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1 Introduction 
A model is understood to be a simplified 
representation of a real system including only its 
characteristics which are related to a certain 
problem concerning the system (assumed real 

system); e.g. maximizing the system’s productivity, 
minimizing its functional costs, etc. The process of 
modelling is a fundamental principle of the systems’ 
theory, since the experimentation on the real system 
is usually difficult (or impossible sometimes) 
requiring a lot of money and time. Modelling a 
system involves a deep abstracting process, which is 
graphically represented in Fig. 1 [1]. 
 

 

Fig. 1: Graphical representation of the modelling process                           

     There are several types of models used according 
to the form of the system and of the corresponding 

problem to be solved [1]. In simple cases iconic 

models may be used, like maps, bas-relief 
representations, etc. Analogical models, such as 
graphs, diagrams, etc., are frequently used when the 
corresponding problem concerns the study of the 
relationship between only two of the system’s 
variables; e.g. speed and time, temperature and 
pressure, etc. The mathematical or symbolic models 
use mathematical symbols and representations 
(functions, equations, inequalities, etc.) to describe 
the system’s behavior. This is the most important 
type of models, because they provide accurate and 
general (i.e. holding even if the system’s parameters 
are changed) solutions to the corresponding 
problems. In case of complex systems, however, 
like the biological ones, where the solution cannot 
be expressed in solvable mathematical terms or the 
mathematical solution requires laborious 
calculations, simulation models are often used. 
These models mimic the system’s behavior over a 
period of time with the help of a well-organized set 
of logical orders, usually expressed in the form of a 
computer program. Also, heuristic models can be 
utilized for improving already existing solutions, 
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obtained either empirically or by using other types 
of models. 
    Until the middle of the 1970’s Mathematical 

Modelling (MM) mainly used to be a tool at hands 
of the scientists for solving problems related to their 
disciplines. The failure of the introduction of the 
“new mathematics” to school education [2], 
however, turned the attention of the specialists to 
problem-solving activities as a more effective way 
for teaching and learning mathematics. MM in 
particular, has been widely used for connecting 
mathematics to everyday life situations, on the 
purpose of increasing the student interest on the 
subject. 
    Quality is a desirable characteristic of all human 
activities. This makes assessment one of the most 
important components connected to those activities. 
Assessment takes place in two ways, either with the 
help of numerical or with the help of qualitative 
grades, like excellent, good, mediocre, etc.  
    When numerical grades are used, standard 
methods are applied for the overall assessment of 
the skills of a group of objects participating in a 
certain activity, like the calculation of the mean 
value of all the individual scores or the Grade Point 

Average (GPA) index, a weighted average in which 
greater coefficients are assigned to the higher 
scores.   
    The use of qualitative grades is usually preferred 
when more elasticity is desirable (as it frequently 
happens in case of student assessment), or when no 
exact numerical data are available. In this case, 
assessment methods based on principles of fuzzy 

logic (FL) are frequently used.  
    The present author has developed in earlier works 
several methods for the assessment of 
human/machine performance under fuzzy conditions 
including the measurement of uncertainty in fuzzy 
systems, the use of the Center of Gravity (COG) 

defuzzification technique, the use of fuzzy numbers 

(FNs) or of grey numbers (GNs), etc. All these 
methods are reviewed in [3]. Recently, Voskoglou 
developed also assessment models using soft sets 

(SSs) and neutrosophic sets (NSs) as tools [4, 5] 
    In this work a hybrid method is applied for the 
assessment of student groups’ MM skills with 
qualitative grades (i.e. under fuzzy conditions). 
Namely, SSs are used for the parametric assessment 
of a group’s performance, the calculation of the 
GPA index and the Rectangular Fuzzy Assessment 

Model (RFAM) are applied for evaluating the 
group’s qualitative performance, GNs are used as 
tools for assessing the group’s mean performance 
and NSs are utilized when the teacher is not sure 
about the individual grades assigned to some (or all) 

students of the group. The paper closes with the 
final conclusions and some hints for future research. 

 2. Mathematical Modelling in 

Education 

One of the first who proposed the use of MM as a 
tool for teaching mathematics was H. O. Pollak 
[6], who presented in 1976 during the ICME-3 
Conference in Karlsruhe the scheme of Fig. 2, 
known as the circle of modelling. In this scheme, 
given a problem for solution from a topic 
different from mathematics (other world), the 
solver, following the direction of the arrows, is 
transferred to the “universe” of mathematics. 
There, the solver uses or creates suitable 
mathematics for the solution of the problem and 
then returns to the other world to check the 
validity of the mathematical solution obtained. If 
the verification of the solution is proved to be 
non-compatible to the existing real conditions, the 
same circle is repeated one or more times.      

