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Abstract. Two sets of closed analytic formulas are proposed for the approximate calculus of the complete elliptic integrals 
K(k) and E(k) in the normal form due to Legendre, their expressions having a remarkable simplicity and accuracy. The 
special usefulness of the newly proposed formulas consists in they allow performing the analytic study of variation of the 
functions in which they appear, using derivatives, being expressed in terms of elementary (especially algebraic) functions 
only, without any special function (this would mean replacing one difficulty by another of the same kind). Comparative 
tables of so found approximate values with the exact ones, reproduced from special functions tables, are given (wrt the 
elliptic integrals’ modulus k). The first set of formulas was suggested by Peano’s law on ellipse’s perimeter. The new 
functions and their derivatives coincide with the exact ones at k = 0 only. As for simplicity, the formulas in k / k don’t need 
mathematical tables nor advanced calculators, being purely algebraic. As for accuracy, the second set, something more 
intricate, gives more accurate values and extends more closely to k = 1. An original fast converging recurrent-iterative 
scheme to get sets of formulas with the desired accuracy is given in appendix 1. Using the results obtained by applying the 
newly proposed approximate formulas a method to approximate the complete elliptic integral Π(n, k) is given in appendix 2. 
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1 Elliptic integrals – occurrences, definitions 
There are many interesting domains in pure and applied 
mathematics where appear both (or, often, only one) complete 
elliptic integrals of the 1st and 2nd kind in the normal form due to 
Legendre. The arc length of a Bernoulli’s lemniscate, as well 
as the period of oscillations in a vacuum of the simple pendulum, 
in the dynamics of a constrained heavy particle, are given by 
a complete elliptic integral of the 1st kind. The perimeter of an 
ellipse, as well as the lift coefficient of a thin delta wing with 
subsonic leading edges, in supersonic aerodynamics (small 
perturbations theory), are given by a complete elliptic integral of 
the 2nd kind. In electromagnetic theory, the electric and magnetic 
fields from a circular coil can be expressed using the complete 
elliptic integrals. The relations below define the integrals of the 
1st and 2nd kind, in canonical form, K(k) and E(k), respectively: 
K(k) = ∫0

π/2
(1 – k2sin2φ)– 1/2dφ = ∫0

1
[(1 – t2)(1 – k2t2)]– 1/2dt; 

E(k) = ∫0
π/2

(1 – k2sin2φ)1/2dφ = ∫0
1
[(1 – t2)(1 – k2t2)]1/2dt; 

k = sin  0 is called modulus. K(k), E(k) are typical elliptic integrals. 
They do not admit primitive functions (cannot be expressed in 
terms of elementary functions), being calculated by expanding the 
integrands into series, integrating term-by-term, and presented wrt 
k  [0, 1], or wrt   [0, /2], in some mathematical tables [1] – [6]. 
Other examples of such kind of integrals are: Si(x); Ci(x); Ei(x); li(x). 
Modern mathematics defines an elliptic integral as any function f 
which can be expressed in the form f(x) = ∫c

x
R[t, P(t)1/2] dt; R is a 

rational function of its two arguments; P is a polynomial of 
degree 3 or 4 with no repeated roots; c is a constant. The values 
given in some special tables allow performing the calculus for a 
given case (point), but not the analytic study of variation of the 

functions in which these integrals appear, using the derivatives. 
Further two sets (0; 1) of closed analytic formulas to approximate 
K(k) and E(k) in both algebraic and trigonometric form are given. 
A fast converging recurrent-iterative scheme to get sets of 
formulas with a desired high accuracy is given in appendix 1. 
We use an original purely analytic method (not some nume-
rical, or sophisticated computer programs, like most authors). 
There also is a Legendre complete elliptic integral of the 3rd kind. 
With an appropriate reduction formula, every elliptic integral can be 
brought into a form that involves integrals over rational functions 
and the three Legendre canonical forms (of the 1st, 2nd & 3rd kind). 
 
2 The two sets of newly proposed formulas 
The complementary modulus is k = (1 – k2)1/2 = cos θ  0. The 
E0(k) formula in the 1st set (K0, E0) is Peano’s law on the perimeter 
of an ellipse of low eccentricity k; a, b – semiaxes; k′ = b/a. 
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Similarly, for the 2nd set (K1, E1) we proposed the formulas: 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2022.2.14 Richard Selescu

E-ISSN: 2769-2477 91 Volume 2, 2022



 
   

 

     

     .Kcoscos
2

cos2cos1
2

3

4

π
E

,K121
2

3

4

π
E

.
cos)2/(cos

cos1

4

1
1

cos)2/(cos

π
K

,
1

1

4

2
1

1

2π
K

1
4

2

1

1
4

2

1

8121

21

411

4

4

1

θθθ
θ

θθ

kkkkkk

θ

θ

θ
θ

kk

k

kk
k





 





 








 


























 

A 3rd set (K2, E2), more accurate than the previous two, can be built (a 
recurrent-iterative scheme in appendix 1); all set definitions are boxed. 

Table 1. Values of the functions K (part one) 
 () k = sin K(k) K0(k) K1(k) 
  0 0.00000 1.5708 1.5708 1.5708 
  1 0.01745 1.5709 1.5709 1.5709 
  2 0.03490 1.5713 1.5713 1.5713 
  3 0.05234 1.5719 1.5719 1.5719 
  4 0.06976 1.5727 1.5727 1.5727 
  5 0.08716 1.5738 1.5738 1.5738 
  6 0.10453 1.5751 1.5751 1.5751 
  7 0.12187 1.5767 1.5767 1.5767 
  8 0.13917 1.5785 1.5785 1.5785 
  9 0.15643 1.5805 1.5805 1.5805 
10 0.17365 1.5828 1.5828 1.5828 
11 0.19081 1.5854 1.5854 1.5854 
12 0.20791 1.5882 1.5882 1.5882 
13 0.22495 1.5913 1.5913 1.5913 
14 0.24192 1.5946 1.5946 1.5946 
15 0.25882 1.5981 1.5981 1.5981 
16 0.27564 1.6020 1.6020 1.6020 
17 0.29237 1.6061 1.6061 1.6061 
18 0.30902 1.6105 1.6105 1.6105 
19 0.32557 1.6151 1.6151 1.6151 
20 0.34202 1.6200 1.6200 1.6200 
21 0.35837 1.6252 1.6252 1.6252 
22 0.37461 1.6307 1.6307 1.6307 
23 0.39073 1.6365 1.6365 1.6365 
24 0.40674 1.6426 1.6426 1.6426 
25 0.42262 1.6490 1.6490 1.6490 
26 0.43837 1.6557 1.6557 1.6557 
27 0.45399 1.6627 1.6627 1.6627 
28 0.46947 1.6701 1.6701 1.6701 
29 0.48481 1.6777 1.6777 1.6777 
30 0.50000 1.6858 1.6857 1.6858 
31 0.51504 1.6941 1.6941 1.6941 
32 0.52992 1.7028 1.7028 1.7028 
33 0.54464 1.7119 1.7119 1.7119 
34 0.55919 1.7214 1.7214 1.7214 
35 0.57358 1.7312 1.7312 1.7312 
36 0.58779 1.7415 1.7415 1.7415 
37 0.60182 1.7522 1.7522 1.7522 
38 0.61566 1.7633 1.7632 1.7633 
39 0.62932 1.7748 1.7748 1.7748 
40 0.64279 1.7868 1.7867 1.7868 

41 0.65606 1.7992 1.7992 1.7992 
42 0.66913 1.8122 1.8121 1.8122 
43 0.68200 1.8256 1.8256 1.8256 
44 0.69466 1.8396 1.8395 1.8396 
45 0.70711 1.8541 1.8540 1.8541 
46 0.71934 1.8691 1.8691 1.8691 
47 0.73135 1.8848 1.8847 1.8848 
48 0.74314 1.9011 1.9009 1.9011 
49 0.75471 1.9180 1.9178 1.9180 
50 0.76604 1.9356 1.9354 1.9356 
51 0.77715 1.9539 1.9536 1.9539 
52 0.78801 1.9729 1.9726 1.9729 
53 0.79864 1.9927 1.9923 1.9927 
54 0.80902 2.0133 2.0128 2.0133 
55 0.81915 2.0347 2.0341 2.0347 
56 0.82904 2.0571 2.0564 2.0571 
57 0.83867 2.0804 2.0795 2.0804 
58 0.84805 2.1047 2.1037 2.1047 
59 0.85717 2.1300 2.1288 2.1300 
60 0.86603 2.1565 2.1551 2.1565 
61 0.87462 2.1842 2.1825 2.1842 
62 0.88295 2.2132 2.2111 2.2132 
63 0.89101 2.2435 2.2410 2.2435 
64 0.89879 2.2754 2.2723 2.2754 
65 0.90631 2.3088 2.3051 2.3088 
66 0.91355 2.3439 2.3394 2.3439 
67 0.92050 2.3809 2.3754 2.3809 
68 0.92718 2.4198 2.4132 2.4198 
69 0.93358 2.4610 2.4530 2.4610 
70 0.93969 2.5046 2.4948 2.5045 

