
References:
[1] Legendre, A. M., Tables of the complete and incomplete
elliptic integrals. Reissued (from tome II of Legendre’s Traité
des fonctions elliptiques, Paris, 1825) by K. Pearson, London, 1934.
[2] Heuman, C. A., Tables of complete elliptic integrals,
J. Math. Physics, 20, pp. 127 – 206, 336, 1941; https://
onlinelibrary.wiley.com/doi/epdf/10.1002/sapm1941201127.
[3] Hayashi, K., Tafeln der Besselschen, Theta-, Kugel-
und anderen Funktionen, Berlin, 1930; Table errata
no. 518 (pp. 670 – 672) by: O. Skovgaard and M. Helmer
Petersen; (A. Fletcher, J. C. P. Miller, L. Rosenhead & L.
J. Comrie), Math. Comp., Vol. 29, No. 130 (Apr. 1975).
[4] Hayashi, K., Tafeln für die Differenzenrechnung
sowie für die Hyperbel-, Besselschen, elliptischen und
anderen Funktionen, Berlin, 1933; Table errata no. 517
(p. 670) by: O. Skovgaard and M. Helmer Petersen;
(A. Fletcher), Math. Comp., Vol. 29, No. 130 (Apr. 1975).
[5] Jahnke, E., Emde, F., Tables of Functions with
Formulae and Curves, Dover Publications, New York,
1943; Fourth Edition, 1945; (translated into Russian:
Е. Янке и Ф. Эмде, Таблицы функии с формулами
и кривыми, Физматгиз, Москва – Ленинград, 1959;)
[6] Jahnke, E., Emde, F., Lösch, F., Tafeln höherer
Funktionen, sechste Auflage. Neubearbeitet von F.
Lösch, B. G. Teubner Verlagsgesellschaft, Stuttgart,
1960, 1961; https://doi.org/10.1002/zamm.19610410619;
(translated into Russian: Е. Янке, Ф. Эмде, Ф. Лёш,
Специальные функции – формулы, графики, таблицы,
ред.: Л. И. Седов, Наука, Москва, 1964; https://ikfia.ysn.ru/
wp-content/uploads/2018/01/JankeEmdeLyosh1964ru.pdf).
[7] Gradshteyn, I. S., Ryzhik, I. M., Table of Integrals,
Series, and Products. Fourth Edition Prepared by Yu. V.
Geronimus / M. Yu. Tseytlin, Academic Press, New York,
London, 1965; Translated from Russian by Scripta Technica,
Inc.; Seventh Edition, 2007; Eds.: A. Jeffrey, D. Zwillinger;
(Russian, German, Polish, English, Japanese & Chinese eds.;)
http://fisica.ciens.ucv.ve/~svincenz/TISPISGIMR.pdf.
Appendix 1 – A fast converging recurrent-
iterative scheme to get a third (and higher) set
of analytic formulas with desired accuracy
The formulas for transforming the modulus ([16], [17]) are:
costanEcosE( :or
,)1(with),(K11E)1(
)(K1
11
11
E11)(E
lyrespectiveandcostanK( :or
,
1
1
K
1
2
11
11
K
11
2
)(K
22
212
2
2
2
2
22
2
2
2
kkkkkkk
kk
k
k
kk
k
k
k
k
k
k
k
(passing from k to k1 = (1 – k
)/(1 + k
) ≤ k and from θ to θ1 =
sin – 1[tan2(θ/2)] ≤ θ; k1 = k (θ1 = θ), for: k = 0; 1 (θ = 0; π/2)),
which can be transcribed in recurrent form, as follows:
[8] Selescu, R., Formule analitice închise pentru
aproximarea integralelor eliptice complete de speţa întâia
şi a doua ale lui Legendre, Buletinul Ştiinţific al Sesiunii
Naţionale de Comunicări Ştiinţifice, Academia Forţelor
Aeriene “Henri Coandă” & Centrul Regional pentru
Managementul Resurselor de Apărare, Editura Academiei
Forţelor Aeriene “Henri Coandă”, Braşov, 1 – 2 Noiembrie
2002; Vol. MATEMATICA – INFORMATICA, Anul III,
Nr. 2 (14), (ISSN 1453-0139), pp. 37 – 44; (in Romanian).
[9] Selescu, R., Closed Analytic Formulas for the Approxi-
mation of the Legendre Complete Elliptic Integrals of the First
and Second Kinds, International Journal of Pure Mathematics
– NAUN, Vol. 8, pp. 23 – 28, DOI: 10.46300/91019.2021.8.2,
29 April 2021; https://www.naun.org/cms.action?id=23293.
[10] Selescu, R., Closed Analytic Formulas for the
Approximation of the Legendre Complete Elliptic Integrals
of the First and Second Kinds, International Journal of
Mathematical and Computational Methods, Vol. 21, pp. 49
– 55, 21 May 2021; http://www.iaras.org/iaras/journals/ijmcm.
[11] Luke, Y. L., Simple formulas for the evaluation
of some higher transcendental functions, J. Math.
Physics, v. 34, pp. 298 – 307, 1956, MR 17, # 1138.
[12] Luke, Y. L., Approximations for Elliptic Integrals, Math.
Comp., Vol. 22, No. 103 (Jul. 1968), pp. 627 – 634, MR 17, # 2412;
AMS; https://ams.org/journals/mcom/1968-22-103/S0225-
5718-1968-0226825-3/S0025-5718-1968-0226825-3.pdf.
[13] Luke, Y. L., Further Approximation for Elliptic Integrals,
Math. Comp., Vol. 24, No. 109 (Jan. 1970), pp. 191 – 198,
AMS; https://ams.org/journals/mcom/1970-24-109/S0025-
5719-1970-0258243-5/S0025-5719-1970-0258243-5.pdf.
[14] Bagis, N., Formulas for the approximation of the complete
Elliptic Integrals, https://arxiv.org/abs/1104.4798v1 [math.GM],
6 pages (pp. 1 – 6), 25 April 2011, Cornell University, preprint.
[15] González, M. O., Elliptic integrals in terms of
Legendre polynomials, Proc. Glasgow Math. Assoc. 2,
pp. 97 – 99, 1954, https://www.cambridge.org/core/terms.
https://doi.org/10.1017/S2040618500033104.
2
1
22
1
2
211
2
2
2
2
1
2
2
22
12
1
2
2
1
2
2
tan]cos/[costanEcos
(E:or,
1
1
K
1
2
1
1
E)1(
)(K1
11
11
E11)(E
:resp.and,costan(K:or
,
1
1
K
1
2
11
11
K
11
2
)(K
k
k
k
k
k
k
k
kk
k
k
kk
k
k
k
k
k
k
k
expressing the 3rd set (K2, E2) in terms of the 2nd one (K1, E1), so
starting a recurrent-iterative scheme ([18], [19]); it allows writing
for the (n + 1)th set: ,
1
1
K
1
2
)(K 1nn
k
k
k
k and:
,
1
1
K
1
2
1
1
E)1()(E 1n1nn
k
k
k
k
k
k
kk resp.
International Journal of Computational and Applied Mathematics & Computer Science
DOI: 10.37394/232028.2022.2.14