 

Fig. 2: The Pollak’s Circle of Modelling 
 
Following the Pollak’s presentation, much 

effort has been placed by mathematics education 
researchers to study and analyze in detail the 
process of MM on the purpose of using it for 
teaching mathematics. Several models have been 
developed towards this direction, a brief but 
comprehensive account of which can be found in 
[7], including the present author’s model (Fig. 3). 

 

 
Fig. 3: Flow-diagram of Voskoglou’s model for the MM 
process 

 
In this model [8] Voskoglou described the MM 

process in terms of a Markov chain introduced on its 
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main steps, which are: S1 = analysis of the problem, 
S2 = mathematization (formulation and construction 
of the model), S3 = solution of the model, S4 = 
validation of the solution and S5 = implementation 
of the solution to the real system. When the MM 
process is completed at step S5, it is assumed that a 
new problem is given to the class, which implies 
that the process restarts again from step S1. 
    Mathematization is the step of the MM process 
with the greatest gravity, since it involves a deep 
abstracting process, which is not always easy to be 
achieved by a non-expert. A solver who has 
obtained a mathematical solution of the model is 
usually able to “translate” it in terms of the 
corresponding real situation and to check its 
validity. There are, however, sometimes problems in 
which the validation of the model and/or the 
implementation of the final mathematical results to 
the real system hide surprises, which force solvers 
to look back to the construction of the model and 
make the necessary changes to it.  A characteristic 
example is presented in [9].   

Models like Voskoglou’s (Fig. 3) are useful for 
describing the solvers’ ideal behavior when tackling 
MM problems. Relative researches [10-12], 
however, report that the reality is not like that. In 
fact, modelers follow individual routes related to 
their learning styles and the level of their cognition. 
Consequently, from the teachers’ part there exists an 
uncertainty about the student way of thinking at 
each step of the MM process. Those findings 
inspired the present author to use principles of FL 
for describing in a more realistic way the process of 
MM in the classroom on the purpose of 
understanding, and therefore treating better, the 
student reactions during the MM process [13]. The 
steps of the MM process in this model are 
represented as fuzzy sets on a set of linguistic labels 
characterizing the student performance in each step.      

A complete methodology for teaching 
mathematics on the basis of MM has been 
eventually developed, which is usually referred as 
the application-oriented teaching of mathematics 

[14]. However, as the present author underlines in 
[9], teachers must be careful, because the extensive 
use of the application-oriented teaching as a general 

method for teaching mathematics could lead to far-
fetched situations, in which more attention is given 
to the choice of the applications rather than to the 
mathematical content!  

More details about MM from the viewpoint of 
Education and representative examples can be found 
in earlier works of the author [9, 14]. 

 

3. Mathematical Background 

3.1 Fuzzy Sets and Logic  

Zadeh, in order to deal with partial truths, 
introduced in 1965 the concept of fuzzy set (FS) as 
follows [15]: 
    Definition 1: Let U be the universe, then a FS F 

in U is of the form 

F = {(x, m(x)): xU}    (1) 

In equation (1) m: U [0,1] is the membership 

function of F and m(x) is called the membership 

degree of x in F. The greater m(x), the more x 

satisfies the characteristic property of F. A crisp 
subset F of U is a FS in U with membership 
function such that m(x)=1 if x belongs to F and 0 
otherwise. 
     Based on the concept of FS Zadeh developed the 
infinite-valued FL [16], in which truth values are 
modelled by numbers in the unit interval [0, 1]. FL 
is an extension of the classical bivalent logic (BL) of 
Aristotle embodying the Lukasiewicz’s “Principle 
of Valence” [17]. In contrast to the Aristotle’s 
principle of the “Excluded Middle”, Lukasiewicz’s 
principle states that propositions are not only either 
true or false, but they can have intermediate truth-
values too.  
    It was only in a second moment that FS theory 
and FL were used to embrace uncertainty modelling 
[18, 19]. This happened when membership functions 
were reinterpreted as possibility distributions. 
Possibility theory is an uncertainty theory devoted 
to the handling of incomplete information [20]. 
Zadeh [18] articulated the relationship between 
possibility and probability, noticing that what is 
probable must preliminarily be possible. For general 
facts on FSs and the connected to them uncertainty 
we refer to the book [21].  