70.5 0.94264 2.5273 2.5165 2.5273 
71 0.94552 2.5507 2.5389 2.5507 

71.5 0.94832 2.5749  2.5749 
72 0.95106 2.5998  2.5998 

72.5 0.95372 2.6256  2.6255 
73 0.95630 2.6521  2.6521 

73.5 0.95882 2.6796  2.6796 
74 0.96126 2.7081  2.7081 

74.5 0.96363 2.7375  2.7375 
75 0.96593 2.7681  2.7680 

75.5 0.96815 2.7998  2.7997 
76 0.97030 2.8327  2.8326 

76.5 0.97237 2.8669  2.8669 
77 0.97437 2.9026  2.9025 

77.5 0.97630 2.9397  2.9397 
78 0.97815 2.9786  2.9785 

78.5 0.97992 3.0192  3.0191 
79 0.98163 3.0617  3.0616 

79.5 0.98325 3.1064  3.1063 
80 0.98481 3.1534  3.1533 

80.2 0.98541 3.1729  3.1727 
80.4 0.98600 3.1928  3.1927 
80.6 0.98657 3.2132  3.2130 
80.8 0.98714 3.2340  3.2338 
81 0.98769 3.2553  3.2551 
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Table 1. Values of the functions K (part two) 
81.2 0.98823 3.2771  3.2769 
81.4 0.98876 3.2995  3.2992 
81.6 0.98927 3.3223  3.3221 
81.8 0.98978 3.3458  3.3455 
82 0.99027 3.3699  3.3696 

82.2 0.99075 3.3946  3.3942 
82.4 0.99122 3.4199  3.4196 
82.6 0.99167 3.4460  3.4456 
82.8 0.99211 3.4728  3.4724 
83 0.99255 3.5004  3.4999 

83.2 0.99297 3.5288  3.5283 
83.4 0.99337 3.5581  3.5575 
83.6 0.99377 3.5884  3.5877 
83.8 0.99415 3.6196  3.6188 
84 0.99452 3.6519  3.6510 

84.2 0.99488 3.6852  3.6843 
84.4 0.99523 3.7198  3.7187 
84.6 0.99556 3.7557  3.7545 
84.8 0.99588 3.7930  3.7916 
85 0.99619 3.8317  3.8302 

85.2 0.99649 3.8721  3.8704 
85.4 0.99678 3.9142  3.9122 
85.6 0.99705 3.9583  3.9560 
85.8 0.99731 4.0044  4.0018 
86 0.99756 4.0528  4.0498 

86.2 0.99780 4.1037  4.1003 
86.4 0.99803 4.1574  4.1535 
86.6 0.99824 4.2142  4.2097 
86.8 0.99844 4.2744  4.2692 
87 0.99863 4.3387  4.3325 

87.2 0.99881 4.4073  4.4001 
87.4 0.99897 4.4811  4.4726 
87.6 0.99912 4.5609  4.5507 
87.8 0.99926 4.6477  4.6354 
88 0.99939 4.7427  4.7277 

88.2 0.99951 4.8478  4.8293 
88.4 0.99961 4.9654   
88.6 0.99970 5.0988   
88.8 0.99978 5.2527   
89 0.99985 5.4349   

89.1 0.99988 5.5402   
89.2 0.99990 5.6579   
89.3 0.99993 5.7914   
89.4 0.99995 5.9455   
89.5 0.99996 6.1278   
89.6 0.99998 6.3509   
89.7 0.99999 6.6385   
89.8 0.99999 7.0440   
89.9 1.00000 7.7371   
90 1.00000  –  –  

The values strings in the last two columns of table 1 were canceled 
when each of the two closed analytic formulas proposed for the 
approximation of the Legendre complete elliptic integral of the 
1st kind K(k) gives too great relative errors (|K| ≥ 4 ‰ – also see 

chapter 3) for being still accepted in the usual mathematical / 
technical calculus. The same procedure will be applied in case 
of the next table (no. 2), for the same reason, concerning the 
accuracy of the values given by each of the other two closed 
analytic formulas proposed for the approximation of the 
Legendre complete elliptic integral of the 2nd kind E(k). The 
accuracy analysis of the two sets of formulas will be performed 
in the next chapter (no. 3). In chapter 4 some series representations 
for the exact functions and for both sets of approximation, 
as well as for their first order derivatives, will be given. For 
(K0, 1, E0, 1) behaviour in the domain’s right side see appendix 1. 

Table 2. Values of the functions E (part one) 
 () k = sin  E(k) E0(k) E1(k) 
  0 0.00000 1.5708 1.5708 1.5708 
  1 0.01745 1.5707 1.5707 1.5707 
  2 0.03490 1.5703 1.5703 1.5703 
  3 0.05234 1.5697 1.5697 1.5697 
  4 0.06976 1.5689 1.5689 1.5689 
  5 0.08716 1.5678 1.5678 1.5678 
  6 0.10453 1.5665 1.5665 1.5665 
  7 0.12187 1.5649 1.5649 1.5649 
  8 0.13917 1.5632 1.5632 1.5632 
  9 0.15643 1.5611 1.5611 1.5611 
10 0.17365 1.5589 1.5589 1.5589 
11 0.19081 1.5564 1.5564 1.5564 
12 0.20791 1.5537 1.5537 1.5537 
13 0.22495 1.5507 1.5507 1.5507 
14 0.24192 1.5476 1.5476 1.5476 
15 0.25882 1.5442 1.5442 1.5442 
16 0.27564 1.5405 1.5405 1.5405 
17 0.29237 1.5367 1.5367 1.5367 
18 0.30902 1.5326 1.5326 1.5326 
19 0.32557 1.5283 1.5283 1.5283 
20 0.34202 1.5238 1.5238 1.5238 
21 0.35837 1.5191 1.5191 1.5191 
22 0.37461 1.5141 1.5141 1.5141 
23 0.39073 1.5090 1.5090 1.5090 
24 0.40674 1.5037 1.5037 1.5037 
25 0.42262 1.4981 1.4981 1.4981 
26 0.43837 1.4924 1.4924 1.4924 
27 0.45399 1.4864 1.4864 1.4864 
28 0.46947 1.4803 1.4803 1.4803 
29 0.48481 1.4740 1.4740 1.4740 
30 0.50000 1.4675 1.4675 1.4675 
31 0.51504 1.4608 1.4608 1.4608 
32 0.52992 1.4539 1.4539 1.4539 
33 0.54464 1.4469 1.4469 1.4469 
34 0.55919 1.4397 1.4397 1.4397 
35 0.57358 1.4323 1.4323 1.4323 
36 0.58779 1.4248 1.4248 1.4248 
37 0.60182 1.4171 1.4171 1.4171 
38 0.61566 1.4092 1.4093 1.4092 
39 0.62932 1.4013 1.4013 1.4013 
40 0.64279 1.3931 1.3932 1.3931 
41 0.65606 1.3849 1.3849 1.3849 
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Table 2. Values of the functions E (part two) 
42 0.66913 1.3765 1.3765 1.3765 
43 0.68200 1.3680 1.3680 1.3680 
44 0.69466 1.3594 1.3594 1.3594 
45 0.70711 1.3506 1.3507 1.3506 
46 0.71934 1.3418 1.3419 1.3418 
47 0.73135 1.3329 1.3330 1.3329 
48 0.74314 1.3238 1.3239 1.3238 
49 0.75471 1.3147 1.3148 1.3147 
50 0.76604 1.3055 1.3057 1.3055 
51 0.77715 1.2963 1.2964 1.2963 
52 0.78801 1.2870 1.2872 1.2870 
53 0.79864 1.2776 1.2778 1.2776 
54 0.80902 1.2681 1.2684 1.2681 
55 0.81915 1.2587 1.2590 1.2587 
56 0.82904 1.2492 1.2496 1.2492 
57 0.83867 1.2397 1.2401 1.2397 
58 0.84805 1.2301 1.2307 1.2301 
59 0.85717 1.2206 1.2212 1.2206 
60 0.86603 1.2111 1.2118 1.2111 
61 0.87462 1.2015 1.2024 1.2015 
62 0.88295 1.1920 1.1930 1.1920 
63 0.89101 1.1826 1.1838 1.1826 
64 0.89879 1.1732 1.1745 1.1732 
65 0.90631 1.1638 1.1654 1.1638 
66 0.91355 1.1545 1.1564 1.1545 
67 0.92050 1.1453 1.1475 1.1453 
68 0.92718 1.1362 1.1387 1.1362 
69 0.93358 1.1272 1.1301 1.1273 
70 0.93969 1.1184 1.1217 1.1184 

