

d+mi−1

− ε

i
.

(3.13)

From the deduction process, for t > max{T2i}, we
have

mi < x(t) < Mi. (3.14)

We claim that sequences Mi is strictly decreasing,
and sequencesmi is strictly increasing. To proof this
claim, we will carry out by induction. Obviously, we
have

M1 =
a+ c

b
+ε >

a+ c

b+
h

d+M1

+
ε

2
= M2. (3.15)

m1 =
a+ c

b+
h

d

− ε <
a+ c

b+
h

d+m1

− ε

2
. (3.16)

(3.15) and (3.16) show that the conclusion holds for
i = 2. Let us assume now that our claim is true for
i = k, that is,

Mk < Mk−1,mk > mk−1, (3.17)

then

h

d+Mk−1
<

h

d+Mk
,

h

d+mk−1
>

h

d+mk
.

(3.18)

And so

Mk+1 =
a+ c

b+
h

d+Mk

+
ε

k + 1

<
a+ c

b+
h

d+Mk−1

+
ε

k
= Mk,

(3.19)

mk+1 =
a+ c

b+
h

d+mk

− ε

k + 1

>
a+ c

b+
h

d+mk−1

− ε

k
= mk.

(3.20)

Above analysis shows that Mi is strictly decreasing
sequence,mi is strictly increasing sequence. Set

lim
i→+∞

Mi = M, lim
i→+∞

mi = m. (3.21)

Setting i → +∞ in (3.13) leads to

M =
a+ c

b+
h

d+M

,

m =
a+ c

b+
h

d+m

.
(3.22)
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(3.22) shows that M,m are all the positive solution
of (2.2). By Theorem 2.1, (2.2) has a unique positive
solution x∗1. Hence, we conclude that M = m = x∗1.
that is

lim
t→+∞

x(t) = x∗1. (3.23)

Thus, the unique interior equilibrium x∗1 is globally
attractive. This completes the proof of Theorem 3.1.

4 The influence of cannibalism
It’s well known that the Logistic equation

dx

dt
= x(a− bx) (4.1)

admits a unique positive equilibrium x∗ =
a

b
, which

is globally asymptotically stable. Theorem 2.1, 2.2
and 3.1 shows that system (1.1) admits a unique pos-

itive equilibrium x∗1 =
a+ c− h− bd+

√
δ

2b
, which

is also globally asymptotically stable. From this, we
can draw the first conclusion:

(I) For the Logistic equation, nonlinear cannibal-
ism has no influence on the persistent property of
the system.

Next, let’s compare the big or small of x∗ and x∗1.
Noting that

x∗1 − x∗ =
−a+ c− h− bd+

√
δ

2b
. (4.2)

From (4.2), by simple computation, we have

(i) If
b

a
>

h− c

cd
, (4.3)

then x∗1 > x∗;

(ii) If
b

a
=

h− c

cd
, (4.4)

then x∗1 = x∗;

(iii) If
b

a
<

h− c

cd
, (4.5)

then x∗1 < x∗.

Without loss of generality, since we are interest-
ing in the influence of cannibalism, we may assume
that a, b, d are fixed positive constants, noting that h
is the cannibalism rate and c can be denote by trans-
form rate. We then have the following results.

(II) If c is enough small, then the inequality (4.5)

holds, in this case, the cannibalism will decrease
the final density of the species.

(III) If c is enough large, such that h− c → 0, then
the inequality (4.3) holds, in this case, the cannibal-
ism will increase the final density of the species.

Remark 4.1. Set R0 =
a(h− c)

bcd
, then R0 can be

seen as the threshold parameter of the system (1.1). If
R0 < 1, then x∗1 > x∗; If R0 > 1, then x∗1 < x∗, and
if R0 = 1, then cannibalism has no influence on the
final density of the species.

Finally, noting that x∗1 is the function of h and c,
we have

∂x∗1
∂h

= −a+ c− bd− h+
√
δ

2b
√
δ

< 0. (4.6)

∂x∗1
∂c

=
a+ c+ bd− h+

√
δ

2b
√
δ

> 0. (4.7)

That is

(IV) The final density of the species is the decreas-
ing function of cannibalism rate and the increasing
function of the transform rate.