3.2 Neutrosophic Sets        

Following the introduction of FSs, various 
generalizations and other related to FSs theories 
have been proposed enabling a more effective 
management of all types of the existing in real 
world uncertainty. A brief description of the main 
among those generalizations and theories can be 
found in [22]. 
     Atanassov added in 1986 to Zadeh’s membership 
degree the degree of non-membership and 
introduced the concept of intuitionistic fuzzy set 

(IFS) [23] as the set of the ordered triples   

A = {(x, m(x), n(x)): xU, 0m(x) + n(x)   1} (2) 
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    Smarandache, motivated by the various neutral 
situations appearing in real life - like <friend, 
neutral, enemy>, <positive, zero, negative>, <small, 
medium, high>, <male, transgender, female>, <win, 
draw, defeat>, etc. – introduced in 1995 the degree 
of indeterminacy/neutrality of the elements of the 
universal set U in a subset of U and defined the 
concept of neutrosophic set (NS) [24]. The term 
neuttrosophic is the result of the synthesis of the 
words “neutral” and “sophia” which means in Greek 
language “wisdom”. In this work we need only the 
simplest version of the concept of NS, which is 
defined as follows:  
    Definition 2: A single valued NS (SVNS) A in U 
is of the form  

A = {(x,T(x),I(x),F(x)): xU, T(x),I(x),F(x)[0,1], 
0T(x)+I(x)+F(x)3}  (3) 

     In (3) T(x), I(x), F(x) are the degrees of truth (or 
membership), indeterminacy and falsity (or non-
membership) of x in A respectively, called the 
neutrosophic components of x. For simplicity, we 
write A<T, I, F>.  
    For example, let U be the set of the players of a 
basketball team and let A be the SVNS of the good 
players of U. Then each player x of U is 
characterized by a neutrosophic triplet (t, i, f) with 
respect to A, with t, i, f in [0, 1]. For instance, x(0.7, 
0.1, 0.4) ∈ A means that there is a 70% belief that x 
is a good player, a 10% doubt about it and a 40% 
belief  that x is not a good player. In particular, 
x(0,1,0) ∈ A means that we do not know absolutely 
nothing about x’s affiliation with A. 
    In an IFS the indeterminacy coincides by default 
to 1- T(x) – F(x). Also, in a FS is I(x)=0 and F(x) = 
1 – T(x), whereas in a crisp set is T(x)=1 (or 0) and 
F(x)= 0 (or 1). In other words, crisp sets, FSs and 
IFSs are special cases of SVNSs.  
    When the sum T(x) + I(x) + F(x) of the 
neutrosophic components of x ∈ U in a SVNS A on 
U is <1, then x leaves room for incomplete 
information, when is equal to 1 for complete 
information and when is greater than 1 for 
paraconsistent (i.e. contradiction tolerant) 
information. A SVNS may contain simultaneously 
elements leaving room to all the previous types of 
information. For general facts on SVNSs we refer to 
[25]. 
    Summation of neutrosophic triplets is equivalent 
to the neutrosophic union of sets. That is why the 
neutrosophic summation and implicitly its extension 
to neutrosophic scalar multiplication can be defined 
in many ways, equivalently to the known in the 
literature neutrosophic union operators [26]. Here, 
writing the elements of a SVNS A in the form of 

neutrosophic triplets we define addition and scalar 
product in A as follows: 
    Let (t1, i1, f1), (t2, i2, f2) be in A and let k be a 
positive number. Then:   

 The  sum (t1, i1, f1) + (t2, i2, f2) = (t1+ t2,  i1+ 
i2, f1+ f2)     (4) 

 The scalar product k(t1, i1, f1) = (kt1, k i1,  
kf1)    (5) 
 