70.5 0.94264 1.1140 1.1176 1.1140 
71 0.94552 1.1096 1.1135 1.1096 

71.5 0.94832 1.1053  1.1053 
72 0.95106 1.1011  1.1011 

72.5 0.95372 1.0968  1.0968 
73 0.95630 1.0927  1.0927 

73.5 0.95882 1.0885  1.0885 
74 0.96126 1.0844  1.0844 

74.5 0.96363 1.0804  1.0804 
75 0.96593 1.0764  1.0764 

75.5 0.96815 1.0725  1.0725 
76 0.97030 1.0686  1.0686 

76.5 0.97237 1.0648  1.0648 
77 0.97437 1.0611  1.0611 

77.5 0.97630 1.0574  1.0574 
78 0.97815 1.0538  1.0538 

78.5 0.97992 1.0502  1.0503 
79 0.98163 1.0468  1.0468 

79.5 0.98325 1.0434  1.0435 
80 0.98481 1.0401  1.0402 

80.2 0.98541 1.0388  1.0389 
80.4 0.98600 1.0375  1.0376 
80.6 0.98657 1.0363  1.0364 
80.8 0.98714 1.0350  1.0351 
81 0.98769 1.0338  1.0339 

81.2 0.98823 1.0326  1.0327 
81.4 0.98876 1.0314  1.0315 
81.6 0.98927 1.0302  1.0303 
81.8 0.98978 1.0290  1.0292 
82 0.99027 1.0278  1.0280 

82.2 0.99075 1.0267  1.0269 
82.4 0.99122 1.0256  1.0258 
82.6 0.99167 1.0245  1.0247 
82.8 0.99211 1.0234  1.0236 
83 0.99255 1.0223  1.0226 

83.2 0.99297 1.0213  1.0215 
83.4 0.99337 1.0202  1.0205 
83.6 0.99377 1.0192 false min. 1.0196 
83.8 0.99415 1.0182  1.0186 
84 0.99452 1.0172  1.0176 

84.2 0.99488 1.0163  1.0167 
84.4 0.99523 1.0153  1.0158 
84.6 0.99556 1.0144  1.0150 
84.8 0.99588 1.0135  1.0141 
85 0.99619 1.0127  1.0133 

85.2 0.99649 1.0118  1.0125 
85.4 0.99678 1.0110  1.0118 
85.6 0.99705 1.0102  1.0110 
85.8 0.99731 1.0094  1.0103 
86 0.99756 1.0086  1.0097 

86.2 0.99780 1.0079  1.0091 
86.4 0.99803 1.0072  1.0085 
86.6 0.99824 1.0065  1.0080 
86.8 0.99844 1.0059  1.0075 
87 0.99863 1.0053  1.0071 

87.2 0.99881 1.0047  1.0067 
87.4 0.99897 1.0041  1.0064 
87.6 0.99912 1.0036  1.0062 
87.8 0.99926 1.0031 false min. 1.0060 
88 0.99939 1.0026 for E1(k)  1.0060 

88.2 0.99951 1.0021  1.0061 
88.4 0.99961 1.0017   
88.6 0.99970 1.0014   
88.8 0.99978 1.0010   
89 0.99985 1.0008   

89.1 0.99988 1.0006   
89.2 0.99990 1.0005   
89.3 0.99993 1.0004   
89.4 0.99995 1.0003   
89.5 0.99996 1.0002   
89.6 0.99998 1.0001   
89.7 0.99999 1.0001   
89.8 0.99999 1.0000   
89.9 1.00000 1.0000   
90 1.00000 1.0000 1.1781 1.1781 

At θ = cos– 1(1/9) = 83.62063, E0(k) = π/3 = 1.0472 – false min. 
In the comparative tables 1 and 2, the 4D (four decimal digit) exact 
values of both Legendre complete elliptic integrals reproduced 
from special functions tables [6] (tab. 29, p. 117), as well as their 4D 
approximate values obtained by applying the two sets of closed 
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analytic formulas were given (all wrt the respective elliptic 
integrals’ modulus k = sin ). It is to be noticed that both sets of 
approximate formulas are not given by spline or regression functions, 
but by asymptotic expressions, these ones having a remarkable 
simplicity (see, e.g.: the 2nd form of E0(k), suggested by Peano’s law 
on ellipse’s perimeter; all newly found formulas in k / k do not need 
any mathematical table, being purely algebraic) and accuracy 
(see table 3). The identity with the exact functions is satisfied for 
the domain’s left end k = 0 ( = 0). The 2nd set (K1, E1), although a 
bit more intricate, gives more accurate values than the 1st one (K0, E0) 
and arrives more closely to the domain’s right end k = 1 ( = 90). 
 
3 The accuracy of the two sets of formulas 
Let us define the following relative error functions: 
K0(k) = K0(k)/K(k) – 1; K1(k) = K1(k)/K(k) – 1, 
E0(k) = E0(k)/E(k) – 1; E1(k) = E1(k)/E(k) – 1, 
for both sets of approximation of the 1st and 2nd kind integrals, 
resp. Their values are given in table 3, expressed in thousandths 
(‰). These errors were calculated for the 1st set (K0, E0) only in 
the field   [54, 71] of the domain, with an increment of 1, 
while for the 2nd set (K1, E1) only in the field   [84.8, 
88.2], with an increment of 0.2, like in tables 1 & 2. 

Table 3. Relative errors  distribution 
 () k = sin K0(‰) K1(‰) E0(‰) E1(‰)

      
54 0.80902 – 0.250  + 0.255  
55 0.81915 – 0.272  + 0.243  
56 0.82904 – 0.353  + 0.293  
57 0.83867 – 0.420  + 0.334  
58 0.84805 – 0.497  + 0.454  
59 0.85717 – 0.558  + 0.502  
60 0.86603 – 0.669  + 0.566  
61 0.87462 – 0.799  + 0.742  
62 0.88295 – 0.961  + 0.874  
63 0.89101 – 1.118  + 0.973  
64 0.89879 – 1.366  + 1.135  
65 0.90631 – 1.619  + 1.377  
66 0.91355 – 1.918  + 1.627  
67 0.92050 – 2.299  + 1.900  
68 0.92718 – 2.709  + 2.215  
69 0.93358 – 3.253  + 2.573  
70 0.93969 – 3.907  + 2.959  
71 0.94552 – 4.642  + 3.525  

  -  -  
84.8 0.99588 - – 0.369 - + 0.607 
85 0.99619 - – 0.396 - + 0.592 

85.2 0.99649 - – 0.451 - + 0.705 
85.4 0.99678 - – 0.500 - + 0.748 
85.6 0.99705 - – 0.582 - + 0.823 
85.8 0.99731 - – 0.652 - + 0.932 
86 0.99756 - – 0.737 - + 1.076 

86.2 0.99780 - – 0.832 - + 1.160 
86.4 0.99803 - – 0.945 - + 1.284 
86.6 0.99824 - – 1.077 - + 1.453 

86.8 0.99844 - – 1.214 - + 1.571 
87 0.99863 - – 1.421 - + 1.743 

87.2 0.99881 - – 1.626 - + 1.976 
87.4 0.99897 - – 1.894 - + 2.275 
87.6 0.99912 - – 2.234 - + 2.553 
87.8 0.99926 - – 2.655 - + 2.922 
88 0.99939 - – 3.156 - + 3.397 

88.2 0.99951 - – 3.808 - + 4.004 
 

The relative errors strings are stopped for values || ≥ 4 ‰. 
One can see that both sets given in chapter 2 have a much lesser 
relative error for K(k) than the well-known asymptotic expression: 
K(k) ≈ π/2 + (π/8)[k2/(1 – k2)] – (π/16)[k4/(1 – k4)], 
with a relative precision of 3·10– 4 for k < 0.5 ( < 30), only. 
 
