Reccurent-Iterative Scheme to approximate as Desired the Complete Elliptic Integrals

RICHARD SELESCU

"Elie Carafoli" National Institute for Aerospace Research – INCAS (under the Aegis of the Romanian Academy) Bucharest, Sector 6, Bd. Iuliu Maniu, No. 220, Code 061126 ROMANIA

Abstract. Two sets of closed *analytic* formulas are proposed for the approximate calculus of the complete elliptic integrals K(k) and E(k) in the normal form due to Legendre, their expressions having a remarkable simplicity and accuracy. The special usefulness of the newly proposed formulas consists in they allow performing the *analytic study of variation* of the functions in which they appear, *using derivatives*, being expressed *in terms of elementary (especially algebraic) functions only, without any special function (this would mean replacing one difficulty by another of the same kind).* Comparative tables of so found approximate values with the exact ones, reproduced from special functions tables, are given (wrt the elliptic integrals' modulus k). The first set of formulas was suggested by *Peano's law on ellipse's perimeter. The new functions and their derivatives coincide with the exact ones at* k = 0 *only.* As for simplicity, *the formulas in* k / k' *don't need mathematical tables nor advanced calculators*, being purely algebraic. As for accuracy, *the second set, something more intricate, gives more accurate values and extends more closely to* k = 1. An *original fast converging recurrent-iterative scheme* to get sets of formulas *a method to approximate the complete elliptic integral* $\Pi(n, k)$ is given in appendix 2. *Key-Words:* elliptic integrals' moduli k, k'; special functions tables with Legendre's complete elliptic integrals; Peano's approximate law for the perimeter of an ellipse of low eccentricity k; descending and ascending Landen's transformations approximate set of an ellipse of low eccentricity k; descending and ascending Landen's transformations Received: October 21, 2021. Revised: October 17, 2022. Accepted: November 25, 2022. Published: December 8, 2022.

1 Elliptic integrals – occurrences, definitions

There are many interesting domains in pure and applied mathematics where appear both (or, often, only one) complete elliptic integrals of the 1st and 2nd kind in the normal form due to Legendre. The arc length of a Bernoulli's lemniscate, as well as the period of oscillations in a vacuum of the simple pendulum, in the dynamics of a constrained heavy particle, are given by a complete elliptic integral of the 1st kind. The perimeter of an ellipse, as well as the lift coefficient of a thin delta wing with subsonic leading edges, in supersonic aerodynamics (small perturbations theory), are given by a complete elliptic integral of the 2nd kind. In electromagnetic theory, the electric and magnetic fields from a circular coil can be expressed using the complete elliptic integrals. The relations below define the integrals of the $\begin{aligned} & \text{I}^{\text{st}} \text{ and } 2^{\text{nd}} \text{ kind, in } canonical \text{ form, } \mathbf{K}(k) \text{ and } \mathbf{E}(k), \text{ respectively:} \\ & \mathbf{K}(k) = \int_{0}^{\pi/2} (1 - k^2 \sin^2 \varphi)^{-1/2} d\varphi = \int_{0}^{1} [(1 - t^2)(1 - k^2 t^2)]^{-1/2} dt; \\ & \mathbf{E}(k) = \int_{0}^{0} (1 - k^2 \sin^2 \varphi)^{1/2} d\varphi = \int_{0}^{1} [(1 - t^2)(1 - k^2 t^2)]^{1/2} dt; \end{aligned}$ $k = \sin\theta \ge 0$ is called *modulus*. K(k), E(k) are typical *elliptic* integrals. They do not admit primitive functions (cannot be expressed in terms of elementary functions), being calculated by expanding the integrands into series, integrating term-by-term, and presented wrt $k \in [0, 1]$, or wrt $\theta \in [0, \pi/2]$, in some mathematical tables [1] - [6]. Other examples of such kind of integrals are: Si(x); Ci(x); Ei(x); Ii(x). Modern mathematics defines an elliptic integral as any function fwhich can be expressed in the form $f(x) = \int_{C}^{x} R[t, P(t)^{1/2}] dt$, R is a rational function of its two arguments; P is a polynomial of degree 3 or 4 with no repeated roots; c is a constant. The values given in some special tables allow performing the calculus for a given case (point), but not the analytic study of variation of the

functions in which these integrals appear, using the derivatives. Further *two sets* (0; 1) *of closed analytic formulas* to approximate K(k) and E(k) in both algebraic and trigonometric form are given. A *fast converging recurrent-iterative scheme* to get sets of formulas with a desired high accuracy is given in appendix 1. We use *an original purely analytic method* (not some numerical, or sophisticated computer programs, like most authors). There also is a Legendre complete elliptic integral of the 3rd kind. With an appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the *three Legendre canonical forms* (of the 1st, 2rd & 3rd kind).

2 The two sets of newly proposed formulas

The complementary modulus is $k' = (1 - k^2)^{1/2} = \cos \theta \ge 0$. The $E_0(k)$ formula in the 1st set (K_0 , E_0) is Peano's law on the perimeter of an ellipse of low eccentricity k; a, b – semiaxes; k' = b/a.

$$\begin{split} \mathbf{K}_{0}(k) &= \frac{\pi}{\sqrt[4]{1-k^{2}}} \left(1 - \frac{1}{2\sqrt{2}} \sqrt{\frac{1+\sqrt{1-k^{2}}}{\sqrt[4]{1-k^{2}}}} \right) = \pi \left(\frac{1}{\sqrt{k'}} - \frac{1}{2\sqrt{2}} \frac{\sqrt{1+k'}}{k'^{3/4}} \right), \\ \mathbf{K}_{0}(\theta) &= \frac{\pi}{\cos^{3/2}\theta} \left[1 - \frac{1}{2} \frac{\cos(\theta/2)}{\cos^{3/4}\theta} \right] = \pi \left[\frac{1}{\cos^{3/2}\theta} - \frac{1}{2} \frac{\cos(\theta/2)}{\cos^{3/4}\theta} \right]. \\ \mathbf{E}_{0}(k) &= \frac{\pi}{4} \sqrt{1-k^{2}} \left(\frac{3}{2} \frac{1+\sqrt{1-k^{2}}}{\sqrt{1-k^{2}}} - 1 \right) = \frac{\pi}{4} \left[\frac{3}{2} (1+k') - \sqrt{k'} \right], \\ \mathbf{E}_{0}(\theta) &= \frac{\pi}{4} \cos^{3/2}\theta \left[3 \frac{\cos^{2}(\theta/2)}{\cos^{3/2}\theta} - 1 \right] = \frac{\pi}{4} \left(3 \cos^{2}\frac{\theta}{2} - \sqrt{\cos\theta} \right). \end{split}$$

Similarly, for the 2^{nd} set (K_1, E_1) we proposed the formulas:

$$\begin{split} \mathbf{K}_{1}(k) &= \frac{\pi\sqrt{2}}{\sqrt{(1+k')\sqrt{k'}}} \left(1 - \frac{\sqrt[4]{2}}{4} \frac{1+\sqrt{k'}}{\sqrt[4]{(1+k')\sqrt{k'}}} \right), \\ \mathbf{K}_{1}(\theta) &= \frac{\pi}{\cos(\theta/2)\cos^{1/4}\theta} \left[1 - \frac{1}{4} \frac{1+\cos^{1/2}\theta}{\cos^{1/2}(\theta/2)\cos^{1/8}\theta} \right]. \\ \mathbf{E}_{1}(k) &= \frac{\pi}{4} \left[\frac{3}{2} (1+\sqrt{k'})^{2} - \sqrt{2}\sqrt{1+k'}\sqrt[4]{k'} \right] - k' \cdot \mathbf{K}_{1}(k), \\ \mathbf{E}_{1}(\theta) &= \frac{\pi}{4} \left[\frac{3}{2} (1+\sqrt{\cos\theta})^{2} - 2\cos\frac{\theta}{2}\sqrt[4]{\cos\theta} \right] - \cos\theta \cdot \mathbf{K}_{1}(\theta). \end{split}$$

A 3^{rd} set (K₂, E₂), more accurate than the previous two, can be built (a recurrent-iterative scheme in appendix 1); all set definitions are boxed. Table 1. Values of the functions K (part one)

1 a01	ic i. values	of the func	nons k (pai	t one)	55	0.77004	1.))2/
$\theta(^{\circ})$	$k = \sin \theta$	K(<i>k</i>)	$K_0(k)$	$K_1(k)$	54	0.80902	2.0133
0	0.00000	1.5708	1.5708	1.5708	55	0.81915	2.0347
1	0.01745	1.5709	1.5709	1.5709	56	0.82904	2.0571
2	0.03490	1.5713	1.5713	1.5713	57	0.83867	2.0804
3	0.05234	1.5719	1.5719	1.5719	58	0.84805	2.1047
4	0.06976	1.5727	1.5727	1.5727	59	0.85717	2.1300
5	0.08716	1.5738	1.5738	1.5738	60	0.86603	2.1565
6	0.10453	1.5751	1.5751	1.5751	61	0.87462	2.1842
7	0.12187	1.5767	1.5767	1.5767	62	0.88295	2.2132
8	0.13917	1.5785	1.5785	1.5785	63	0.89101	2.2435
9	0.15643	1.5805	1.5805	1.5805	64	0.89879	2.2754
10	0.17365	1.5828	1.5828	1.5828	65	0.90631	2.3088
11	0.19081	1.5854	1.5854	1.5854	66	0.91355	2.3439
12	0.20791	1.5882	1.5882	1.5882	67	0.92050	2.3809
13	0.22495	1.5913	1.5913	1.5913	68	0.92718	2.4198
14	0.24192	1.5946	1.5946	1.5946	69	0.93358	2.4610
15	0.25882	1.5981	1.5981	1.5981	70	0.93969	2.5046
16	0.27564	1.6020	1.6020	1.6020	70.5	0.94264	2.5273
17	0.29237	1.6061	1.6061	1.6061	71	0.94552	2.5507
18	0.30902	1.6105	1.6105	1.6105	71.5	0.94832	2.5749
19	0.32557	1.6151	1.6151	1.6151	72	0.95106	2.5998
20	0.34202	1.6200	1.6200	1.6200	72.5	0.95372	2.6256
21	0.35837	1.6252	1.6252	1.6252	73	0.95630	2.6521
22	0.37461	1.6307	1.6307	1.6307	73.5	0.95882	2.6796
23	0.39073	1.6365	1.6365	1.6365	74	0.96126	2.7081
24	0.40674	1.6426	1.6426	1.6426	74.5	0.96363	2.7375
25	0.42262	1.6490	1.6490	1.6490	75	0.96593	2.7681
26	0.43837	1.6557	1.6557	1.6557	75.5	0.96815	2.7998
27	0.45399	1.6627	1.6627	1.6627	76	0.97030	2.8327
28	0.46947	1.6701	1.6701	1.6701	76.5	0.97237	2.8669
29	0.48481	1.6777	1.6777	1.6777	77	0.97437	2.9026
30	0.50000	1.6858	1.6857	1.6858	77.5	0.97630	2.9397
31	0.51504	1.6941	1.6941	1.6941	78	0.97815	2.9786
32	0.52992	1.7028	1.7028	1.7028	78.5	0.97992	3.0192
33	0.54464	1.7119	1.7119	1.7119	79	0.98163	3.0617
34	0.55919	1.7214	1.7214	1.7214	79.5	0.98325	3.1064
35	0.57358	1.7312	1.7312	1.7312	80	0.98481	3.1534
36	0.58779	1.7415	1.7415	1.7415	80.2	0.98541	3.1729
37	0.60182	1.7522	1.7522	1.7522	80.4	0.98600	3.1928
38	0.61566	1.7633	1.7632	1.7633	80.6	0.98657	3.2132
39	0.62932	1.7748	1.7748	1.7748	80.8	0.98714	3.2340
40	0.64279	1.7868	1.7867	1.7868	81	0.98769	3.2553