3.3 Soft Sets 

A disadvantage connected to the concept of FS is 
that there is not any exact rule for defining properly 
the membership function. The methods used for this 
are usually empirical or statistical and the definition 
of the membership function is not unique depending 
on the “signals” that each observer receives from the 
environment, which are different from person to 
person. For example, defining the FS of “tall men” 
one may consider as tall all men having heights 
more than 1.90 meters and another all those having 
heights more than 2 meters. As a result, the first 
observer will assign membership degree 1 to men of 
heights between 1.90 and 2 meters, in contrast to the 
second one, who will assign membership degrees 
<1. Consequently, analogous differences is logical 
to appear for all the other heights. The only 
restriction, therefore, for the definition of the 
membership function is to be compatible to the 
common sense; otherwise the resulting FS does not 
give a reliable description of the corresponding real 
situation. This could happen for instance, if in the 
FS of “tall men”, men with heights less than 1.60 
meters have membership degrees ≥0.5. 
    The same difficulty appears to all generalizations 
of FSs in which membership functions are involved 
(e.g. IFSs, NSs, etc.). For this reason, the concept of 
interval-valued FS (IVFS) [27] was introduced in 
1975, in which the membership degrees are replaced 
by sub-intervals of the unit interval [0, 1].     
Alternative to FS theories were also proposed, in 
which the definition of a membership function is 
either not necessary (grey systems/GNs [28]), or it is 
overpassed by considering a pair of sets which give 
the lower and the upper approximation of the 
original crisp set (rough sets [29]).   
    Molodstov, in order to tackle the uncertainty in 
a parametric manner, initiated in 1999 the concept 
of soft set (SS) as follows [30]: 
    Definition 3: Let E be a set of parameters, let A 
be a subset of E, and let f be a map from A into the 
power set P(U) of all subsets of the universe U. 
Then the SS (f, A) in U is defined to be the set of 
the ordered pairs  
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(f, A) = {(e, f(e)): e ∈ A}   (6) 

    The term "soft" is due to the fact that the form of 
(f, A) depends on the parameters of A. For example, 
let U= {C1, C2, C3} be a set of cars and let E = {e1, 
e2, e3} be the set of the parameters e1=cheap, 
e2=hybrid (petrol and electric power) and e3= 
expensive. Let us further assume that the cars C1, C2 

are cheap, C3 is expensive and C2, C3 are hybrid 
cars. Then, a map f: E P(U) is defined by 
f(e1)={C1, C2},  f(e2)={C2, C3} and f(e3)={C3}. 
Therefore, the SS (f, E) in U is the set of the ordered 
pairs (f, E) = {(e1, {C1, C2}), (e2, {C2, C3}, (e3, 
{C3}}. 
    A FS in U with membership function y = m(x) is 
a SS in U of the form (f, [0, 1]), where f(α)={xU: 
m(x)α} is the corresponding  α – cut of the FS, for 
each α in [0, 1]. For general facts on SSs we refer 
to [31]. 
    Obviously, an important advantage of SSs is that, 
by using the parameters, they pass through the need 
of defining membership functions. The theory of 
SSs has found many and important applications to 
several sectors of human activity like decision 
making, parameter reduction, data clustering and 
data dealing with incompleteness, etc. One of the 
most important steps for the theory of SSs was to 
define mappings on SSs, which was achieved by A. 
Kharal and B. Ahmad and was applied to the 
problem of medical diagnosis in medical expert 
systems [32]. But fuzzy mathematics has also 
significantly developed at the theoretical level 
providing important insights even into branches of 
classical mathematics like algebra, analysis, 
geometry, topology etc. 

3.4 Grey Numbers 

Approximate data are frequently used nowadays in 
many problems of everyday life, science and 
engineering, because many constantly changing 
factors are usually involved in large and complex 
systems. Deng introduced in 1982 the grey system 
(GS) theory as an alternative to the theory of FSs for 
tackling such kind of data [27]. A GS is understood 
to be a system that lacks information such as 
structure message, operation mechanism and/or 
behaviour document. The GS theory, which has 
been mainly developed in China, has recently found 
many important applications [33].  
    An interesting application of the closed intervals 
of real numbers is their use in the GS theory for 
handling approximate data. In fact, a numerical 
interval I = [x, y], with x, y real numbers, x<y, can 
be considered as representing a real number with 
known range, whose exact value is unknown. The 

closer x to y, the better I approximates the 
corresponding real number. When no other 
information is given about this number, it looks 
logical to consider as its representative 
approximation the real value  

V(I) = 
x+y

2
  (7) 

     Moore et al. [34] introduced the basic arithmetic 
operations on closed real intervals. In the present 
work we shall make use only of the addition and 
scalar product defined as follows:  Let I1 = [x1, y1] 
and I2 = [x2, y2] be closed intervals, then their sum I1 
+ I2 is the closed interval  

I1 + I2 = [x1+ x2, y1+ y2]   (8) 