4 Series representations (functions and their 
derivatives); Legendre’s functional relation 
Expanding into power series, one obtains for the complete 
elliptic integrals the set of representations below ([5] – [7]): 
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At k = 0: K(0) = E(0) = π/2; at k = 1: K(1) ↑ ∞; E(1) = 1. 
Proceeding in the same manner, we get for the 1st set (the 
most inaccurate) of approximate functions the expansions 
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for the 2nd set being practically identical with the exact ones 
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The difference with respect to the expansions of the 
exact functions (K, E) begins at the terms in k8 for the 1st 
set of approximation (K0, E0), and at the terms in k16 for the 
2nd one (K1, E1). For the 1st derivatives of K, E we get 
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At k = 0: dK/dk = dE/dk = 0; at k =1: dK/dk↑∞; dE/dk↓(– ∞). 
Applying the previous two exact relations and using the 
four definitions from chapter 2 one gets the expansions: 
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for the 1st set of approximate functions (K0, E0), and resp. 
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for the 2nd set of approximate functions (K1, E1). The differ-
ence with respect to the expansions of the 1st derivatives 
of the exact functions (K, E) begins at the terms in k7 for the 
1st set, and at the terms in k15 for the 2nd one, so much lesser 
than that for the expansions of the respective sets (K0, 1, E0, 1). 
One can also easily find the analytic expressions and series 
representations for the 2nd derivatives of all K, K0, 1, E, E0, 1, 
with similar results, but a lesser precision than for K, E, K, E. 
Besides the above definitions of the derivatives K (= dK/dk), 
E (= dE/dk), there is a useful functional relation (Legendre’s): 
K(k)·E(k) + E(k)·K(k) – K(k)·K(k) = π/2. 
 
5 Graphic comparison 
The variation curves of Legendre complete elliptic integrals, 
as well as that of the two sets of closed analytic functions 
are graphically represented in the comparative figures 1 and 2, 
all wrt , in sexagesimal degrees, and given by  = sin–1k. 
In both figures the exact functions K(k), E(k) were represented 
by solid (continuous) black lines, the 1st set of approximation 
[K0(k), E0(k)] by dashed black lines, and the 2nd set of approxi-
mation [K1(k), E1(k)] by solid red lines. At k = 1 the graphs of all 
K0, 1(k) fall to (– ∞); the graphs of all E0, 1(k) pass through (1, 3π/8). 

 
 

Fig. 1. Comparison of K(k) with the closed analytic functions 
K0(k), K1(k); also see the 2nd part of remark 1 in appendix 1 
 

 
 

Fig. 2. Comparison of E(k) with the closed analytic functions 
E0(k), E1(k); also see the 2nd part of remark 1 in appendix 1 
 
6 Conclusions 
As for simplicity, the formulas in k / k do not need mathematical 
tables (are purely algebraic). As for accuracy, in mathematical/ 
technical applications, it must use the 1st set until  = 70.5 (k = 
0.94264) only, and (for a better accuracy or a greater upper limit 
of the validity domain) the 2nd set, until  = 88.2 (k = 0.99951). 
 
7 Notes; other methods; future research 
Without the tables 1 and 2, this work was published previously 
in a proceedings volume (scientific bulletin), in Romanian [8]. 
For its first English version see [9], [10]. Approximations for the 
complete elliptic integrals based on the trapezoidal-type numerical 
integration formulas discussed in [11], are developed in [12], 
[13] (a mixed numerical-analytic method). For newer formulas 
(using Γ function – not an elementary, but a special one, like K 
and E, even if these formulas are the most accurate) see [14]. 
We cite from [14]: “K[r] could be expressed in terms of products 
of Γ functions, algebraic numbers and powers of π.” To find 
the values of Γ function we need special functions tables. As stated 
in their abstracts, the works [9], [14] do not have the same goal. 
To write K and E in terms of Legendre polynomials see [15]. 
An original fast converging recurrent-iterative scheme to get a 
3rd (and higher) set of closed analytic formulas (seemingly 
intricate) with desired accuracy is given in article’s appendix 1. 
For how to get the first two sets (0; 1) see appendix’ remark 1. 
This part of the work is a fully extended version of the article [9]. 
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Appendix 1 – A fast converging recurrent- 
iterative scheme to get a third (and higher) set 
of analytic formulas with desired accuracy 
The formulas for transforming the modulus ([16], [17]) are: 
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(passing from k to k1 = (1 – k)/(1 + k) ≤ k and from θ to θ1 = 
sin – 1[tan2(θ/2)] ≤ θ; k1 = k (θ1 = θ), for: k = 0; 1 (θ = 0; π/2)), 
which can be transcribed in recurrent form, as follows: 
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starting a recurrent-iterative scheme ([18], [19]); it allows writing 
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Kn(θ), En(θ) are given by recurrences similar to K2(θ), E2(θ). 
Starting from the newly found closed analytic formulas, which 
connect the 3rd set (K2, E2) with the 2nd one (K1, E1), and applying 
the new recurrent-iterative scheme, the comparative tables 1 & 2 
were remade, inserting the new columns “K2(k)” and “E2(k)” 
with 4D approximate values. Besides the 1st set (K0, E0), there 
is a better version, (K01, E01), based on Peano’s optimized law 
on ellipse’s perimeter (see appendix’ 1 remark 1), leading to: 
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Table 4. Values of the functions K (part one) 
(this table completes and replaces table 1) 

 () k = sinθ K(k) K0(k) K1(k) K2(k) 
  0 0.00000 1.5708 1.5708 1.5708 1.5708 
  1 0.01745 1.5709 1.5709 1.5709 1.5709 
  2 0.03490 1.5713 1.5713 1.5713 1.5713 
  3 0.05234 1.5719 1.5719 1.5719 1.5719 
  4 0.06976 1.5727 1.5727 1.5727 1.5727 
  5 0.08716 1.5738 1.5738 1.5738 1.5738 
  6 0.10453 1.5751 1.5751 1.5751 1.5751 
  7 0.12187 1.5767 1.5767 1.5767 1.5767 
  8 0.13917 1.5785 1.5785 1.5785 1.5785 
  9 0.15643 1.5805 1.5805 1.5805 1.5805 
10 0.17365 1.5828 1.5828 1.5828 1.5828 
11 0.19081 1.5854 1.5854 1.5854 1.5854 
12 0.20791 1.5882 1.5882 1.5882 1.5882 
13 0.22495 1.5913 1.5913 1.5913 1.5913 
14 0.24192 1.5946 1.5946 1.5946 1.5946 
15 0.25882 1.5981 1.5981 1.5981 1.5981 
16 0.27564 1.6020 1.6020 1.6020 1.6020 
17 0.29237 1.6061 1.6061 1.6061 1.6061 
18 0.30902 1.6105 1.6105 1.6105 1.6105 
19 0.32557 1.6151 1.6151 1.6151 1.6151 
20 0.34202 1.6200 1.6200 1.6200 1.6200 
21 0.35837 1.6252 1.6252 1.6252 1.6252 
22 0.37461 1.6307 1.6307 1.6307 1.6307 
23 0.39073 1.6365 1.6365 1.6365 1.6365 
24 0.40674 1.6426 1.6426 1.6426 1.6426 
25 0.42262 1.6490 1.6490 1.6490 1.6490 
26 0.43837 1.6557 1.6557 1.6557 1.6557 
27 0.45399 1.6627 1.6627 1.6627 1.6627 
28 0.46947 1.6701 1.6701 1.6701 1.6701 
29 0.48481 1.6777 1.6777 1.6777 1.6777 
30 0.50000 1.6858 1.6857 1.6858 1.6858 
31 0.51504 1.6941 1.6941 1.6941 1.6941 
32 0.52992 1.7028 1.7028 1.7028 1.7028 
33 0.54464 1.7119 1.7119 1.7119 1.7119 
34 0.55919 1.7214 1.7214 1.7214 1.7214 
35 0.57358 1.7312 1.7312 1.7312 1.7312 
36 0.58779 1.7415 1.7415 1.7415 1.7415 
37 0.60182 1.7522 1.7522 1.7522 1.7522 
38 0.61566 1.7633 1.7632 1.7633 1.7633 
39 0.62932 1.7748 1.7748 1.7748 1.7748 
40 0.64279 1.7868 1.7867 1.7868 1.7868 