41	0.65606	1.7992	1.7992	1.7992
42	0.66913	1.8122	1.8121	1.8122
43	0.68200	1.8256	1.8256	1.8256
44	0.69466	1.8396	1.8395	1.8396
45	0.70711	1.8541	1.8540	1.8541
46	0.71934	1.8691	1.8691	1.8691
47	0.73135	1.8848	1.8847	1.8848
48	0.74314	1.9011	1.9009	1.9011
49	0.75471	1.9180	1.9178	1.9180
50	0.76604	1.9356	1.9354	1.9356
51	0.77715	1.9539	1.9536	1.9539
52	0.78801	1.9729	1.9726	1.9729
53	0.79864	1.9927	1.9923	1.9927
54	0.80902	2.0133	2.0128	2.0133
55	0.81915	2.0347	2.0341	2.0347
56	0.82904	2.0571	2.0564	2.0571
57	0.83867	2.0804	2.0795	2.0804
58	0.84805	2.1047	2.1037	2.1047
59	0.85717	2.1300	2.1288	2.1300
60	0.86603	2.1565	2.1551	2.1565
61	0.87462	2.1842	2.1825	2.1842
62	0.88295	2.2132	2.2111	2.2132
63	0.89101	2.2435	2.2410	2.2435
64	0.89879	2.2754	2.2723	2.2754
65	0.90631	2.3088	2.3051	2.3088
66	0.91355	2.3439	2.3394	2.3439
67	0.92050	2.3809	2.3754	2.3809
68	0.92718	2.4198	2.4132	2.4198
69	0.93358	2.4610	2.4530	2.4610
70	0.93969	2.5046	2.4948	2.5045
70.5	0.94264	2.5273	2.5165	2.5273
71	0.94552	2.5507	2.5389	2.5507
71.5	0.94832	2.5749		2.5749
72	0.95106	2.5998		2.5998
72.5	0.95372	2.6256		2.6255
73	0.95630	2.6521		2.6521
73.5	0.95882	2.6796		2.6796
74	0.96126	2.7081		2.7081
74.5	0.96363	2.7375		2.7375
75	0.96593	2.7681		2.7680
75.5	0.96815	2.7998		2.7997
76	0.97030	2.8327		2.8326
76.5	0.97237	2.8669		2.8669
77	0.97437	2.9026		2.9025
77.5	0.97630	2.9397		2.9397
78	0.97815	2.9786		2.9785
/8.5	0.97992	3.0192		3.0191
79	0.98163	3.0617		3.0616
/9.5	0.98325	3.1064		3.1063
80	0.98481	3.1534		3.1533
80.2	0.98541	3.1/29		5.1/2/
ðU.4	0.98600	5.1928		5.1927
80.0	0.9863/	3.2132		3.2130

3.2338

3.2551

Tab	ole 1. Values	s of the func	ctions K (part two)	chapter	(3) for being s	till accepted	in the usual m	athematical /
81.2	0.98823	3.2771	3.2769	technic	al calculus. Th	e same proce	dure will be a	oplied in case
81.4	0.98876	3.2995	3.2992	of the r	next table (no.	2), for the sa	ime reason, co	incerning the
81.6	0.98927	3.3223	3.3221	accura	cy of the value	s given by e	ach of the othe	er two closed
81.8	0.98978	3.3458	3.3455	analyti	c formulas pi	coposed for	the approxin	nation of the
82	0.99027	3.3699	3.3696	Legen	tre complete e	lliptic integr	al of the 2 nd ki	nd $E(k)$. The
82.2	0.99075	3.3946	3.3942	accurac	x analysis of th	ne two sets of	formulas will	be performed
82.4	0.99122	3.4199	3.4196	in the n	ext chapter (no.	3). In chapter	4 some series r	epresentations
82.6	0.99167	3.4460	3.4456	for the	exact function	ns and for b	oth sets of ap	proximation
82.8	0.99211	3.4728	3.4724	as well	as for their fi	rst order deri	vatives, will h	e given. For
83	0 99255	3 5004	3 4999	(K _{0.1} F	E ₀₁) behaviour	in the domain	n's right side se	e appendix 1
83.2	0 99297	3 5288	3 5283	τε Τε	able 2 Value	s of the fu	nctions E (pa	art one)
83.4	0.99337	3.5581	3.5575	$\theta(^{\circ})$	$k = \sin \theta$	E(k)	$E_0(k)$	$E_1(k)$
83.6	0 99377	3 5884	3 5877		0 00000	1 5708	1.5708	1 5708
83.8	0.99415	3 6196	3 6188	1	0.00000	1.5700	1.5700	1.5703
84	0.99452	3 6519	3 6510	2	0.03/00	1.5707	1.5707	1.5707
84 2	0.99488	3 6852	3 6843	2	0.05734	1.5705	1.5705	1.5705
84 A	0.99523	3 7198	3 7187	5	0.05254	1.5690	1.5690	1.5690
84.6	0.99556	3 7557	3 7545	4	0.00970	1.5009	1.5009	1.5009
84.0 84.8	0.99550	3 7030	3 7016	5	0.08/10	1.30/8	1.3078	1.3078
04.0 95	0.99588	3.7930	2 8202	07	0.10433	1.3003	1.5005	1.3003
03 05 7	0.99019	2 9721	3.8502 2.8704	/	0.12187	1.5049	1.5649	1.5049
0 <i>3.2</i> 05 1	0.99049	3.0/21	2.0122	8	0.13917	1.5052	1.5052	1.5052
83.4 95.6	0.99078	2.0592	3.9122	9	0.15643	1.5011	1.5611	1.5611
83.0 95.9	0.99705	3.9383	3.9300	10	0.1/365	1.5589	1.5589	1.5589
85.8	0.99731	4.0044	4.0018	11	0.19081	1.5564	1.5564	1.5564
86	0.99/56	4.0528	4.0498	12	0.20791	1.5537	1.5537	1.5537
86.2	0.99780	4.103/	4.1003	13	0.22495	1.5507	1.5507	1.5507
86.4	0.99803	4.15/4	4.1535	14	0.24192	1.5476	1.5476	1.5476
86.6	0.99824	4.2142	4.2097	15	0.25882	1.5442	1.5442	1.5442
86.8	0.99844	4.2744	4.2692	16	0.27564	1.5405	1.5405	1.5405
87	0.99863	4.3387	4.3325	17	0.29237	1.5367	1.5367	1.5367
87.2	0.99881	4.4073	4.4001	18	0.30902	1.5326	1.5326	1.5326
87.4	0.99897	4.4811	4.4726	19	0.32557	1.5283	1.5283	1.5283
87.6	0.99912	4.5609	4.5507	20	0.34202	1.5238	1.5238	1.5238
87.8	0.99926	4.6477	4.6354	21	0.35837	1.5191	1.5191	1.5191
88	0.99939	4.7427	4.7277	22	0.37461	1.5141	1.5141	1.5141
88.2	0.99951	4.8478	4.8293	23	0.39073	1.5090	1.5090	1.5090
88.4	0.99961	4.9654		24	0.40674	1.5037	1.5037	1.5037
88.6	0.99970	5.0988		25	0.42262	1.4981	1.4981	1.4981
88.8	0.99978	5.2527		26	0.43837	1.4924	1.4924	1.4924
89	0.99985	5.4349		27	0.45399	1.4864	1.4864	1.4864
89.1	0.99988	5.5402		28	0.46947	1.4803	1.4803	1.4803
89.2	0.99990	5.6579		29	0.48481	1.4740	1.4740	1.4740
89.3	0.99993	5.7914		30	0.50000	1.4675	1.4675	1.4675
89.4	0.99995	5.9455		31	0.51504	1.4608	1.4608	1.4608
89.5	0.99996	6.1278		32	0.52992	1.4539	1.4539	1.4539
89.6	0.99998	6.3509		33	0.54464	1.4469	1.4469	1.4469
89.7	0.99999	6.6385		34	0.55919	1.4397	1.4397	1.4397
89.8	0.99999	7.0440		35	0.57358	1.4323	1.4323	1.4323
89.9	1.00000	7.7371		36	0.58779	1.4248	1.4248	1.4248
90	1.00000	∞	$-\infty$ $-\infty$	37	0.60182	1.4171	1.4171	1.4171
The value	s strings in the l	last two colum	ns of table 1 were canceled	38	0.61566	1.4092	1.4093	1.4092
							-	