5 Numeric simulations
Example 5.1. Now let’s fixed a = b = d = 1, c =
0.01, then

x∗1(h) = 0.005− 2− h

2
+

1

2

√
h2 − 0.02h+ 4.0401.

Fig. 1 shows that x∗1 is the strictly decreasing function
of h, also, if h is enough large, then x∗1 → 0. That
is, for the fixed transform rate, if the cannibalism co-
efficient h is enough large, the species may driven to
extinction, though at first sight, for the fixed cannibal-
ism rate, the system is permanent. The final density of
the species may become very small if the cannibalism
rate is enough large.
Example 5.2. Now let’s fixed a = b = d = 1, h = 2,
then

x∗1(c) = −1 +
1

2
c+

1

2

√
c2 + 8.

Fig. 2 shows that x∗1 is the strictly increasing function
of c.

Example 5.3. Now let’s fixed a = b = d = 1,
then we have x∗ = 1, from (4.3)-(4.5), we know
that if h > 2c, then x∗1 > x∗, if h = 2c, then
x∗1 = x∗, if h < 2c, then x∗1 < x∗. Fig. 3 shows that
x∗1(h, c) smaller or bigger than x∗, depending on the
parameters lies below or above the line h = 2c.

Now let’s fix c = 0.5, h = 0.5, 1 and 2, respec-
tively. Then, for h = 0.5, x∗1 > x∗, for h = 1,
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Figure 1: Relationship of x∗1 and h.

Figure 2: Relationship of x∗1 and c.

x∗1 = x∗, and for h = 2, x∗1 < x∗. Fig.4-6 supports
this assertion. From Fig.4-6 we could also find that
x∗1 is the decreasing function of h.

Now let’s fix h = 1, c = 0.3, 0.5 and 0.7,
respectively. Then, for c = 0.7, x∗1 > x∗, for c = 0.5,
x∗1 = x∗, and for c = 0.3, x∗1 < x∗. Fig.7-9 supports
this assertion. From Fig.7-9 we could also find that
x∗1 is the increasing function of c.

Figure 3: Relationship of h and c. x∗1(h, c)
smaller or bigger than x∗, depending on the pa-
rameters lies above or below the line h = 2c.

6 Conclusion
Based on the traditional Logistic equation and the
works of Basheer et al.[42, 43], we proposed a sin-
gle species model incorporating the nonlinear canni-
balism. Already, Basheer et al.[42] incorporated the
cannibalism to the Holling-Tanner model with ratio-
dependent functional response (i.e., system (1.2)).
They showed that cannibalism in the prey cannot sta-
bilize the unstable interior equilibrium in the ODE
case, but can destabilize the stable interior equilib-
rium, leading to a stable limit cycle. In this paper,
we focus our attention to the single species model,
our study shows that the system with cannibalism al-
ways admits a unique globally asymptotically stable
equilibrium, which means that the cannibalism has
no influence on the persistent property of the system.
However, we could show that depending on the pa-
rameter regime, the final density of the species maybe
larger or smaller or equal to the final density of the the
system without cannibalism. It’s in this sense, that
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Figure 4: Dynamic behaviors of the system (1.1),
with a = b = d = 1, c = 0.5, h = 0.5.

Figure 5: Dynamic behaviors of the system (1.1),
with a = b = d = 1, c = 0.5, h = 1.

Figure 6: Dynamic behaviors of the system (1.1),
with a = b = d = 1, c = 0.5, h = 2.

Figure 7: Dynamic behaviors of the system (1.1),
with a = b = d = 1, h = 1, c = 0.3.
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Figure 8: Dynamic behaviors of the system (1.1),
with a = b = d = 1, h = 1, c = 0.5.

Figure 9: Dynamic behaviors of the system (1.1),
with a = b = d = 1, h = 1, c = 0.7.

cannibalism may have positive or negative or has no
influence on the final density of the species. Also, if
the cannibalism rate is enough large while the trans-
form rate is enough small, then the species may in-
crease its probability of the extinction in the sense that
the final density of the species may approach to zero.

We hope our findings could be applied to more
complicated situation, such as the competition model
or the mutualism model. Also, as was shown in the
introduction section, the results about the global sta-
bility property of the positive equilibrium of system
(1.2) may not right, is it possible for us to investigate
the stability property of the positive equilibrium by
using the iterative method? We leave these problem
for future investigation.
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