
(1) Its adaptability in permitting clients to determine
specific tables and traits for movement, and doesn't
need that all data sets be relocated.
(2) Its versatility and coordination with any data set
given RDBMS and non-social models.
(3 ( Direct inquiry utilization mode, which doesn't
need extra bundles or other explicit information,
making it easier for the developer to use.
(4) High reliability (100%) furthermore, great
execution time in information movement.
Reference
[1] Rao, G. M., Srinivas, K., Samee, S., Venkatesh,
K., Dadheech, P., Raja, L., & Yagnik, G. (2021,
March). A Secure and Efficient Data Migration Over
Cloud Computing. In IOP Conference Series:
Materials Science and Engineering (Vol. 1099, No.
1, p. 012082). IOP Publishing
[2]Bonfitto, S., Casiraghi, E., & Mesiti, M. (2021).
Table understanding approaches for extracting
knowledge from heterogeneous tables. Wiley
Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 11(4), e1407.
[3] Tu, Y., Tang, H., Gong, H., & Hu, W. (2022). A
Flexible Data Evaluation System for Improving the
Quality and Efficiency of Laboratory Analysis and
Testing. Information, 13(9), 42.
[4] Thirumahal, R., Sudha Sadasivam, G., & Shruti,
P. (2022). Semantic Integration of Heterogeneous
Data Sources Using Ontology-Based Domain
Knowledge Modeling for Early Detection of
COVID-19. SN Computer Science, 3(6), 1-13.
[5] Gao, C. (2019). Research on the Application of
Big Data in Security Information Collection.
[6] Rowland, D., & May, P. M. (2019). Progress in
Aqueous Solution Modeling: Better Data and Better
Interfaces. Journal of Solution Chemistry, 48(7),
1066-1078.
[7] Aruna, M. G., Hasan, M. K., Islam, S., Mohan, K.
G., Sharan, P., & Hassan, R. (2022). Cloud-to-cloud
data migration using self-sovereign identity for 5G
and beyond. Cluster computing, 25(4), 2317-2331.
[8] Azeroual, O., & Jha, M. (2021). Without data
quality, there is no data migration. Big Data and
Cognitive Computing, 5(2), 24.
[9] Hillenbrand, A., Störl, U., Nabiyev, S., & Klettke,
M. (2022). Self-adapting data migration in the
context of schema evolution in NoSQL
databases. Distributed and Parallel Databases, 40(1),
5-25.
[10] Saranya, N., Brindha, R., Aishwariya, N.,
Kokila, R., Matheswaran, P., & Poongavi, P. (2021,
March). Data Migration using ETL Workflow.
In 2021 7th International Conference on Advanced
Computing and Communication Systems
(ICACCS) (Vol. 1, pp. 1661-1664). IEEE.
[11] Liu, F. C., Weiner, M. D., Manalo, K., Jezghani,
A., Blanton, C. J., Stone, C., ... & Lara, R. (2021,
December). Human-in-the-Loop Automatic Data
Migration for a Large Research Computing Data
Center. In 2021 International Conference on
Computational Science and Computational
Intelligence (CSCI) (pp. 1752-1758). IEEE.
[12] Yuan, Z., You, X., Lv, X., Li, M., & Xie, P.
(2021). HDS: optimizing data migration and parity
update to realize RAID-6 scaling for HDP. Cluster
Computing, 24(4), 3815-3835.
[13] Hussein, A. A. (2021). Data Migration Need,
Strategy, Challenges, Methodology, Categories,
Risks, use with Cloud Computing, and Improvements
in Its Using with Cloud Using Suggested Proposed
Model (DMing 1). Journal of Information
Security, 12(01), 79.
[14] Luo, J., Li, X., Feng, Y., & Wang, L. (2022,
April). Research on Web Big Data Migration
Algorithm base
[15] Kaur, K., Bharaniy, S., Bharania, S., Aggarwal,
K., Nayyar, A., & Sharma, S. (2022). Energy-
efficient polyglot persistence database lives
migration among heterogeneous clouds. The Journal
of Supercomputing, 1-30.
[16] Lin, Y. S., Tsai, C., Lin, T. Y., Chang, Y. S., &
Wu, S. H. (2021, June). Don't Look Back, Look into
the Future: Prescient Data Partitioning and Migration
for Deterministic Database Systems. In Proceedings
of the 2021 International Conference on Management
of Data (pp. 1156-1168).
[17] Queiroz, J. S., Falcão, T. A., Furtado, P. M.,
Soares, F. L., Souza, T. B. F., Cleis, P. V. V., ... &
Giuntini, F. T. (2022). AMANDA: A Middleware for
Automatic Migration between Different Database
Paradigms. Applied Sciences, 12(12), 6106.
[18] Kirchberger, M. (2021). Measuring internal
migration. Regional Science and Urban
Economics, 91, 103714.
[19] Sîrbu, A., Andrienko, G., Andrienko, N.,
Boldrini, C., Conti, M., Giannotti, F., ... & Sharma,
R. (2021). Human migration: the big data
perspective. International Journal of Data Science
and Analytics, 11(4), 341-360.
[02] Fekri, E., Latifi, H., Amani, M., &
Zobeidinezhad, A. (2021). A Training Sample
Migration Method for Wetland Mapping and
Monitoring Using Sentinel Data in Google Earth
Engine. Remote Sensing, 13(20), 4169.
[21] Dourhri, A., Hanine, M., & Ouahmane, H.
(2021, November). A New Algorithm for Data
Migration from a Relational to a NoSQL Oriented
Column Database. In The Proceedings of the
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2022.2.18