The values strings in the last two columns of table 1 were canceled when each of the two closed analytic formulas proposed for the approximation of the Legendre complete elliptic integral of the 1st kind K(k) gives too great relative errors ($|\varepsilon_K| \ge 4\%$ – also see

1.4013

1.3931

1.3849

1.4013

1.3932

1.3849

39

40

41

0.62932

0.64279

0.65606

1.4013

1.3931

1.3849

Tal	ble 2. Value	s of the fun	ctions E (par	rt two)	81.2	0.98823	1.0326		1.0327	
42	0.66913	1.3765	1.3765	1.3765	81.4	0.98876	1.0314		1.0315	
43	0.68200	1.3680	1.3680	1.3680	81.6	0.98927	1.0302		1.0303	
44	0.69466	1.3594	1.3594	1.3594	81.8	0.98978	1.0290		1.0292	
45	0.70711	1.3506	1.3507	1.3506	82	0.99027	1.0278		1.0280	
46	0.71934	1.3418	1.3419	1.3418	82.2	0.99075	1.0267		1.0269	
47	0.73135	1.3329	1.3330	1.3329	82.4	0.99122	1.0256		1.0258	
48	0.74314	1.3238	1.3239	1.3238	82.6	0.99167	1.0245		1.0247	
49	0.75471	1.3147	1.3148	1.3147	82.8	0.99211	1.0234		1.0236	
50	0.76604	1.3055	1.3057	1.3055	83	0.99255	1.0223		1.0226	
51	0.77715	1.2963	1.2964	1.2963	83.2	0.99297	1.0213		1.0215	
52	0 78801	1 2870	1 2872	1 2870	83.4	0.99337	1.0202		1.0205	
53	0 79864	1 2776	1 2778	1 2776	83.6	0.99377	1.0192	false min.	1.0196	
54	0 80902	1 2681	1 2684	1 2681	83.8	0 99415	1 0182		1 0186	
55	0.81915	1 2587	1 2590	1 2587	84	0 99452	1 0172		1 0176	
56	0.82904	1 2492	1 2496	1 2492	84.2	0 99488	1 0163		1 0167	
57	0.83867	1 2397	1 2401	1 2397	84 4	0.99523	1.0153		1 0158	
58	0.84805	1 2301	1 2307	1 2301	84.6	0 99556	1 0144		1 0150	
59	0.85717	1 2206	1 2212	1 2206	84.8	0.99588	1 0135		1 0141	
60	0.86603	1.2200	1 2118	1 2111	85	0.99619	1.0127		1.0133	
61	0.87462	1 2015	1 2024	1 2015	85.2	0.99649	1.0127		1.0125	
62	0.88295	1.2013	1 1 9 3 0	1 1920	85.4	0.99678	1.0110		1.0123	
63	0.80275	1.1920	1 1 1 2 3 8	1.1920	85.6	0.99705	1.0110		1.0110	
6 <i>1</i>	0.89870	1.1020	1.1745	1.1020	85.8	0.99731	1.0102		1.0103	
65	0.09679	1.1752	1.1745	1.1732	86	0.99756	1.0094		1.0103	
66	0.90051	1.1038	1.1054	1.1038	86.2	0.00780	1.0000		1.0007	
67	0.91555	1.1343	1.1304	1.1343	86.4	0.00803	1.0072		1.0091	
68	0.92030	1.1455	1.1475	1.1455	86.6	0.99803	1.0072		1.0085	
60	0.92718	1.1302	1.1307	1.1302	86.8	0.99824	1.0005		1.0030	
70	0.93358	1.1272	1.1301	1.1273	87	0.00863	1.0053		1.0073	
70 5	0.93909	1.1104	1.1217	1.1104	877	0.00881	1.0033		1.0071	
70.5	0.94204	1.1140	1.1170	1.1140	87.2 87.4	0.00807	1.0047		1.0067	
715	0.94332	1.1090	1.1155	1.1050	87.4 87.6	0.99897	1.0041		1.0004	
71.5	0.94632	1.1055		1.1055	87.0	0.99912	1.0030	fakamin	1.0002	
72 5	0.95100	1.1011		1.1011	07.0 QQ	0.99920	1.0031	for $\Gamma(l)$	1.0000	
72.5	0.95572	1.0908		1.0908	00	0.99959	1.0020	IOI $E_1(k)$	1.0000	
725	0.95050	1.0927		1.0927	88.2	0.999951	1.0021		1.0061	
73.5 74	0.95882	1.0803		1.0885	88.4	0.99901	1.001/			
7/5	0.90120	1.0844		1.0804	88.0	0.999/0	1.0014			
75	0.90505	1.0004		1.0304	88.8	0.999/8	1.0010			
75 5	0.90393	1.0704		1.0704	89	0.99985	1.0008			
76	0.90813	1.0725		1.0725	89.1	0.99988	1.0006			
76.5	0.97030	1.0000		1.0080	89.2	0.99990	1.0005			
70.5 77	0.97237	1.0040		1.0048	89.3	0.99993	1.0004			
יי דר	0.97437	1.0011		1.0011	89.4	0.99995	1.0003			
70	0.97030	1.0574		1.0574	89.5	0.99996	1.0002			
10	0.97813	1.0556		1.0558	89.6	0.99998	1.0001			
70.5	0.97992	1.0302		1.0303	89.7	0.999999	1.0001			
עו 70 5	0.20103	1.0408		1.0408	89.8	0.99999	1.0000			
17.3	0.90323	1.0434		1.0433	89.9	1.00000	1.0000	1 1701	1 1701	
00 00 0	U.70401 0 00511	1.0401		1.0402	90	1.00000	1.0000	1.1/81	1.1/81	
00.2 20.4	0.90341	1.0368		1.0389	$At\theta = 0$	$\cos^{-}(1/9) = 83$	$.02063^{\circ}, E_0(k$	$\pi/3 = 1.04$	12 - talse min	
0U.4	0.98000	1.03/3		1.03/0	In the co	mparative tabl	es I and 2, the	4D (tour deci	mai digit) exac	t 1
00.0	0.9803/	1.0303		1.0304	values o	1 both Legend	are complete	elliptic integra	als reproduced	1
0U.0	0.98/14	1.0330		1.0351	trom spe	cial functions t	ables $[6]$ (tab.	29, p. 11 /), as	well as their $4L$) 1
81	0.98/69	1.0338		1.0339	approxii	nate values of	stained by ap	plying the two	o sets of closed	1

analytic formulas were given (all wrt the respective elliptic integrals' modulus $k = \sin \theta$). It is to be noticed that both sets of approximate formulas are not given by spline or regression functions, but by asymptotic expressions, these ones having a remarkable simplicity (see, e.g.: the 2rd form of E₀(k), suggested by Peano's law on ellipse's perimeter, *all newly found formulas in k / k' do not need any mathematical table*, being purely algebraic) and accuracy (see table 3). The identity with the exact functions is satisfied for the domain's left end k=0 ($\theta=0^\circ$). The 2rd set (K₁, E₁), although a bit more intricate, gives more accurate values than the 1st one (K₀, E₀) and arrives more closely to the domain's right end k=1 ($\theta=90^\circ$).

3 The accuracy of the two sets of formulas

Let us define the following relative error functions: $\varepsilon_{K_0}(k) = K_0(k)/K(k) - 1; \quad \varepsilon_{K_1}(k) = K_1(k)/K(k) - 1, \quad \varepsilon_{E_0}(k) = E_0(k)/E(k) - 1; \quad \varepsilon_{E_1}(k) = E_1(k)/E(k) - 1, \quad \text{for both sets of approximation of the 1st and 2nd kind integrals, resp. Their values are given in table 3, expressed in thousandths (‰). These errors were calculated for the 1st set (K_0, E_0) only in the field <math>\theta \in [54^\circ, 71^\circ]$ of the domain, with an increment of 1°, while for the 2nd set (K_1, E_1) only in the field $\theta \in [84^\circ.8, 88^\circ.2]$, with an increment of 0°.2, like in tables 1 & 2.

Table 3. Relative errors ε distribution

$\theta(^{\circ})$	$k = \sin \theta$	$\epsilon_{K_0}(\%)$	$\epsilon_{K_1}(\%)$	$\epsilon_{E_0}(\%)$	$\epsilon_{E_1}(\infty)$
54	0.80902	-0.250		+ 0.255	
55	0.81915	-0.272		+0.243	
56	0.82904	-0.353		+0.293	
57	0.83867	-0.420		+0.334	
58	0.84805	-0.497		+0.454	
59	0.85717	-0.558		+0.502	
60	0.86603	-0.669		+0.566	
61	0.87462	-0.799		+0.742	
62	0.88295	-0.961		+0.874	
63	0.89101	-1.118		+0.973	
64	0.89879	- 1.366		+1.135	
65	0.90631	- 1.619		+1.377	
66	0.91355	- 1.918		+1.627	
67	0.92050	-2.299		+1.900	
68	0.92718	-2.709		+2.215	
69	0.93358	-3.253		+2.573	
70	0.93969	-3.907		+2.959	
71	0.94552	-4.642		+3.525	
		-		-	
84.8	0.99588	-	-0.369	-	+0.607
85	0.99619	-	-0.396	-	+0.592
85.2	0.99649	-	-0.451	-	+0.705
85.4	0.99678	-	-0.500	-	+0.748
85.6	0.99705	-	-0.582	-	+0.823
85.8	0.99731	-	-0.652	-	+0.932
86	0.99756	-	-0.737	-	+1.076
86.2	0.99780	-	-0.832	-	+1.160
86.4	0.99803	-	-0.945	-	+1.284
86.6	0.99824	-	-1.077	-	+1.453

86.8	0.99844	-	-1.214	-	+1.571
87	0.99863	-	-1.421	-	+1.743
87.2	0.99881	-	- 1.626	-	+1.976
87.4	0.99897	-	- 1.894	-	+2.275
87.6	0.99912	-	-2.234	-	+2.553
87.8	0.99926	-	-2.655	-	+2.922
88	0.99939	-	-3.156	-	+3.397
88.2	0.99951	-	-3.808	-	+4.004

The relative errors strings are stopped for values $|\varepsilon| \ge 4$ ‰. One can see that both sets given in chapter 2 have a much lesser relative error for K(*k*) than the well-known asymptotic expression: K(*k*) $\approx \pi/2 + (\pi/8)[k^2/(1-k^2)] - (\pi/16)[k^4/(1-k^4)]$, with a relative precision of $3 \cdot 10^{-4}$ for k < 0.5 ($\theta < 30^\circ$), only.