    Further, if k is a positive number then the scalar 

product kI1 is the closed interval 

kI1 = [kx1, ky1]     (9) 

    When the closed real intervals are used for 
handling approximate data, are usually referred as 
grey numbers (GNs). A GN [x, y], however, may 
also be connected to a whitenization function f: [x, 
y] → [0, 1], such that, ∀ a ∈ [x, y], the closer f(a) to 
1, the better a approximates the unknown number 
represented by [x, y]. 
    We close this subsection with the following 
definition, which will be used in the assessment 
method that will be presented later in this work. 
    Definition 4: Let I1, I2,…., In be a finite number 
of GNs, n≥2, then the mean value of these GNs is 
defined to be the GN 

I = 
1
n

(I1 + I2+….+ Ik)   (10) 

3.5 GPA Index and the Rectangular Fuzzy 

Assessment Model 

The calculation of the Grade Point Average (GPA) 

Index is a classical method, very popular in the USA 
and other western countries, for evaluating a group’s 
qualitative performance, where greater coefficients 
are assigned to the higher grades. For this, let n be 
the total number of the objects of the group under 
assessment and let nX be the number of the group’s 
objects obtaining the grade X, X =A, B, C, D, F, 
where A=excellent, B=very good, C=good, 
D=mediocre and F=unsatisfactory. Then, the GPA 
index is calculated by the formula  

GPA = F D C B A0n +n +2n +3n +4n
n

    (11) 

[35] (Chapter 6, p. 125)  
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    In the worst case (n=nF) equation (11) gives that 
GPA=0, whereas in the best case (n=nA) it gives that 
GPA=4. We have in general, therefore, that 
0≤GPA≤4, which means that values of GPA≥2 
indicate a satisfactory qualitative performance.   

    Setting y1 =
Fn

n
, y2 =

Dn
n

, y3 =
Cn

n
, y4 =

Bn
n

 and y5 =

An
n

, equation (11) can be written as  

GPA = y2 + 2y3 + 3y4 + 4y5   (12) 

    Voskoglou developed a fuzzy model for 
representing mathematically the process of learning 
a subject matter in the classroom [36]. Later, 
considering a student class as a fuzzy system, he 
calculated the existing in it total possibilistic 

uncertainty for assessing the student mean 
performance [37]. Subbotin et al., based on 
Voskoglou’s model, adapted properly the Center of 

Gravity (COG) defuzzification technique for use as 
an assessment method of student learning skills 
[38]. Since then, Subbotin and Voskoglou applied, 
jointly or separately, the COG technique, termed by 
them as the Rectangular Fuzzy Assessment Model 

(RFAM), in many other types of assessment 
problems; e.g. see [35] (Chapter 6). 
    There is a commonly used in FL approach  to 
represent the fuzzy data  by the coordinates (xc, yc) 
of the COG of the level’s area between the graph of 
the corresponding membership function and the OX 
axis [39]. In our case, keeping the same notation as 
for the GPA index, it can be shown that the 
coordinates of the COG are calculated by the 
formulas  

xc = 1
2

(y1+3y2+5y3+7y4+9y5)     (13) 

            yc = 1
2

(y1
2+y2

2+y3
2+y4

2+y5
2)    (14) 

[3] (Section 4) 
It can be also shown the following result [3] 
(Section 4): 

Assessment Criterion:  
 Between two groups, the group with the 

greater xc demonstrates the better 
performance.  

 For two groups with the same value of xc, if 
xc≥2.5 the group with the greater value of yc 

performs better, and if xc<2.5 the group 
with the lower value of yc   performs better. 

Combining equations (12) and (13) one finds that  

xc = 
1
2

(2GPA + 1) or  

xc = GPA + 
1
2

   (15) 

    Thus, with the help of the first case of the 
previous criterion, one concludes that, if the GPA 
value of two student groups is different, then the 
RFAM and the GPA index give the same outcomes 
concerning the assessment of the qualitative 
performance of the two groups. If the GPA index, 
however, is the same for the two groups, then one 
MUST apply the RFAM to see which group 
performs better. 
 
4. The Hybrid Assessment Model 

A hybrid method is applied in this Section for the 
assessment of a student group’s MM skills with 
qualitative grades. Namely, SSs are used as tools for 
a parametric assessment of the group’s performance, 
the calculation of the GPA index and the RFAM are 
applied for evaluating the group’s qualitative 
performance, GNs are used as tools for assessing the 
group’s mean performance and NSs are used when 
the teacher is not sure about the individual grades 
assigned to some (or all) students.  