41 0.65606 1.7992 1.7992 1.7992 1.7992 
42 0.66913 1.8122 1.8121 1.8122 1.8122 
43 0.68200 1.8256 1.8256 1.8256 1.8256 
44 0.69466 1.8396 1.8395 1.8396 1.8396 
45 0.70711 1.8541 1.8540 1.8541 1.8541 
46 0.71934 1.8691 1.8691 1.8691 1.8691 
47 0.73135 1.8848 1.8847 1.8848 1.8848 
48 0.74314 1.9011 1.9009 1.9011 1.9011 
49 0.75471 1.9180 1.9178 1.9180 1.9180 
50 0.76604 1.9356 1.9354 1.9356 1.9356 
51 0.77715 1.9539 1.9536 1.9539 1.9539 
52 0.78801 1.9729 1.9726 1.9729 1.9729 
53 0.79864 1.9927 1.9923 1.9927 1.9927 
54 0.80902 2.0133 2.0128 2.0133 2.0133 
55 0.81915 2.0347 2.0341 2.0347 2.0347 
56 0.82904 2.0571 2.0564 2.0571 2.0571 
57 0.83867 2.0804 2.0795 2.0804 2.0804 
58 0.84805 2.1047 2.1037 2.1047 2.1047 
59 0.85717 2.1300 2.1288 2.1300 2.1300 
60 0.86603 2.1565 2.1551 2.1565 2.1565 
61 0.87462 2.1842 2.1825 2.1842 2.1842 
62 0.88295 2.2132 2.2111 2.2132 2.2132 
63 0.89101 2.2435 2.2410 2.2435 2.2435 
64 0.89879 2.2754 2.2723 2.2754 2.2754 
65 0.90631 2.3088 2.3051 2.3088 2.3088 
66 0.91355 2.3439 2.3394 2.3439 2.3439 
67 0.92050 2.3809 2.3754 2.3809 2.3809 
68 0.92718 2.4198 2.4132 2.4198 2.4198 
69 0.93358 2.4610 2.4530 2.4610 2.4610 
70 0.93969 2.5046 2.4948 2.5045 2.5046 

70.5 0.94264 2.5273 2.5165 2.5273 2.5273 
71 0.94552 2.5507 2.5389 2.5507 2.5507 

71.5 0.94832 2.5749  2.5749 2.5749 
72 0.95106 2.5998  2.5998 2.5998 

72.5 0.95372 2.6256  2.6255 2.6256 
73 0.95630 2.6521  2.6521 2.6521 

73.5 0.95882 2.6796  2.6796 2.6796 
74 0.96126 2.7081  2.7081 2.7081 

74.5 0.96363 2.7375  2.7375 2.7375 
75 0.96593 2.7681  2.7680 2.7681 

75.5 0.96815 2.7998  2.7997 2.7998 
76 0.97030 2.8327  2.8326 2.8327 

76.5 0.97237 2.8669  2.8669 2.8669 
77 0.97437 2.9026  2.9025 2.9026 

77.5 0.97630 2.9397  2.9397 2.9397 
78 0.97815 2.9786  2.9785 2.9786 

78.5 0.97992 3.0192  3.0191 3.0192 
79 0.98163 3.0617  3.0616 3.0617 

79.5 0.98325 3.1064  3.1063 3.1064 
80 0.98481 3.1534  3.1533 3.1534 

80.2 0.98541 3.1729  3.1727 3.1729 
80.4 0.98600 3.1928  3.1927 3.1928 
80.6 0.98657 3.2132  3.2130 3.2132 
80.8 0.98714 3.2340  3.2338 3.2340 
81 0.98769 3.2553  3.2551 3.2553 
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      Table 4. Values of the functions K (part two)  
81.2 0.98823 3.2771  3.2769 3.2771 
81.4 0.98876 3.2995  3.2992 3.2995 
81.6 0.98927 3.3223  3.3221 3.3223 
81.8 0.98978 3.3458  3.3455 3.3458 
82 0.99027 3.3699  3.3696 3.3699 

82.2 0.99075 3.3946  3.3942 3.3946 
82.4 0.99122 3.4199  3.4196 3.4199 
82.6 0.99167 3.4460  3.4456 3.4460 
82.8 0.99211 3.4728  3.4724 3.4728 
83 0.99255 3.5004  3.4999 3.5004 

83.2 0.99297 3.5288  3.5283 3.5288 
83.4 0.99337 3.5581  3.5575 3.5581 
83.6 0.99377 3.5884  3.5877 3.5884 
83.8 0.99415 3.6196  3.6188 3.6196 
84 0.99452 3.6519  3.6510 3.6519 

84.2 0.99488 3.6852  3.6843 3.6852 
84.4 0.99523 3.7198  3.7187 3.7198 
84.6 0.99556 3.7557  3.7545 3.7557 
84.8 0.99588 3.7930  3.7916 3.7930 
85 0.99619 3.8317  3.8302 3.8317 

85.2 0.99649 3.8721  3.8704 3.8721 
85.4 0.99678 3.9142  3.9122 3.9142 
85.6 0.99705 3.9583  3.9560 3.9583 
85.8 0.99731 4.0044  4.0018 4.0044 
86 0.99756 4.0528  4.0498 4.0528 

86.2 0.99780 4.1037  4.1003 4.1037 
86.4 0.99803 4.1574  4.1535 4.1574 
86.6 0.99824 4.2142  4.2097 4.2142 
86.8 0.99844 4.2744  4.2692 4.2744 
87 0.99863 4.3387  4.3325 4.3387 

87.2 0.99881 4.4073  4.4001 4.4073 
87.4 0.99897 4.4811  4.4726 4.4811 
87.6 0.99912 4.5609  4.5507 4.5609 
87.8 0.99926 4.6477  4.6354 4.6477 
88 0.99939 4.7427  4.7277 4.7427 

88.2 0.99951 4.8478  4.8293 4.8478 
88.4 0.99961 4.9654   4.9654 
88.6 0.99970 5.0988   5.0987 
88.8 0.99978 5.2527   5.2527 
89 0.99985 5.4349   5.4349 

89.1 0.99988 5.5402   5.5402 
89.2 0.99990 5.6579   5.6579 
89.3 0.99993 5.7914   5.7913 
89.4 0.99995 5.9455   5.9454 
89.5 0.99996 6.1278   6.1276 
89.6 0.99998 6.3509   6.3506 
89.7 0.99999 6.6385   6.6380 
89.8 0.99999 7.0440   7.0428 
89.9 1.00000 7.7371   7.7336 
90 1.00000  –  –  –  

The values string in the last column is given by: 
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and finally the algebraic formula: K2(k) = 2K1(k1)/(1 + k). 
 

Table 5. Values of the functions E (part one) 
(this table completes and replaces table 2) 

 () k = sinθ E(k) E0(k) E1(k) E2(k) 
  0 0.00000 1.5708 1.5708 1.5708 1.5708 
  1 0.01745 1.5707 1.5707 1.5707 1.5707 
  2 0.03490 1.5703 1.5703 1.5703 1.5703 
  3 0.05234 1.5697 1.5697 1.5697 1.5697 
  4 0.06976 1.5689 1.5689 1.5689 1.5689 
  5 0.08716 1.5678 1.5678 1.5678 1.5678 
  6 0.10453 1.5665 1.5665 1.5665 1.5665 
  7 0.12187 1.5649 1.5649 1.5649 1.5649 
  8 0.13917 1.5632 1.5632 1.5632 1.5632 
  9 0.15643 1.5611 1.5611 1.5611 1.5611 
10 0.17365 1.5589 1.5589 1.5589 1.5589 
11 0.19081 1.5564 1.5564 1.5564 1.5564 
12 0.20791 1.5537 1.5537 1.5537 1.5537 
13 0.22495 1.5507 1.5507 1.5507 1.5507 
14 0.24192 1.5476 1.5476 1.5476 1.5476 
15 0.25882 1.5442 1.5442 1.5442 1.5442 
16 0.27564 1.5405 1.5405 1.5405 1.5405 
17 0.29237 1.5367 1.5367 1.5367 1.5367 
18 0.30902 1.5326 1.5326 1.5326 1.5326 
19 0.32557 1.5283 1.5283 1.5283 1.5283 
20 0.34202 1.5238 1.5238 1.5238 1.5238 
21 0.35837 1.5191 1.5191 1.5191 1.5191 
22 0.37461 1.5141 1.5141 1.5141 1.5141 
23 0.39073 1.5090 1.5090 1.5090 1.5090 
24 0.40674 1.5037 1.5037 1.5037 1.5037 
25 0.42262 1.4981 1.4981 1.4981 1.4981 
26 0.43837 1.4924 1.4924 1.4924 1.4924 
27 0.45399 1.4864 1.4864 1.4864 1.4864 
28 0.46947 1.4803 1.4803 1.4803 1.4803 
29 0.48481 1.4740 1.4740 1.4740 1.4740 
30 0.50000 1.4675 1.4675 1.4675 1.4675 
31 0.51504 1.4608 1.4608 1.4608 1.4608 
32 0.52992 1.4539 1.4539 1.4539 1.4539 
33 0.54464 1.4469 1.4469 1.4469 1.4469 
34 0.55919 1.4397 1.4397 1.4397 1.4397 
35 0.57358 1.4323 1.4323 1.4323 1.4323 
36 0.58779 1.4248 1.4248 1.4248 1.4248 
37 0.60182 1.4171 1.4171 1.4171 1.4171 
38 0.61566 1.4092 1.4093 1.4092 1.4092 
39 0.62932 1.4013 1.4013 1.4013 1.4013 
40 0.64279 1.3931 1.3932 1.3931 1.3931 
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      Table 5. Values of the functions E (part two)  
41 0.65606 1.7992 1.7992 1.7992 1.7992 
42 0.66913 1.8122 1.8121 1.8122 1.8122 
43 0.68200 1.8256 1.8256 1.8256 1.8256 
44 0.69466 1.8396 1.8395 1.8396 1.8396 
45 0.70711 1.8541 1.8540 1.8541 1.8541 
46 0.71934 1.8691 1.8691 1.8691 1.8691 
47 0.73135 1.8848 1.8847 1.8848 1.8848 
48 0.74314 1.9011 1.9009 1.9011 1.9011 
49 0.75471 1.9180 1.9178 1.9180 1.9180 
50 0.76604 1.9356 1.9354 1.9356 1.9356 
51 0.77715 1.9539 1.9536 1.9539 1.9539 
52 0.78801 1.9729 1.9726 1.9729 1.9729 
53 0.79864 1.9927 1.9923 1.9927 1.9927 
54 0.80902 2.0133 2.0128 2.0133 2.0133 
55 0.81915 2.0347 2.0341 2.0347 2.0347 
56 0.82904 2.0571 2.0564 2.0571 2.0571 
57 0.83867 2.0804 2.0795 2.0804 2.0804 
58 0.84805 2.1047 2.1037 2.1047 2.1047 
59 0.85717 2.1300 2.1288 2.1300 2.1300 
60 0.86603 2.1565 2.1551 2.1565 2.1565 
61 0.87462 2.1842 2.1825 2.1842 2.1842 
62 0.88295 2.2132 2.2111 2.2132 2.2132 
63 0.89101 2.2435 2.2410 2.2435 2.2435 
64 0.89879 2.2754 2.2723 2.2754 2.2754 
65 0.90631 2.3088 2.3051 2.3088 2.3088 
66 0.91355 2.3439 2.3394 2.3439 2.3439 
67 0.92050 2.3809 2.3754 2.3809 2.3809 
68 0.92718 2.4198 2.4132 2.4198 2.4198 
69 0.93358 2.4610 2.4530 2.4610 2.4610 
70 0.93969 2.5046 2.4948 2.5045 2.5046 