4 Series representations (functions and their derivatives); Legendre's functional relation Expanding into power series, one obtains for the complete

elliptic integrals the set of representations below ([5] - [7]):

$$K(k) = \frac{\pi}{2} \left(1 + \frac{1}{4}k^{2} + \frac{9}{64}k^{4} + \frac{25}{256}k^{6} + \frac{1225}{16384}k^{8} + \frac{3969}{65536}k^{10} + \frac{53361}{1048576}k^{12} + \frac{184041}{4194304}k^{14} + \frac{41409225}{1073741824}k^{16} + \dots \right) = \frac{\pi}{2} \left\{ 1 + \sum_{n=1}^{\infty} \left[\frac{1 \cdot 3 \cdot \dots (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n} \right]^{2} k^{2n} \right\} = \frac{\pi}{2} \left\{ 1 + \sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{2^{n}n!} \right]^{2} k^{2n} \right\};$$

$$E(k) = \frac{\pi}{2} \left(1 - \frac{1}{4}k^{2} - \frac{3}{64}k^{4} - \frac{5}{256}k^{6} - \frac{175}{16384}k^{8} - \frac{441}{65536}k^{10} - \frac{4851}{1048576}k^{12} - \frac{14157}{4194304}k^{14} - \frac{2760615}{1073741824}k^{16} - \dots \right) = \frac{\pi}{2} \left\{ 1 - \sum_{n=1}^{\infty} \left[\frac{1 \cdot 3 \cdot \dots (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n} \right]^{2} \frac{k^{2n}}{2n-1} \right\} = \frac{\pi}{2} \left\{ 1 - \sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{2^{n}n!} \right]^{2} \frac{k^{2n}}{2n-1} \right\}.$$

At $k = 0$: $K(0) = E(0) = \pi/2$; at $k = 1$: $K(1) \uparrow \infty$; $E(1) = 1$.
Proceeding in the same manner, we get for the 1st set (the most inaccurate) of approximate functions the expansions $K_{n}(k) = \frac{\pi}{2} \left(1 - \frac{\pi}{2} \left(1 - \frac{1}{2}k^{2} - \frac{9}{2}k^{4} - \frac{25}{25}k^{6} - \frac{1222}{2}k^{8} - \frac{1222}{2}k^{8} - \frac{1222}{2}k^{8} - \frac{1222}{2}k^{8} - \frac{1222}{2}k^{8} - \frac{12}{2}k^{2n} \right)$

$$K_{0}(k) = \frac{\pi}{2} \left[1 + \frac{1}{4}k^{2} + \frac{5}{64}k^{4} + \frac{25}{256}k^{6} + \frac{1222}{16384}k^{8} + \dots \right];$$

$$E_{0}(k) = \frac{\pi}{2} \left[1 - \frac{1}{4}k^{2} - \frac{3}{64}k^{4} - \frac{5}{256}k^{6} - \frac{172}{16384}k^{8} - \dots \right],$$

for the 2nd set being practically identical with the exact ones

$$\begin{split} \mathrm{K_{1}}(k) &= \frac{\pi}{2} \bigg(1 + \frac{1}{4}k^{2} + \frac{9}{64}k^{4} + \frac{25}{256}k^{6} + \frac{1225}{16384}k^{8} + \frac{3969}{65536}k^{10} \\ &+ \frac{53361}{1048576}k^{12} + \frac{184041}{4194304}k^{14} + \frac{41409222}{1073741824}k^{16} + \ldots \bigg); \\ \mathrm{E_{1}}(k) &= \frac{\pi}{2} \bigg(1 - \frac{1}{4}k^{2} - \frac{3}{64}k^{4} - \frac{5}{256}k^{6} - \frac{175}{16384}k^{8} - \frac{441}{65536}k^{10} \\ &- \frac{4851}{1048576}k^{12} - \frac{14157}{4194304}k^{14} - \frac{2760606}{1073741824}k^{16} - \ldots \bigg). \end{split}$$

The difference with respect to the expansions of the exact functions (K, E) begins at the terms in k^8 for the 1st set of approximation (K₀, E₀), and at the terms in k^{16} for the 2nd one (K₁, E₁). For the 1st derivatives of K, E we get

$$\frac{d\mathbf{K}(k)}{dk} = \frac{\mathbf{E}(k)}{k(1-k^2)} - \frac{\mathbf{K}(k)}{k} = \frac{\pi}{4}k\left(1 + \frac{9}{8}k^2 + \frac{75}{64}k^4 + \frac{1225}{1024}k^6\right)$$

$$+ \frac{19845}{16384}k^8 + \frac{160083}{131072}k^{10} + \frac{1288287}{1048576}k^{12} + \frac{41409225}{33554432}k^{14} + \frac{1}{9}$$

$$= \frac{\pi}{4}\sum_{n=1}^{\infty} \left[\frac{1\cdot3\dots(2n-1)}{2\cdot4\dots2n}\right]^2 nk^{2n-1} = \frac{\pi}{4}\sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{2^{n-1}n!}\right]^2 nk^{2n-1};$$

$$\frac{d\mathbf{E}(k)}{dk} = \frac{\mathbf{E}(k) - \mathbf{K}(k)}{k} = -\frac{\pi}{4}k\left(1 + \frac{3}{8}k^2 + \frac{15}{64}k^4 + \frac{175}{1024}k^6 + \frac{2205}{16384}k^8 + \frac{14553}{131072}k^{10} + \frac{99099}{1048576}k^{12} + \frac{2760615}{33554432}k^{14} + \dots\right) = -\frac{\pi}{4}\sum_{n=1}^{\infty} \left[\frac{1\cdot3\dots(2n-1)}{2\cdot4\dots2n}\right]^2 \frac{nk^{2n-1}}{2n-1} = -\frac{\pi}{4}\sum_{n=1}^{\infty} \left[\frac{(2n-1)!!}{2^{n-1}n!}\right]^2 \frac{nk^{2n-1}}{2n-1}.$$
At $k = 0$: $d\mathbf{K}/dk = d\mathbf{E}/d\mathbf{k} = 0$; at $k = 1$: $d\mathbf{K}/dk\uparrow\infty$; $d\mathbf{E}/dk\downarrow(-\infty)$.
Applying the previous two exact relations and using the four definitions from chapter 2 one gets the expansions:

$$\begin{bmatrix} \frac{d\mathbf{K}(k)}{dk} \end{bmatrix}_{0} = \frac{\pi}{4}k\left(1 + \frac{9}{8}k^{2} + \frac{75}{64}k^{4} + \frac{1225.75}{1024}k^{6} + \dots\right);\\ \begin{bmatrix} \frac{d\mathbf{E}(k)}{dk} \end{bmatrix}_{0} = -\frac{\pi}{4}k\left(1 + \frac{3}{8}k^{2} + \frac{15}{64}k^{4} + \frac{174.25}{1024}k^{6} + \dots\right);$$

for the 1st set of approximate functions (K₀, E₀), and resp.

$$\begin{bmatrix} \frac{d\mathbf{K}(k)}{dk} \end{bmatrix}_{\mathbf{i}} = \frac{\pi}{4}k\left(1 + \frac{9}{8}k^2 + \frac{75}{64}k^4 + \frac{1225}{1024}k^6 + \frac{19845}{16384}k^8 + \frac{160083}{131072}k^{10} + \frac{1288287}{1048576}k^{12} + \frac{41409226125}{33554432}k^{14} + \dots \right);$$

$$\begin{bmatrix} \frac{d\mathbf{E}(k)}{dk} \end{bmatrix}_{\mathbf{i}} = -\frac{\pi}{4}k\left(1 + \frac{3}{8}k^2 + \frac{15}{64}k^4 + \frac{175}{1024}k^6 + \frac{2205}{16384}k^8 + \frac{14553}{131072}k^{10} + \frac{99099}{1048576}k^{12} + \frac{276061425}{33554432}k^{14} + \dots \right),$$

for the 2nd set of approximate functions (K₁, E₁). The difference with respect to the expansions of the 1st derivatives of the exact functions (K, E) begins at the terms in k^7 for the 1st set, and at the terms in k^{15} for the 2nd one, so much lesser than that for the expansions of the respective sets (K_{0,1}, E_{0,1}). One can also easily find the analytic expressions and series representations for the 2nd derivatives of all K, K_{0,1}, E, E_{0,1}, with similar results, but a lesser precision than for K, E, K ', E '. Besides the above definitions of the derivatives K '(= *d*K/*dk*), E '(= *d*E/*dk*), there is a useful functional relation (Legendre's): K(*k*)·E(*k*') + E(*k*)·K(*k*') – K(*k*)·K(*k*') = $\pi/2$.

5 Graphic comparison

The variation curves of Legendre complete elliptic integrals, as well as that of the two sets of closed analytic functions are graphically represented in the comparative figures 1 and 2, all wrt θ , in sexagesimal degrees, and given by $\theta = \sin^{-1}k$. In both figures the exact functions K(k), E(k) were represented by solid (continuous) black lines, the 1st set of approximation $[K_0(k), E_0(k)]$ by dashed black lines, and the 2nd set of approximation $[K_1(k), E_1(k)]$ by solid red lines. At k = 1 the graphs of all $K_{0,1}(k)$ fall to $(-\infty)$; the graphs of all $E_{0,1}(k)$ pass through $(1, 3\pi/8)$.