4.1 Parametric Assessment Using Soft Sets 

Assume that a mathematics teacher wants to assess 
the MM skills of a group U = {S1, S2, .…., Sn} of  n 
students, n≥2. Let E = {A, B, C, D, E} be the set of 
the parameters A=excellent, B=very good, C=good, 
D=mediocre and F=unsatisfactory. Assume further 
that the first four students of the group demonstrated 
excellent performance, the next five very good, the 
following 7 good, the next eight mediocre and the 
rest of them unsatisfactory performance. Let f be the 
map assigning to each parameter of E the subset of 
students whose performance was assessed by this 
parameter. Then, the overall student performance 
can be represented mathematically by the SS  

(f, E) = {(A, {S1, S2, S3}), (B, {S4, S5,…, S8}), (C, 
{S9, S10, …, S15}), (D, {S16, S17,…., S23}), (F, {S24, 
S25,…, Sn})}  (16)                                                                                      

    The use of SSs also enables the representation of 
each student’s individual performance at each step 
of the MM process. For this, let V = {S1, S2, S3, S4, 
S5} be the set of the steps of the MM process 
according to Voskoglou’s model presented in 
Section 2 (Fig. 3).  Consider a particular student of 
the group U and define a map f: E Δ(V) assigning 
to each parameter of E the subset of V consisting of 
the steps of the MM process assessed by this 
parameter with respect to the chosen student. For 
example, the SS 
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(f, E) = {(A, {S1, S3}), (B, {S5}), (C, {S4}), (D, 
{S2}), (F, ∅)}      (17)  

represents the profile of a student who demonstrated 
excellent performance at the steps of analysis of the 
problem and solution of the model, very good 
performance at the step of implementation of the 
solution, good performance at the step of validation 
and mediocre performance at the step of 
mathematizing (he/she faced difficulties, but he/she 
finally came through). 

4.2 Use of the COG Technique and the 

RFAM for Assessing a Group’s Qualitative 

Performance 

The following example illustrates this method:  
    Example 1: The students of two classes obtained 
the following grades in a test involving MM 
problems:  Class I: A=5 students, B=3, C=7, D=0, 
F=5, Class II:  A=4, B=4, C=7, D=1, F=4. Which 
class demonstrated the better qualitative 
performance? 
    Solution: Equation (11) gives that GPAI = GPA2 =
43
20

. The RFAM model must be used, therefore, for 

comparing the two classes’ qualitative performance. 
Thus, by equation (13) one gets that 

ICx = 
IICx = 

53
20

>
5
2

.  But equation (14) gives that 
ICy = 54 and 

IICy = 49, therefore, by the second case of the 
RFAM assessment criterion, one concludes that 
Class I demonstrated a better qualitative 

performance. Further, since GPAI = GPA2 =
43
20

>2, 

both groups demonstrated satisfactory qualitative 
performance.  

4.3 Use of Grey Numbers for Evaluating a 

Group’s Mean Performance. 

When the student individual assessment is realized 
with qualitative grades, a student group’s mean 
performance cannot be assessed with the classical 
method of calculating the mean value of the student 
scores. To overcome this difficulty, using the 
numerical climax 1-100 we assign to each of the 
student qualitative grades a closed real interval 
(GN), denoted for simplicity with the same letter, as 
follows: A = [85, 100], B = [75, 84], C = [60, 74], D 
= [50, 59] and F= [0, 49].   
    It is of worth noting that, although the GNs 
assigned to the qualitative grades satisfy commonly 
accepted standards, the previous assignment is not 
unique, depending on the teacher’s personal goals. 

For a more strict assessment, for example, the 
teacher could choose A = [90, 100], B = [80, 89], C 
= [70, 79], D = [60, 69], F= [0, 59], etc.  
    The estimation of a group’s mean performance 
with the help of the previously defined GNs is 
illustrated with the following example:  
    Example 2: Reconsider Example 1. Which class 
demonstrated the better mean performance? 
    Solution: Under the light of equation (10), it is 
logical to accept that the GNs  

MI=
1
20

(5A+3B+7C+0D+5F) and  

MII=
1
20

(4A+4B+7C+1D+4F) respectively can be 

used for estimating the two classes’ mean 
performance. Straightforward calculations with the 
help of equations (8) and (9) give that  

MI=
1
20

[1070, 1515] = [53.5, 75.75] and  

MII=
1
20

[1110, 1509] = [55.5, 75.45].  