70.5 0.94264 2.5273 2.5165 2.5273 2.5273 
71 0.94552 2.5507 2.5389 2.5507 2.5507 

71.5 0.94832 2.5749  2.5749 2.5749 
72 0.95106 2.5998  2.5998 2.5998 

72.5 0.95372 2.6256  2.6255 2.6256 
73 0.95630 2.6521  2.6521 2.6521 

73.5 0.95882 2.6796  2.6796 2.6796 
74 0.96126 2.7081  2.7081 2.7081 

74.5 0.96363 2.7375  2.7375 2.7375 
75 0.96593 2.7681  2.7680 2.7681 

75.5 0.96815 2.7998  2.7997 2.7998 
76 0.97030 2.8327  2.8326 2.8327 

76.5 0.97237 2.8669  2.8669 2.8669 
77 0.97437 2.9026  2.9025 2.9026 

77.5 0.97630 2.9397  2.9397 2.9397 
78 0.97815 2.9786  2.9785 2.9786 

78.5 0.97992 3.0192  3.0191 3.0192 
79 0.98163 3.0617  3.0616 3.0617 

79.5 0.98325 3.1064  3.1063 3.1064 
80 0.98481 3.1534  3.1533 3.1534 

80.2 0.98541 3.1729  3.1727 3.1729 
80.4 0.98600 3.1928  3.1927 3.1928 
80.6 0.98657 3.2132  3.2130 3.2132 
80.8 0.98714 3.2340  3.2338 3.2340 

81 0.98769 1.0338  1.0339 1.0338 
81.2 0.98823 1.0326  1.0327 1.0326 
81.4 0.98876 1.0314  1.0315 1.0314 
81.6 0.98927 1.0302  1.0303 1.0302 
81.8 0.98978 1.0290  1.0292 1.0290 
82 0.99027 1.0278  1.0280 1.0278 

82.2 0.99075 1.0267  1.0269 1.0267 
82.4 0.99122 1.0256  1.0258 1.0256 
82.6 0.99167 1.0245  1.0247 1.0245 
82.8 0.99211 1.0234  1.0236 1.0234 
83 0.99255 1.0223  1.0226 1.0223 

83.2 0.99297 1.0213  1.0215 1.0213 
83.4 0.99337 1.0202  1.0205 1.0202 
83.6 0.99377 1.0192 false min. 1.0196 1.0192 
83.8 0.99415 1.0182  1.0186 1.0182 
84 0.99452 1.0172  1.0176 1.0172 

84.2 0.99488 1.0163  1.0167 1.0163 
84.4 0.99523 1.0153  1.0158 1.0153 
84.6 0.99556 1.0144  1.0150 1.0144 
84.8 0.99588 1.0135  1.0141 1.0135 
85 0.99619 1.0127  1.0133 1.0127 

85.2 0.99649 1.0118  1.0125 1.0118 
85.4 0.99678 1.0110  1.0118 1.0110 
85.6 0.99705 1.0102  1.0110 1.0102 
85.8 0.99731 1.0094  1.0103 1.0094 
86 0.99756 1.0086  1.0097 1.0086 

86.2 0.99780 1.0079  1.0091 1.0079 
86.4 0.99803 1.0072  1.0085 1.0072 
86.6 0.99824 1.0065  1.0080 1.0065 
86.8 0.99844 1.0059  1.0075 1.0059 
87 0.99863 1.0053  1.0071 1.0053 

87.2 0.99881 1.0047  1.0067 1.0047 
87.4 0.99897 1.0041  1.0064 1.0041 
87.6 0.99912 1.0036  1.0062 1.0036 
87.8 0.99926 1.0031 false min. 1.0060 1.0031 
88 0.99939 1.0026 for E1(k) 1.0060 1.0026 

88.2 0.99951 1.0021  1.0061 1.0021 
88.4 0.99961 1.0017   1.0017 
88.6 0.99970 1.0014   1.0014 
88.8 0.99978 1.0010   1.0011 
89 0.99985 1.0008   1.0008 

89.1 0.99988 1.0006   1.0006 
89.2 0.99990 1.0005   1.0005 
89.3 0.99993 1.0004   1.0004 
89.4 0.99995 1.0003   1.0003 
89.5 0.99996 1.0002   1.0003 
89.6 0.99998 1.0001 for θm  (89.6, 89.7) 1.0002 
89.7 0.99999 1.0001 E2(k) has a false min. 1.0002 
89.8 0.99999 1.0000   1.0003 
89.9 1.00000 1.0000   1.0007 
90 1.00000 1.0000 1.1781 1.1781 1.1781 

The values string in the last column is given by: 
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Expressing 1k (k):    1k= (1 – 2
1k )1/2 = 2(k)1/2/(1 + k), 

(ascending Landen transformation), and replacing it: 
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and then: E2(k) = (1 + k′)E1(k1) – k′K2(k), with K2(k) given just 
before table 5, getting the most accurate (seemingly intricate) 
formula, leading to a new accurate expression for ellipse’s peri-
meter (k ≠ 1; k′ ≠ 0). Similarly, the functions K0 – 2(k) (k, k′ = 2– 1/2) 
approximate the arc length of the entire Bernoulli’s lemniscate. 
Concluding, the 3rd set of formulas is given by the recurrences: 
K2(k) = 2K1(k1)/(1 + k); E2(k) = (1 + k′)E1(k1) – k′K2(k). 
Noting: 1k= x and [(1 + x)·x1/2]1/2 = y, one can write: 
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much simpler than previous ones (for calculation only). 
The validity of all approximate sets is limited to k  [0, kextr); kextr 
≤ 1, “extr” ≡ extremum (max. for K, and min. for E; kmax ≠ kmin) 
(see figs. 1 & 2 – the dashed black lines, and the solid red ones, 
resp.). The higher the “n” index is, the better the approximation 
is (the contact order at k = 0 is higher – hyperosculation, and 
the extrema are located closer to the range’s right end, k = 1). 
We will cancel the recurrent-iterative scheme (stopping it 
to a specific “n” index value) when the maximum relative 

error (over the whole valid domain of variation k  [0, 
kextr)) becomes lesser than the desired (required) accuracy. 
The first important application of the results obtained in chapter 4 
consists in determining the locations of the extrema values kextr (kmax 
for Kn – 1(k) and kmin for En – 1(k)), corresponding to the annulment 
of their first derivatives with respect to k, using the relations: 