Fig. 1. Comparison of K(k) with the closed analytic functions $K_0(k)$, $K_1(k)$; also see the 2nd part of remark 1 in appendix 1

Fig. 2. Comparison of E(k) with the closed analytic functions $E_0(k)$, $E_1(k)$; also see the 2nd part of remark 1 in appendix 1

6 Conclusions

As for simplicity, the formulas in k/k' do not need mathematical tables (are purely algebraic). As for accuracy, in mathematical/ technical applications, it must use the 1st set until θ = 70°.5 (k= 0.94264) only, and (for a better accuracy or a greater upper limit of the validity domain) the 2nd set, until θ = 88°.2 (k= 0.99951).

7 Notes; other methods; future research

Without the tables 1 and 2, this work was published previously in a proceedings volume (scientific bulletin), in Romanian [8]. For its first English version see [9], [10]. Approximations for the complete elliptic integrals based on the trapezoidal-type numerical integration formulas discussed in [11], are developed in [12], [13] (a mixed numerical-analytic method). For newer formulas (using Γ function – not an elementary, but a special one, like K and E, even if these formulas are the most accurate) see [14]. We cite from [14]: "K[r] could be expressed in terms of products of Γ functions, algebraic numbers and powers of π ." To find the values of Γ function we need special functions tables. As stated in their abstracts, the works [9], [14] do not have the same goal. To write K and E in terms of Legendre polynomials see [15]. An original fast converging recurrent-iterative scheme to get a 3rd (and higher) set of closed analytic formulas (seemingly intricate) with desired accuracy is given in article's appendix 1. For how to get the first two sets (0; 1) see appendix' remark 1. This part of the work is a fully extended version of the article [9].

References:

[1] Legendre, A. M., Tables of the complete and incomplete elliptic integrals. Reissued (from tome II of Legendre's Traité des fonctions elliptiques, Paris, 1825) by K. Pearson, London, 1934. [2] Heuman, C. A., Tables of complete elliptic integrals, J. Math. Physics, 20, pp. 127 – 206, 336, 1941; https:// onlinelibrary.wiley.com/doi/epdf/10.1002/sapm1941201127. [3] Hayashi, K., Tafeln der Besselschen, Theta-, Kugelund anderen Funktionen, Berlin, 1930; Table errata no. 518 (pp. 670 - 672) by: O. Skovgaard and M. Helmer Petersen; (A. Fletcher, J. C. P. Miller, L. Rosenhead & L. J. Comrie), Math. Comp., Vol. 29, No. 130 (Apr. 1975). [4] Hayashi, K., Tafeln für die Differenzenrechnung sowie für die Hyperbel-, Besselschen, elliptischen und anderen Funktionen, Berlin, 1933; Table errata no. 517 (p. 670) by: O. Skovgaard and M. Helmer Petersen; (A. Fletcher), Math. Comp., Vol. 29, No. 130 (Apr. 1975). [5] Jahnke, E., Emde, F., Tables of Functions with Formulae and Curves, Dover Publications, New York, 1943; Fourth Edition, 1945; (translated into Russian: Е. Янке и Ф. Эмде, Таблицы функии с формулами и кривыми, Физматгиз, Москва – Ленинград, 1959;) [6] Jahnke, E., Emde, F., Lösch, F., Tafeln höherer Funktionen, sechste Auflage. Neubearbeitet von F. Lösch, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960, 1961; https://doi.org/10.1002/zamm.19610410619; (translated into Russian: Е. Янке, Ф. Эмде, Ф. Лёш, Специальные функции – формулы, графики, таблицы, ред.: Л. И. Седов, Наука, Москва, 1964; https://ikfia.ysn.ru/ wp-content/uploads/2018/01/JankeEmdeLyosh1964ru.pdf). [7] Gradshteyn, I. S., Ryzhik, I. M., Table of Integrals, Series, and Products. Fourth Edition Prepared by Yu. V. Geronimus / M. Yu. Tseytlin, Academic Press, New York, London, 1965; Translated from Russian by Scripta Technica, Inc.; Seventh Edition, 2007; Eds.: A. Jeffrey, D. Zwillinger; (Russian, German, Polish, English, Japanese & Chinese eds.;) http://fisica.ciens.ucv.ve/~svincenz/TISPISGIMR.pdf.

Appendix 1 – A fast converging recurrentiterative scheme to get a third (and higher) set of analytic formulas with desired accuracy

The formulas for transforming the modulus ([16], [17]) are:

$$K(k) = \frac{2}{1+\sqrt{1-k^2}} K\left(\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right) = \frac{2}{1+k'} K\left(\frac{1-k'}{1+k'}\right),$$

or: K(θ) = K[tan²(θ /2)]/cos²(θ /2), and, respectively:
 $E(k) = \left(1+\sqrt{1-k^2}\right) E\left(\frac{1-\sqrt{1-k^2}}{1+\sqrt{1-k^2}}\right) - \sqrt{1-k^2} K(k) = (1+k')E[(1-k')/(1+k')] - k'K(k), \text{ with } k' = (1-k^2)^{1/2},$
or: E(θ) = 2 cos²(θ /2) · E[tan²(θ /2)] - cos θ · K(θ),
(maging from k to $k = (1-k^2)(1+k^2) = k = 0$

(passing from k to $k_1 = (1 - k)/(1 + k) \le k$ and from θ to $\theta_1 = \sin^{-1}[\tan^2(\theta/2)] \le \theta$; $k_1 = k$ ($\theta_1 = \theta$), for: k = 0; 1 ($\theta = 0$; $\pi/2$)), which can be transcribed in recurrent form, as follows:

[8] Selescu, R., Formule analitice închise pentru aproximarea integralelor eliptice complete de speța întâia și a doua ale lui Legendre, Buletinul Științific al Sesiunii Naționale de Comunicări Științifice, Academia Forțelor Aeriene "Henri Coandă" & Centrul Regional pentru Managementul Resurselor de Apărare, Editura Academiei Forțelor Aeriene "Henri Coandă", Brașov, 1-2 Noiembrie 2002; Vol. MATEMATICA - INFORMATICA, Anul III, Nr. 2 (14), (ISSN 1453-0139), pp. 37-44; (in Romanian). [9] Selescu, R., Closed Analytic Formulas for the Approximation of the Legendre Complete Elliptic Integrals of the First and Second Kinds, International Journal of Pure Mathematics -NAUN, Vol. 8, pp. 23–28, DOI: 10.46300/91019.2021.8.2, 29 April 2021; https://www.naun.org/cms.action?id=23293. [10] Selescu, R., Closed Analytic Formulas for the Approximation of the Legendre Complete Elliptic Integrals of the First and Second Kinds, International Journal of Mathematical and Computational Methods, Vol. 21, pp. 49 -55, 21 May 2021; http://www.iaras.org/iaras/journals/ijmcm. [11] Luke, Y. L., Simple formulas for the evaluation of some higher transcendental functions, J. Math. *Physics*, v. 34, pp. 298 – 307, 1956, MR 17, # 1138. [12] Luke, Y. L., Approximations for Elliptic Integrals, Math. *Comp.*, Vol. 22, No. 103 (Jul. 1968), pp. 627–634, MR 17, #2412; AMS; https://ams.org/journals/mcom/1968-22-103/S0225-5718-1968-0226825-3/S0025-5718-1968-0226825-3.pdf. [13] Luke, Y. L., Further Approximation for Elliptic Integrals, Math. Comp., Vol. 24, No. 109 (Jan. 1970), pp. 191-198, AMS; https://ams.org/journals/mcom/1970-24-109/S0025-5719-1970-0258243-5/S0025-5719-1970-0258243-5.pdf. [14] Bagis, N., Formulas for the approximation of the complete Elliptic Integrals, https://arxiv.org/abs/1104.4798v1 [math.GM], 6 pages (pp. 1–6), 25 April 2011, Cornell University, preprint. [15] González, M. O., Elliptic integrals in terms of Legendre polynomials, Proc. Glasgow Math. Assoc. 2, pp. 97-99, 1954, https://www.cambridge.org/core/terms. https://doi.org/10.1017/S2040618500033104.

$K_{2}(k) = \frac{2}{1 + \sqrt{1 - k^{2}}} K_{1}\left(\frac{1 - \sqrt{1 - k^{2}}}{1 + \sqrt{1 - k^{2}}}\right) = \frac{2}{1 + k'} K_{1}\left(\frac{1 - k'}{1 + k'}\right),$
or: $K_2(\theta) = K_1[\tan^2(\theta/2)]/\cos^2(\theta/2)$, and, resp.:
$\mathbf{E}_{2}(k) = \left(1 + \sqrt{1 - k^{2}}\right) \mathbf{E}_{1}\left(\frac{1 - \sqrt{1 - k^{2}}}{1 + \sqrt{1 - k^{2}}}\right) - \sqrt{1 - k^{2}} \mathbf{K}_{2}(k) =$
$= (1+k')E_1\left(\frac{1-k'}{1+k'}\right) - \frac{2k'}{1+k'}K_1\left(\frac{1-k'}{1+k'}\right), \text{ or: } E_2(\theta) =$
$2\cos^{2}(\theta 2)\tilde{E}_{1}[\tan^{2}(\theta 2)] - [\cos^{2}(\theta 2)]K_{1}[\tan^{2}(\theta 2)],$
expressing the 3^{rd} set (K_2, E_2) in terms of the 2^{rd} one (K_1, E_1) , so
starting a recurrent-iterative scheme ([18], [19]); it allows writing
for the $(n + 1)^{\text{th}}$ set: $\left \mathbf{K}_{n}(k) = \frac{2}{1 + k'} \mathbf{K}_{n-1}\left(\frac{1 - k'}{1 + k'}\right) \right $ and:
$E_{n}(k) = (1+k')E_{n-1}\left(\frac{1-k'}{1+k'}\right) - \frac{2k'}{1+k'}K_{n-1}\left(\frac{1-k'}{1+k'}\right), \text{ resp.}$