    Equation (7) gives, therefore, that V(MI) = 64.625 
and V(MII) = 64.75. Thus, both classes 
demonstrated good (C) mean performance, with the 
mean performance of Class II being slightly better. 

4.4 Using Neutrosophic Sets for Student 

Assessment 

In many cases the teacher has doubts about the 
grades assigned to some (or all) students of the 
group under assessment. In such cases the use of 
NSs is more appropriate for estimating the student 
group overall performance. This process is 
illustrated in the following example: 
    Example 3: Let {s1, s2, …. , s20} be a class of 20 
students. The teacher of the class is not sure about 
the grades obtained by them in a test involving MM 
problems, because some of the students did not give 
proper explanations about their solutions. The 
teacher decides, therefore, to characterize the 
students who demonstrated excellent performance in 
the test by using neutrosophic triplets as follows: 
s1(1, 0, 0), s2(0.9, 0.1, 0.1), s3(0.8, 0.2, 0.1), s4(0.4, 
0.5, 0.8), s5(0.4, 0.5, 0.8), s6(0.3, 0.7, 0.8), s7(0.3, 
0.7, 0.8), s8(0.2, 0.8, 0.9), s9(0.1, 0.9, 0.9), s10(0.1, 
0.9, 0.9} and for all the other students (0, 0, 1). This 
means that the teacher is absolutely sure that s1 
demonstrated excellent performance, 90% sure that 
s2 demonstrated excellent performance too, but at 
the same time has a 10% doubt about it and also a 
10% belief that s2 did not demonstrate excellent 
performance, etc. For the last 10 students the teacher 
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is absolutely sure that they did not demonstrate 
excellent performance. What should be the teacher’s 
conclusion about the class’s mean performance in 
this case?  
    Solution: It is logical to accept that the class’s 
mean performance can be estimated by the 

neutrosophic triplet 
1
20

[ (1, 0, 0)+(0.9, 0.1, 

0.1)+(0.8, 0.2, 0.1)+2(0.4, 0.5, 0.8)+2(0.3, 0.7, 
0.8)+(0.2, 0.8, 0.9)+2(0.1, 0.9, 0.9)+10(0, 0, 1)], 
which by equations (8) and (9) is equal to  
1
20

(4.5, 5.3, 16.3) = (0.225, 0.265, 0.815). This 

means that the performance of a random student of 
the class has a 22.5% probability to be characterized 
as excellent, however, there exist also a 26.5% 
doubt about it and an 81.5% probability to be 
characterized as not excellent. Obviously this 
conclusion is characterized by inconsistency, which 
is an expected outcome due to the teacher’s 
uncertainty for the grades assigned to students. 
    The teacher could work in the same way by 
considering the NSs of students who demonstrated 
very good, good, mediocre and unsatisfactory 
performance in the test, thus obtaining analogous 
conclusions. 
 
5. Discussion and Conclusions 

A hybrid assessment method was applied in this 
work for assessing student MM skills under fuzzy 
conditions (with qualitative grades). The whole 
process followed leads to the following conclusions: 

 SSs can be used for realizing a parametric 
assessment of the student group’s overall 
performance. 

 The qualitative performance of a student 
group (where greater coefficients are 
assigned to the higher grades) can be 
measured either by the classical method of 
calculating the GPA index, or by applying 
the RFAM, which is based on the COG 
defuzzification technique. When two groups 
have the same GPA index, however, then 
the RFAM model must be applied to find 
which group demonstrates the better 
performance. 

 In case of using qualitative grades for 
assessing the student performance, the 
assessment of a student group’s mean 
performance cannot be realized by the 
classical way of calculating the mean value 
of the student individual scores. The student 
mean performance in this case can be 

estimated by using GNs (closed real 
intervals). 

 When the teacher has doubts for the grades 
assigned to some (or all) students, NSs is 
more appropriate to be used for assessing 
the overall performance of a student group. 

    Our experience from the present and earlier 
works implies that hybrid methods, like the previous 
one, usually give better and more complete results, 
not only in the assessment processes, but also in 
decision-making, in tackling the existing in real 
world uncertainty and possibly in various other 
human or machine activities. This is, therefore, an 
interesting area for further research. 
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