    ,0E)(E ;0K)(K 1n1n1n1n   kdkdkkdkdk
and adding the recurrent definitions for Kn – 1(k) and En – 1(k). 
The 1st ODE above gives the value kmax and the 2nd 
one gives the value kmin. Each of these ODEs has really 
two solutions. Besides the searched for one, both ODEs 
admit the solution k = 0, corresponding to a minimum 
for Kn – 1(k) and to a maximum for En – 1(k), both with 
the value π/2 (for both approximate and exact functions: 
Kn – 1(0) = En – 1(0) = K(0) = E(0) = π/2,   with: 

maximum). a 0(0)E and 0(0)E
: whileminimum, a0(0)K and 0(0)K

:but with0),(0)E(0)K)0(E)0(K
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Thus one knows now the values kmax and kmin (the right 
ends of the validity domains of the approximate functions). 
Using the direct formulas here found for (K2, E2), the iterative 
scheme’s steps can be bypassed. In order to evaluate the 
accuracy of the 3rd set (K2, E2), similarly as for the previous 
two sets, (K0, E0) and (K1, E1), we define the relative errors: 
K2(k) = K2(k)/K(k) – 1,  and:  E2(k) = E2(k)/E(k) – 1, 
for the approximate formulas of 1st & 2nd kind integrals. 
Their values, expressed in thousandths (‰) are given in table 6. 
These errors were calculated for the 3rd set (K2, E2) only, with an 
increment of 0.2 in the field   [84, 89], and of 0.1 beyond 
89. To get table 6, in table 3 were suppressed the columns 
K0(‰), E0(‰) (the most inaccurate) and were inserted the 
columns K2(‰), E2(‰), keeping for comparison the columns 
“θ()”, “k = sin θ”, “K1(‰)” and “E1(‰)” (from table 3), only. 
 

Table 6. Relative errors  distribution (part one) 
(this table completes and replaces table 3;  ≥ 84.8) 
 () k = sin K1(‰) K2(‰) E1(‰) E2(‰)
84.8 0.99588 – 0.369 0 + 0.607 0 
85 0.99619 – 0.396 0 + 0.592 0 

85.2 0.99649 – 0.451 0 + 0.705 0 
85.4 0.99678 – 0.500 0 + 0.748 0 
85.6 0.99705 – 0.582 0 + 0.823 0 
85.8 0.99731 – 0.652 0 + 0.932 0 
86 0.99756 – 0.737 0 + 1.076 0 

86.2 0.99780 – 0.832 0 + 1.160 0 
86.4 0.99803 – 0.945 0 + 1.284 0 
86.6 0.99824 – 1.077 0 + 1.453 0 
86.8 0.99844 – 1.214 0 + 1.571 0 
87 0.99863 – 1.421 0 + 1.743 0 

87.2 0.99881 – 1.626 0 + 1.976 0 
87.4 0.99897 – 1.894 0 + 2.275 0 
87.6 0.99912 – 2.234 0 + 2.553 0 
87.8 0.99926 – 2.655 0 + 2.922 0 
88 0.99939 – 3.156 0 + 3.397 0 

88.2 0.99951 – 3.808 0 + 4.004 0 
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  Table 6. Relative errors  distribution (part two) 
88.4 0.99961 - 0 - 0 
88.6 0.99970 - 0 - 0 
88.8 0.99978 - 0 - 0 
89 0.99985 - 0 - 0 

89.1 0.99988 - 0 - 0 
89.2 0.99990 - 0 - 0 
89.3 0.99993 - 0 - 0 
89.4 0.99995 - 0 - 0 
89.5 0.99996 - – 0.033 - + 0.1 
89.6 0.99998 - – 0.047 - + 0.1 
89.7 0.99999 - – 0.075 - + 0.1 
89.8 0.99999 - – 0.170 - + 0.3 
89.9 1.00000 - – 0.452 - + 0.7 
90 1.00000 – 2000 – 2000 178.097 178.097 

The errors strings are stopped if their modulus is ≥ 4 ‰. 
From the tables 3 and 6 one can see that, for any nth set of 
approximation and at any k value, K < 0 (Kn < K) and E > 0 
(En > E), i.e. K is approximated by lack, while E – by excess. 
The “0” εK, E values mean “the first 4 decimal digits identical to 
those in tables [6]”. One can also build the 3rd set [K2(θ), E2(θ)], 
expressed in trigonometric functions, replacing k′ in [K2(k), 
E2(k)] set by cos θ and applying usual trigonometric identities. 
The comparative series representations and the graphic 
comparison are superfluous, due to the great accuracy of 
the approximate values given by the 3rd set (practically 
identical to the exact ones, which could be already noticed 
from the analysis of the 2nd set, this showing the fast 
converging character of this recurrent-iterative scheme). 
Except for the domain’s right end (k = 1), the 3rd set of 
approximation (K2, E2), even more accurate than the 2nd one 
(K1, E1), may be considered and successfully used instead of 
the exact values of K(k) and E(k) from mathematical tables. 
A false minimum takes place for all En(k): for E2(k), at 
θ = 89.7 (k = 0.99999); for E1(k), at θ = 88 (k = 0.99939), 
and for E0(k), at θ = 83.62 (k = 0.99381). The graphs of 
all En(k) pass through the point (1, 3π/8 = 1.178097); for k 
tending to unity, the graphs of all Kn(k) go toward (– ∞) – 
singularity; the higher nth sets (n ≥ 4) give better accuracy). 
Unlike the mathematical tables (and in addition to them), 
all approximation sets (the 1st, 2nd, 3rd and the higher nth (n 
≥ 4) ones) allow performing the analytic study of variation 
of the functions in which K(k) and / or E(k) appear /s, using 
the derivatives of the 1st and 2nd order (with respect to k). 
Remarks: 1. As a first step in applying the new recurrent-
iterative scheme, even the obtaining of the 2nd set (K1, E1) as a 
function of the 1st one (K0, E0) (in ch. 2) may be considered, 
i.e. this scheme starts really at the 2nd set. It is to be highlighted 
the used method is a purely analytic one (neither numerical 
methods nor sophisticated software, at most using MatLab’s 
(software package for engineers) “Symbolic Math” toolbox, 
for analytically solving the more intricate algebraic equations 
encountered). Its simplicity, accuracy and fast convergence, 
as well as its limitations depend exclusively on the correct 
choice of its starting point (approximation set) (K0, E0). It 
must be quite precise, and especially, as simple as possible. 

The starting approximate formula-definition giving E0(k) was 
suggested to the author by an old approximate formula (Peano, 
[20], [21]) for the perimeter L of an ellipse of semiaxes a and b (≤ a): 
L ≈ π[1.5(a + b) – (ab)1/2] – a good (& simple) approx. with the 
best accuracy for b = a (circle): L = 2πa, and the worst one for 
b = 0 (Ox’ segment): L = 1.5πa, instead of L = 4a (ε ≈ 17.81 %), or 
by Peano’s optimized law: L1 ≈ π[1.32(a + b) – 0.64(ab)1/2], with 
the smallest overall error [22] (about 7 times smaller than that 
of the original law); for b = a: L1 = L = 2πa, and for b = 0: L1 = 
1.32πa, much closer to the exact value L = 4a (ε ≈ 3.67 %). 
For its behaviour at low b/a ratios (is not tangent at k = 0 to 
the exact curve, cutting it), this formula is not found on the 
list of the very accurate (but not simple) approximations [22] 
(Padé, Jacobsen, Ramanujan (2 expressions), Rackauckas), all 
expressed in terms of a particular ratio: h = [(a – b)/(a + b)]2 ≡ k1