 $K_n(\theta)$, $E_n(\theta)$ are given by recurrences similar to $K_2(\theta)$, $E_2(\theta)$. Starting from the newly found closed analytic formulas, which connect the 3rd set (K_2 , E_2) with the 2rd one (K_1 , E_1), and applying the new recurrent-iterative scheme, the comparative tables 1 & 2 were remade, inserting the new columns " $K_2(k)$ " and " $E_2(k)$ " with 4*D* approximate values. Besides the 1st set (K_0 , E_0), there is a better version, (K_{01} , E_{01}), based on Peano's optimized law on ellipse's perimeter (see appendix' 1 remark 1), leading to:

$$\mathbf{E}_{01}(k) = \frac{\pi\sqrt[4]{1-k^2}}{100} \left(33\frac{1+\sqrt{1-k^2}}{\sqrt[4]{1-k^2}} - 16 \right) = \frac{\pi}{4} \left[1.32(1+k') - 0.64\sqrt{k'} \right]$$

Table 4. Values of the functions K (part one) (this table completes and replaces table 1)

$\theta(^{\circ})$	$k = \sin\theta$	$\mathbf{K}(\mathbf{k})$	$K_0(k)$	$K_1(k)$	$K_2(k)$	54
0	0.00000	1.5708	1.5708	1.5708	1.5708	55
1	0.01745	1.5709	1.5709	1.5709	1.5709	56
2	0.03490	1.5713	1.5713	1.5713	1.5713	57
3	0.05234	1.5719	1.5719	1.5719	1.5719	58
4	0.06976	1.5727	1.5727	1.5727	1.5727	59
5	0.08716	1.5738	1.5738	1.5738	1.5738	60
6	0.10453	1.5751	1.5751	1.5751	1.5751	61
7	0.12187	1.5767	1.5767	1.5767	1.5767	62
8	0.13917	1.5785	1.5785	1.5785	1.5785	63
9	0.15643	1.5805	1.5805	1.5805	1.5805	64
10	0.17365	1.5828	1.5828	1.5828	1.5828	65
11	0.19081	1.5854	1.5854	1.5854	1.5854	66
12	0.20791	1.5882	1.5882	1.5882	1.5882	67
13	0.22495	1.5913	1.5913	1.5913	1.5913	68
14	0.24192	1.5946	1.5946	1.5946	1.5946	69
15	0.25882	1.5981	1.5981	1.5981	1.5981	70
16	0.27564	1.6020	1.6020	1.6020	1.6020	70.:
17	0.29237	1.6061	1.6061	1.6061	1.6061	71
18	0.30902	1.6105	1.6105	1.6105	1.6105	71.
19	0.32557	1.6151	1.6151	1.6151	1.6151	72
20	0.34202	1.6200	1.6200	1.6200	1.6200	72.
21	0.35837	1.6252	1.6252	1.6252	1.6252	73
22	0.37461	1.6307	1.6307	1.6307	1.6307	73.
23	0.39073	1.6365	1.6365	1.6365	1.6365	74
24	0.40674	1.6426	1.6426	1.6426	1.6426	74.:
25	0.42262	1.6490	1.6490	1.6490	1.6490	75
26	0.43837	1.6557	1.6557	1.6557	1.6557	75.:
27	0.45399	1.6627	1.6627	1.6627	1.6627	76
28	0.46947	1.6701	1.6701	1.6701	1.6701	76.:
29	0.48481	1.6777	1.6777	1.6777	1.6777	77
30	0.50000	1.6858	1.6857	1.6858	1.6858	77.:
31	0.51504	1.6941	1.6941	1.6941	1.6941	78
32	0.52992	1.7028	1.7028	1.7028	1.7028	78.
33	0.54464	1.7119	1.7119	1.7119	1.7119	79
34	0.55919	1.7214	1.7214	1.7214	1.7214	79.:
35	0.57358	1.7312	1.7312	1.7312	1.7312	80
36	0.58779	1.7415	1.7415	1.7415	1.7415	80.2
37	0.60182	1.7522	1.7522	1.7522	1.7522	80.4
38	0.61566	1.7633	1.7632	1.7633	1.7633	80.
39	0.62932	1.7748	1.7748	1.7748	1.7748	80.
40	0.64279	1.7868	1.7867	1.7868	1.7868	81

41	0.65606	1.7992	1.7992	1.7992	1.7992
42	0.66913	1.8122	1.8121	1.8122	1.8122
43	0.68200	1.8256	1.8256	1.8256	1.8256
44	0.69466	1.8396	1.8395	1.8396	1.8396
45	0.70711	1.8541	1.8540	1.8541	1.8541
46	071934	1 8691	1 8691	1 8691	1 8691
47	0.73135	1 8848	1 8847	1 8848	1 8848
48	0.73133	1.0010	1 9009	1 9011	1 9011
<u>49</u>	0.75471	1.9011	1 9178	1 9180	1 9180
50	0.75471	1.9100	1.9170	1.9100	1 9356
51	0.70004	1.9530	1.0536	1.9530	1.9530
52	0.779901	1.9559	1.9550	1.9339	1.9339
52	0.70001	1.9/29	1.9/20	1.9/29	1.9/29
55	0.79004	1.3327	2 0129	1.9927 2.0122	1.9927 2.0122
54	0.00902	2.0155	2.0120	2.0133	2.0133
55	0.01913	2.0547	2.0341	2.0547	2.0547
50	0.02904	2.03/1	2.0304	2.0371	2.0371
51	0.03007	2.0804	2.0793	2.0804	2.0804
58 50	0.84805	2.104/	2.1057	2.1047	2.1047
59	0.85/1/	2.1300	2.1288	2.1300	2.1300
60	0.86603	2.1303	2.1551	2.1565	2.1565
61	0.8/462	2.1842	2.1825	2.1842	2.1842
62	0.88295	2.2132	2.2111	2.2132	2.2132
63	0.89101	2.2435	2.2410	2.2435	2.2435
64	0.898/9	2.2754	2.2723	2.2754	2.2754
65	0.90631	2.3088	2.3051	2.3088	2.3088
66	0.91355	2.3439	2.3394	2.3439	2.3439
67	0.92050	2.3809	2.3754	2.3809	2.3809
68	0.92718	2.4198	2.4132	2.4198	2.4198
69	0.93358	2.4610	2.4530	2.4610	2.4610
70	0.93969	2.5046	2.4948	2.5045	2.5046
70.5	0.94264	2.5273	2.5165	2.5273	2.5273
71	0.94552	2.5507	2.5389	2.5507	2.5507
71.5	0.94832	2.5749		2.5749	2.5749
72	0.95106	2.5998		2.5998	2.5998
72.5	0.95372	2.6256		2.6255	2.6256
73	0.95630	2.6521		2.6521	2.6521
73.5	0.95882	2.6796		2.6796	2.6796
74	0.96126	2.7081		2.7081	2.7081
74.5	0.96363	2.7375		2.7375	2.7375
75	0.96593	2.7681		2.7680	2.7681
75.5	0.96815	2.7998		2.7997	2.7998
76	0.97030	2.8327		2.8326	2.8327
76.5	0.97237	2.8669		2.8669	2.8669
77	0.97437	2.9026		2.9025	2.9026
77.5	0.97630	2.9397		2.9397	2.9397
78	0.97815	2.9786		2.9785	2.9786
78.5	0.97992	3.0192		3.0191	3.0192
79	0.98163	3.0617		3.0616	3.0617
79.5	0.98325	3.1064		3.1063	3.1064
80	0.98481	3.1534		3.1533	3.1534
80.2	0.98541	3.1729		3.1727	3.1729
80.4	0.98600	3.1928		3.1927	3.1928
80.6	0.98657	3.2132		3.2130	3.2132
80.8	0.98714	3.2340		3.2338	3.2340
81	0.98769	3.2553		3.2551	3.2553

81 2	0.98823	3 2771	3 2769	3 2771
81.4	0.98876	3 2995	3 2992	3 2995
81.6	0.98077	3 3223	3 3221	3 3223
81.8	0.90927	3 3/158	3 3/55	3 3/58
82	0.90970	3 3600	3 3696	3 3600
82 87 7	0.99027	2 2016	2 3042	2 2046
02.2 92.4	0.99073	5.5940 2.4100	2 4106	3.3940 2.4100
82.4 82.6	0.99122	2.4199	5.4190 2.4456	5.4199 2.4460
82.0	0.9910/	3.4400 2.4729	5.4450 2.4724	3.4400
82.8	0.99211	3.4/28	3.4724	3.4728
83	0.99255	3.5004	3.4999	3.5004
83.2	0.99297	3.5288	3.5283	3.5288
83.4	0.99337	3.5581	3.55/5	3.5581
83.6	0.99377	3.5884	3.58//	3.5884
83.8	0.99415	3.6196	3.6188	3.6196
84	0.99452	3.6519	3.6510	3.6519
84.2	0.99488	3.6852	3.6843	3.6852
84.4	0.99523	3.7198	3.7187	3.7198
84.6	0.99556	3.7557	3.7545	3.7557
84.8	0.99588	3.7930	3.7916	3.7930
85	0.99619	3.8317	3.8302	3.8317
85.2	0.99649	3.8721	3.8704	3.8721
85.4	0.99678	3.9142	3.9122	3.9142
85.6	0.99705	3.9583	3.9560	3.9583
85.8	0.99731	4.0044	4.0018	4.0044
86	0.99756	4.0528	4.0498	4.0528
86.2	0.99780	4.1037	4.1003	4.1037
86.4	0.99803	4.1574	4.1535	4.1574
86.6	0.99824	4.2142	4.2097	4.2142
86.8	0.99844	4.2744	4.2692	4.2744
87	0 99863	4 3387	4 3325	4 3387
87.2	0.99881	4 4073	4 4001	4 4073
87.4	0.99897	4 4811	4 4726	4 4811
87.6	0.999912	4 5609	4 5507	4 5609
87.8	0.999926	4 6477	4 6354	4 6477
88	0.99930	4.7477	4.0554	4.7427
88 2	0.99951	1 8/78	1 8293	1 8/78
88 /	0.00061	1 0651	7.0275	4.0470
88.6	0.99901	5 0088		5.0087
88.0	0.99970	5 2527		5.0907
00.0 90	0.99978	5.4240		5.4340
09 00 1	0.99983	5.4549		5.4549
89.1 80.2	0.999988	5.5402		5.5402
89.2	0.999990	5.05/9		5.05/9
89.3	0.999993	5./914		5.7913
89.4	0.99995	5.9455		5.9454
89.5	0.99996	6.1278		6.1276
89.6	0.99998	6.3509		6.3506
89.7	0.999999	6.6385		6.6380
89.8	0.999999	7.0440		7.0428
89.9	1.00000	7.7371		7.7336
90	1.00000	∞	$-\infty$ $-\infty$	$-\infty$
The v	alues strir	ng in the las	st column is giver	n by:
$\mathbf{K}_{2}(k)$	$) = \frac{2}{1 + \sqrt{1 - 1}}$	$\frac{1}{1+k^2} \mathbf{K}_1 \left(\frac{1-k}{1+k} \right)$	$\frac{\sqrt{1-k^2}}{\sqrt{1-k^2}}\right) = \frac{2}{1+k'} \operatorname{K}$	$\sum_{l=1}^{k} \left(\frac{1-k'}{1+k'} \right),$

Table	4. \	/alues	of the	functions	K	(part two))
-------	------	--------	--------	-----------	---	------------	---

				$1 \sqrt{2} \sqrt{4}$	$\overline{k'}$
	$\pi\sqrt{2}$	1	4√2	$1 + \frac{1}{\sqrt{1+1}}$	$\overline{k'}$
=	$2\sqrt{k'}$	$\sqrt{24/k'}$	4	$2\sqrt{k'}$	$\sqrt{24/k'}$
1	$1 + \frac{2\sqrt{k}}{1 + k'}$	$\frac{\sqrt{2}\sqrt{k}}{\sqrt{1+l'}}$	4	$\left + \frac{2\sqrt{\kappa}}{1 + k'} \right $	$\frac{\sqrt{2}\sqrt{h}}{\sqrt{1+h'}}$
N	1+K	$\sqrt{1+K}$	N	$1+\kappa$	$\sqrt{1+k}$
and fi	nally the al	gebraic for	rmula: K ₂ (A	$k) = 2K_1(k)$	(1 + k').
Т	Table 5. Va	alues of th	ne function	ns E (part	one)
	(this table	complete	es and rep	laces tabl	e 2)
$ heta(\circ)$	$k = \sin \theta$	E(k)	$E_0(k)$	$E_1(k)$	$E_2(k)$
0	0.00000	1.5708	1.5708	1.5708	1.5708
1	0.01745	1.5707	1.5707	1.5707	1.5707
2	0.03490	1.5703	1.5703	1.5703	1.5703
3	0.05234	1.5697	1.5697	1.5697	1.5697
4	0.06976	1.5689	1.5689	1.5689	1.5689
5	0.08716	1.5678	1.5678	1.5678	1.5678
6	0.10453	1.5665	1.5665	1.5665	1.5665
7	0.12187	1.5649	1.5649	1.5649	1.5649
8	0.13917	1.5632	1.5632	1.5632	1.5632
9	0.15643	1.5611	1.5611	1.5611	1.5611
10	0.17365	1.5589	1.5589	1.5589	1.5589
11	0.19081	1.5564	1.5564	1.5564	1.5564
12	0.20791	1.5537	1.5537	1.5537	1.5537
13	0.22495	1.5507	1.5507	1.5507	1.5507
14	0.24192	1.5476	1.5476	1.5476	1.5476
15	0.25882	1.5442	1.5442	1.5442	1.5442
16	0.27564	1.5405	1.5405	1.5405	1.5405
17	0.29237	1.5367	1.5367	1.5367	1.5367
18	0.30902	1.5326	1.5326	1.5326	1.5326
19	0.32557	1.5283	1.5283	1.5283	1.5283
20	0.34202	1.5238	1.5238	1.5238	1.5238
21	0.35837	1.5191	1.5191	1.5191	1.5191
22	0.37461	1.5141	1.5141	1.5141	1.5141
23	0.39073	1.5090	1.5090	1.5090	1.5090
24	0.40674	1.5037	1.5037	1.5037	1.5037
25	0.42262	1.4981	1.4981	1.4981	1.4981
26	0.43837	1.4924	1.4924	1.4924	1.4924
27	0.45399	1.4864	1.4864	1.4864	1.4864
28	0.46947	1.4803	1.4803	1.4803	1.4803
29	0.48481	1.4740	1.4740	1.4740	1.4740
30	0.50000	1.4675	1.4675	1.4675	1.4675
31	0.51504	1.4608	1.4608	1.4608	1.4608
32	0.52992	1.4539	1.4539	1.4539	1.4539
33	0.54464	1.4469	1.4469	1.4469	1.4469
34	0.55919	1.4397	1.4397	1.4397	1.4397
35	0.57358	1.4323	1.4323	1.4323	1.4323
36	0.58779	1.4248	1.4248	1.4248	1.4248
37	0.60182	1.4171	1.4171	1.4171	1.4171
38	0.61566	1.4092	1.4093	1.4092	1.4092
39	0.62932	1.4013	1.4013	1.4013	1.4013
40	0.64279	1.3931	1.3932	1.3931	1.3931

with: $K_1(k_1) = \frac{\pi\sqrt{2}}{\sqrt{(1+k_1')\sqrt{k_1'}}} \left(1 - \frac{\sqrt[4]{2}}{4} \frac{1+\sqrt{k_1'}}{\sqrt[4]{(1+k_1')\sqrt{k_1'}}}\right) =$

Ta	able 5. Va	lues of th	e function	ns E (part	two)	81	0.98769	1.0338		1.0339	1.0338
41	0.65606	1.7992	1.7992	1.7992	1.7992	81.2	0.98823	1.0326		1.0327	1.0326
42	0.66913	1.8122	1.8121	1.8122	1.8122	81.4	0.98876	1.0314		1.0315	1.0314
43	0.68200	1.8256	1.8256	1.8256	1.8256	81.6	0.98927	1.0302		1.0303	1.0302
44	0.69466	1.8396	1.8395	1.8396	1.8396	81.8	0.98978	1.0290		1.0292	1.0290
45	0.70711	1.8541	1.8540	1.8541	1.8541	82	0.99027	1.0278		1.0280	1.0278
46	0.71934	1.8691	1.8691	1.8691	1.8691	82.2	0.99075	1.0267		1.0269	1.0267
47	0.73135	1.8848	1.8847	1.8848	1.8848	82.4	0.99122	1.0256		1.0258	1.0256
48	0.74314	1.9011	1.9009	1.9011	1.9011	82.6	0.99167	1.0245		1.0247	1.0245
49	0.75471	1.9180	1.9178	1.9180	1.9180	82.8	0.99211	1.0234		1.0236	1.0234
50	0.76604	1.9356	1.9354	1.9356	1.9356	83	0.99255	1.0223		1.0226	1.0223
51	0.77715	1.9539	1.9536	1.9539	1.9539	83.2	0.99297	1.0213		1.0215	1.0213
52	0.78801	1.9729	1.9726	1.9729	1.9729	83.4	0.99337	1.0202		1.0205	1.0202
53	0 79864	1 9927	1 9923	1 9927	1 9927	83.6	0.99377	1.0192	false min.	1.0196	1.0192
54	0.80902	2.0133	2.0128	2.0133	2.0133	83.8	0 99415	1 0182		1 0186	1 0182
55	0.81915	2 0347	2 0341	2 0347	2 0347	84	0 99452	1 0172		1 0176	1 0172
56	0.82904	2.0511	2.0511	2.0571	2.0517	84.2	0 99488	1 0163		1 0167	1 0163
57	0.83867	2.0371	2.0301	2.0371	2.0371	84.4	0.99523	1.0153		1.0158	1.0153
58	0.8/1805	2.0004	2.0795	2.0004	2.0004	84.6	0.99556	1.0123		1.0150	1.0133
50	0.85717	2.1047	2.1037	2.1047	2.1047	84.8	0.99588	1.0135		1.0120	1.0135
59 60	0.85717	2.1500	2.1200	2.1500	2.1500	85	0.99619	1.0133		1.0133	1.0133
61	0.80005	2.1303	2.1331	2.1303	2.1303	85.2	0.996/10	1.0127		1.0135	1.0127
62	0.87402	2.1042	2.1625	2.1042	2.1042	85.4	0.99678	1.0110		1.0123	1.0110
62	0.00293	2.2132	2.2111 2.2410	2.2132	2.2132 2.2435	85.6	0.00705	1.0110		1.0110	1.0110
64	0.09101	2.2455	2.2410	2.2433	2.2433	85.0	0.99703	1.0102		1.0110	1.0102
04 65	0.090/9	2.2734	2.2723	2.2734	2.2734	83.8 96	0.99731	1.0094		1.0105	1.0094
05	0.90031	2.3088	2.3031	2.3088	2.3088	80 86 D	0.99730	1.0080		1.0097	1.0080
00 (7	0.91555	2.3439	2.3394	2.3439	2.3439	80.2 86 A	0.99780	1.0079		1.0091	1.0079
0/	0.92050	2.3809	2.3/34	2.3809	2.3809	80.4 86.6	0.99803	1.0072		1.0085	1.0072
08	0.92/18	2.4198	2.4132	2.4198	2.4198	80.0 96 9	0.99824	1.0003		1.0080	1.0003
69 70	0.93358	2.4010	2.4530	2.4010	2.4610	00.0 07	0.99844	1.0059		1.0073	1.0039
/U 70_5	0.93969	2.5046	2.4948	2.5045	2.5046	0/ 07 2	0.99803	1.0035		1.00/1	1.0033
/0.5	0.94264	2.52/3	2.5165	2.5273	2.5273	07.4	0.99881	1.004/		1.0007	1.004/
/1	0.94552	2.5507	2.5389	2.5507	2.5507	8/.4	0.9989/	1.0041		1.0064	1.0041
/1.5	0.94832	2.5/49		2.5/49	2.5/49	87.6	0.999912	1.0030	c1 ·	1.0062	1.0030
12	0.95106	2.5998		2.5998	2.5998	87.8	0.99920	1.0031	asemin.	1.0060	1.0031
72.5	0.953/2	2.6256		2.6255	2.6256	88	0.99939	1.0026	for $E_1(k)$	1.0060	1.0026
73	0.95630	2.6521		2.6521	2.6521	88.2	0.99951	1.0021		1.0061	1.0021
73.5	0.95882	2.6796		2.6796	2.6796	88.4	0.99961	1.001/			1.001/
/4	0.96126	2.7081		2.7081	2.7081	88.6	0.999/0	1.0014			1.0014
/4.5	0.96363	2.7375		2.7375	2.7375	88.8	0.999/8	1.0010			1.0011
/5	0.96593	2.7681		2.7680	2.7681	89	0.99985	1.0008			1.0008
75.5	0.96815	2.7998		2.7997	2.7998	89.1	0.99988	1.0006			1.0006
76	0.97030	2.8327		2.8326	2.8327	89.2	0.999990	1.0005			1.0005
76.5	0.97237	2.8669		2.8669	2.8669	89.3	0.99993	1.0004			1.0004
77	0.97437	2.9026		2.9025	2.9026	89.4	0.99995	1.0003			1.0003
77.5	0.97630	2.9397		2.9397	2.9397	89.5	0.99996	1.0002			1.0003
78	0.97815	2.9786		2.9785	2.9786	89.6	0.99998	1.0001	for $\theta_{\rm m} \in (8)$	9.6, 89.7)°	1.0002
78.5	0.97992	3.0192		3.0191	3.0192	89.7	0.99999	1.0001	$E_2(k)$ has a	false min.	1.0002
79	0.98163	3.0617		3.0616	3.0617	89.8	0.999999	1.0000			1.0003
79.5	0.98325	3.1064		3.1063	3.1064	89.9	1.00000	1.0000			1.0007
80	0.98481	3.1534		3.1533	3.1534	90	1.00000	1.0000	1.1781	1.1781	1.1781
80.2	0.98541	3.1729		3.1727	3.1729	The	values strii	ng in the	last colum	n is given	by:
80.4	0.98600	3.1928		3.1927	3.1928		·	($1 - \sqrt{1 - k^2}$)	-
80.6	0.98657	3.2132		3.2130	3.2132	$E_2(k$	$f(x) = (1 + \sqrt{1})$	$-k^{2}$)E ₁	$\frac{1}{\sqrt{1-n}}$	$\left -\sqrt{1-k}\right $	$^{2}K_{2}(k) =$
80.8	0.98714	3.2340		3.2338	3.2340				$1 + \sqrt{1-k^2}$	J	