2. 
Thus a reliable approximate (by excess) formula-definition 
was obtained (see chapter 2) for the Legendre complete elliptic 
integral of the 2nd kind (in the 1st set of approximation): 
E0(k) = (π/4)[1.5(1 + k′) – (k′)0.5]; k′ = (1 – k2)0.5 = b/a; or: 
E01(k) = (π/4)[1.32(1 + k′) – 0.64(k′)0.5] (Peano’s optimized). 
If in the power series we stop at the ‘rank 5’ term (see ch. 4), the error 
is (3/214)k8 = (3/16384)k8, i.e. small enough (asymptotic expansion). 
As for the pair approximate formula-definition giving K0(k), 
this was obtained using the previous one for E0(k) and applying 
the definition of the first derivative of E(k) with respect to k: 
dE(k)/dk = [E(k) – K(k)]/k (see chapter 4), thus getting: 
K(k) = E(k) – k[dE(k)/dk]; replacing K(k) and E(k) by their 
1st approximations: K0(k) and the previously given E0(k), one 
gets: K0(k) = (π/8)[3/2(1 + 1/k′) – (k′)0.5(1 + 1/(k′)2], of a lesser 
accuracy (esp. for θ > π/3) than E0(k). To improve this, one 
uses a descending Landen transformation: K(k) = (1 + k1)K(k1) 
with k1 = (1 – k′)/(1 + k′) ≤ k, and replacing in K(k), one gets: 
K0(k) = π[1/(k′)0.5 – (1/21.5)(1 + k′)0.5/(k′)0.75] ≥ K0(k) (see ch. 2), 
of an accuracy (in modulus) much closer to that of its pair E0(k). 
Being practically generated by the same mathematical source, 
K0(k) and E0(k) vary (ordinates, slopes, asymptote, extrema, 
concavities, convexities, inflections) in perfectly correlated way. 
So, at the value kextr corresponding to a false minimum for E0(k), 
K0(k) must equate E0(k), to satisfy the annulment of dE0(k)/dk. 
To prepare this, K0(k) must stop its vertiginous ascension to ∞, 
making a false inflection, and then a false max. at kExtr < kextr, 
and a vertiginous (k = 1 – vertical asymptote) fall toward (– ∞); 
so K0 = E0 at k = 0 and k = kextr. But, due to its additional step 
(to have |K0| ≈ |E0|), K0 is not generated by the same mathema-
tical source as E0. To minimise the unwished events, limiting them 
to a getting thinner region for rising n (already 1/300 of the field 
[0, π/2] at n = 2) near k = 1, one applies the descending Landen 
transformation, passing from k to k1 ≤ k, where all goes well, also 
keeping all advantages of the asymptotic behaviour of the new 
functions (Kn, En), i.e. applying a higher nth (n ≥ 2) set (repeating 
this scheme until the desired accuracy for (Kn, En) is obtained; 
fortunately, this scheme is fast converging); though it keeps the 
limitation at k = 1, Peano’s optimized law accelerates the scheme. 
2. Besides the formulas for transforming the modulus using 
the descending Landen transformation, there are formulas using 
the ascending Landen transformation (not of interest here). 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2022.2.14 Richard Selescu

E-ISSN: 2769-2477 102 Volume 2, 2022



Appendix’ 1 conclusions 
Some authors (e.g.: Bagis – see [14]) choose to start from 
more precise formulas for the perimeter of an ellipse (simi-
lar to Ramanujan’s “type π formulas” (1914) – see [23]): 
LI = π{3(a + b) – [(a + 3b)(3a + b)]1/2} = π{3(a + b) – 
– [10ab + 3(a2 + b2)]1/2} – Ramanujan 1st approximation; 
LII = π(a + b){1 + 3h/[10 + (4 – 3h)1/2]}; h = [(a – b)/(a + b)]2 ≡ k1

2 
– the more famous Ramanujan 2nd approximation; the errors 
in these empirical relations are of order h3 and h5 (both are 
very accurate, but not as simple as possible), in order to get 
approximate formulas as accurate as possible for Legendre’s 
complete elliptic integrals. In [14], instead of ‘π’ from 
Ramanujan’s formulas, appears the constant Γ2(1/4)/π3/2 
(the length of the entire Bernoulli’s lemniscate is: LB = 23/2aK(2– 1/2) 
= [Γ2(1/4)/(2π)1/2]a; a = 21/2c – the half-width; c – focal coord.). 
We cite from [22]: “What makes Ramanujan’s first formula 
interesting to this Author is the fact that, like the first form of 
Peano’s approximation, it can be interpreted as a combination 
of the arithmetic mean with another one, denoted as R(a, b, w) 
and defined by: R(a, b, w) = [(a + wb)(b + wa)]1/2/(1 + w). 
In Ramanujan’s formula we have w = 3 and the two means are 
combined linearly with the relative weights + 3 and – 2, resp.” 
Although it seems to conflict with the beginning of its remark 
1, this appendix demonstrates that even choosing as a starting 
point a “not so precise” (with big problems at the domain’s 
right end, k = 1), but especially simple formula (like Peano’s 
one, or better, Peano’s optimized one), and applying the 
fast converging recurrent-iterative scheme (including the 
descending Landen transformation, to solve the unwished 
behaviour of En(k) appeared near k = 1, due to any of Peano’s 
approximate laws – method’s major limitation (see the 2nd 
part of remark 1)), similar results (from the viewpoint of their 
accuracy) for Legendre’s complete elliptic integrals [K(k), 
E(k)] (with very small values of the relative errors (εK, εE) 
– practically zero) can be obtained already beginning even 
with the 3rd set of approximation (K2, E2) – see tables 4 – 6. 
As regards the relations describing the recurrence, they are: 
Kn(k) = [2/(1 + k′)]Kn – 1(k1), and: 
En(k) = (1 + k′)En – 1(k1) – [2k′/(1 + k′)]Kn – 1(k1), resp., 
with k1 = (1 – k′)/(1 + k′) ≤ k, this representing even the source 
of the descending Landen transformation; they express the 
values of the (n + 1)th set in function of those of the nth one. 
The recurrent-iterative scheme has two advantages over the 
interpolation, regression and spline methods: 1. does not require 
the points’ coordinates; 2. its accuracy can be improved no 
matter how much. To bypass it, the here found direct formulas 
for (K2, E2) can be applied; (for practical applications, the 3rd set 
is accurate enough; it can be used until θ = 89.7; k = 0.99999; 
see tables 4 – 6). E1, 2(k) lead also to better expressions for 
ellipse’s perimeter than E0(k) (the original Peano’s one). 
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Appendix 2 – Approximating the integral Π(n, k) 
Using the previously given theoretical results (consisting of 
high-accuracy simple closed purely algebraic functions found 
by applying our scheme of approximation as desired for the 
integrals K(k) and E(k)) and the expressions established for 
the partial derivatives of the complete elliptic integral of the 
3rd kind, Π(n, k) (introduced by Legendre, in canonical form: 
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being sometimes defined with an inverse sign for n: 
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with respect to n (characteristic; n can take on any value), 
and to k (modulus; k  [0, 1]) with k2 = m (parameter), resp. 
– a system of two linear PDEs of the first order (https://en. 
wikipedia.org/wiki/Elliptic_integral#Partial_derivatives): 
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(so that: dΠ(n, k) = [∂Π(n, k)/∂n]dn + [∂Π(n, k)/∂k]dk) 
in canonical form, both expressed through K(k), E(k) and 
Π(n, k), with the unknown function Π(n, k). (The above 
definition of Π(n, k) has two remarkable particular cases: 
Π(0, k) ≡ K(k), and Π(k2, k) ≡ E(k)/(1 – k2) – see [7]. 
In the 1st PDE K(k) and E(k) are considered constants. 
Just like the other two complete elliptic integrals, (K(k) and 
E(k)), Π(n, k) can be computed very efficiently using the 
arithmetic-geometric mean AGM – see [24] – [27]); 
for the 2nd equation of the system above also see [24], 
§ 19.4(i) Derivatives, Eq. 19.4.4 (https://dlmf.nist.gov/19). 
One can solve (integrate, preferably analytically) this system, 
expecting to find for Π(n, k) similar closed analytic approxi-
mate functions, of a similar order of precision to the purely 
algebraic (differentiable and integrable) ones found for K(k) 
and E(k). In the first solving step K and E are kept in symbolic 
form (not expressed wrt k), then our approximations are used. 
The indefinite integral of Π(n, k) wrt k (a “partial” integral) 
can also be expressed through K(k), E(k) and Π(n, k): 
∫Π(n, k)dk = 2[E(k) – K(k) + (k – n)Π(n, k)] (https://functions. 
wolfram.com/EllipticIntegrals/EllipticPi/introductions/ 
CompleteEllipticIntegrals/ShowAll.html; here is also 
the relationship of Π(n, k) with F(φ, k) and E(φ, k) – 
the incomplete elliptic integrals of the 1st and 2nd kind; 
see sect. “Connections within the group of complete 
elliptic integrals and with other function groups”, sub-s 
“Representations through more general functions”). 
Besides the here given Legendre normal form, the elliptic 
integrals can also be expressed in Carlson symmetric form. 
For other computation method and for tables see [28] – [30]. 
In ([29], [30]) all three elliptic integrals K, E, Π are computed. 
The effective determining of the approximate formulas for 
Π(n, k) (Π0 – 2) will form the object of a future research work. 
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