$$= (1+k')E_{1}\left(\frac{1-k'}{1+k'}\right) - k'K_{2}(k) =$$

$$= (1+k')E_{1}\left(\frac{1-k'}{1+k'}\right) - \frac{2k'}{1+k'}K_{1}\left(\frac{1-k'}{1+k'}\right), \text{ with }:$$

$$\frac{1-k'}{1+k'} = k_{1} \text{ (descending Landen transformation), getting}$$

$$E_{1}(k_{1}) = \frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k_{1}'}\right)^{2} - \sqrt{2}\sqrt{1+k_{1}'}\sqrt{k_{1}'}\right] - k_{1}'\cdot K_{1}(k_{1}),$$

$$K_{1}(k_{1}) = \frac{\pi\sqrt{2}}{\sqrt{(1+k_{1}')\sqrt{k_{1}'}}}\left(1 - \frac{\sqrt{2}}{4}\frac{1+\sqrt{k_{1}'}}{\sqrt{(1+k_{1}')\sqrt{k_{1}'}}}\right)^{-\text{given before table 5;}}$$

$$E_{1}(k_{1}) = \frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k_{1}'}\right)^{2} - \sqrt{2}\sqrt{(1+k_{1}')\sqrt{k_{1}'}}\right] - \frac{\pi k_{1}'\sqrt{2}}{\sqrt{(1+k_{1}')\sqrt{k_{1}'}}}\left(1 - \frac{\sqrt{2}}{4}\frac{1+\sqrt{k_{1}'}}{\sqrt{(1+k_{1}')\sqrt{k_{1}'}}}\right) =$$

$$= \frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k_{1}'}\right)^{2} - \sqrt{2}(1+k_{1}')\sqrt{k_{1}'}} - \frac{k_{1}'\sqrt{2}}{\sqrt{(1+k_{1}')\sqrt{k_{1}'}}}\left(4 - \frac{\sqrt{2}(1+k_{1}')\sqrt{k_{1}'}}{\sqrt{(1+k_{1}')\sqrt{k_{1}'}}}\right)\right].$$

Expressing $k'_1(k)$: $k'_1 = (1 - k_1^2)^{1/2} = 2(k)^{1/2}/(1 + k)$, (ascending Landen transformation), and replacing it:

$$E_{1}(k_{1}) = \frac{\pi}{4} \left[\frac{3}{2} \left(1 + \frac{\sqrt{2}\sqrt[4]{k'}}{\sqrt{1+k'}} \right)^{2} - \sqrt{2} \left(1 + \frac{2\sqrt{k'}}{1+k'} \right) \frac{\sqrt{2}\sqrt[4]{k'}}{\sqrt{1+k'}} - \frac{\sqrt{2}\cdot\frac{2\sqrt{k'}}{1+k'}}{\sqrt{\left(1 + \frac{2\sqrt{k'}}{1+k'}\right)\frac{\sqrt{2}\sqrt[4]{k'}}{\sqrt{1+k'}}} \right]^{2} - \sqrt{2} \left(1 + \frac{\sqrt{2}\sqrt[4]{k'}}{\sqrt{1+k'}} \right)^{2} - \sqrt{2} \left(1 + \frac{\sqrt{2}\sqrt[4]{k'}}{\sqrt{1+$$

and then: $\underline{E_2(k) = (1+k')E_1(k_1) - k'K_2(k)}$, with $K_2(k)$ given just before table 5, getting the most accurate (seemingly intricate) formula, leading to a *new accurate expression for ellipse's perimeter* ($k \neq 1$; $k' \neq 0$). Similarly, the functions $K_{0-2}(k)$ ($k, k'=2^{-1/2}$) approximate the arc length of the entire Bernoulli's lemniscate. Concluding, the 3rd set of formulas is given by the recurrences: $\overline{K_2(k) = 2K_1(k_1)/(1+k')}$; $E_2(k) = (1+k')E_1(k_1) - k'K_2(k)$. Noting: $k'_1 = x$ and $[(1+x)\cdot x^{1/2}]^{1/2} = y$, one can write: $\overline{K_2(k) = \pi(2/k')^{1/2} \cdot (x/y)[1-(2^{1/4}/4)(1+x^{1/2})/y^{1/2}]}$; $E_2(k) = \pi(k')^{1/2}/(2x) \cdot \{(3/2)(1+x^{1/2})^2 - 2^{1/2}y - 2^{1/2}(x/y)[4-2^{1/4}(1+x^{1/2})/y^{1/2}]\} - k'K_2(k)$,

much simpler than previous ones (for calculation only). The validity of all approximate sets is limited to $k \in [0, k_{ext})$; $k_{extr} \le 1$, "extr" = extremum (max. for K, and min. for E; $k_{max} \ne k_{min}$) (see figs. 1 & 2 – the dashed black lines, and the solid red ones, resp.). The higher the "n" index is, the better the approximation is (the contact order at k = 0 is higher – hyperosculation, and the extrema are located closer to the range's right end, k = 1). We will cancel the recurrent-iterative scheme (stopping it to a specific "n" index value) when the maximum relative

error (over the whole valid domain of variation $k \in [0, \infty)$ k_{extr}) becomes lesser than the desired (required) accuracy. The first important application of the results obtained in chapter 4 consists in determining the locations of the extrema values $k_{\text{extr}}(k_{\text{max}})$ for $K_{n-1}(k)$ and k_{\min} for $E_{n-1}(k)$, corresponding to the annulment of their first derivatives with respect to k, using the relations: $K'_{n-1}(k) = dK_{n-1}(k)/dk = 0; E'_{n-1}(k) = dE_{n-1}(k)/dk = 0,$ and adding the recurrent definitions for $K_{n-1}(k)$ and $E_{n-1}(k)$. The 1st ODE above gives the value k_{max} and the 2nd one gives the value k_{\min} . Each of these ODEs has really two solutions. Besides the searched for one, both ODEs admit the solution k = 0, corresponding to a minimum for $K_{n-1}(k)$ and to a maximum for $E_{n-1}(k)$, both with the value $\pi/2$ (for both approximate and exact functions: $K_{n-1}(0) = E_{n-1}(0) = K(0) = E(0) = \pi/2$, with: $K'_{n-1}(0) = E'_{n-1}(0) = K'(0) = E'(0) = 0, \text{ but with :}$ $K'_{n-1}(0) > 0 \text{ and } K''(0) > 0 - a \text{ minimum, while :}$ $E''_{n-1}(0) < 0 \text{ and } E''(0) < 0 - a \text{ maximum).}$

Thus one knows now the values k_{max} and k_{min} (the right ends of the validity domains of the approximate functions). Using the direct formulas here found for (K₂, E₂), the iterative scheme's steps can be bypassed. In order to evaluate the accuracy of the 3rd set (K₂, E₂), similarly as for the previous two sets, (K₀, E₀) and (K₁, E₁), we define the relative errors: $\epsilon_{K_2}(k) = K_2(k)/K(k) - 1$, and: $\epsilon_{E_2}(k) = E_2(k)/E(k) - 1$, for the approximate formulas of 1st & 2nd kind integrals. Their values, expressed in thousandths (‰) are given in table 6. These errors were calculated for the 3rd set (K₂, E₂) only, with an increment of 0°.2 in the field $\theta \in [84^\circ, 89^\circ]$, and of 0°.1 beyond 89°. To get table 6, in table 3 were suppressed the columns $\epsilon_{K_0}(‰)$, $\epsilon_{E_0}(‰)$ (the most inaccurate) and were inserted the columns $\epsilon_{K_2}(‰)$, $\epsilon_{E_2}(‰)$, keeping for comparison the columns " θ (°)", " $k = \sin \theta$ ", " $\epsilon_{K_1}(‰)$ " and " $\epsilon_{E_1}(‰)$ " (from table 3), only.

Table 6. Relative errors ε distribution (part one) (this table completes and replaces table 3; $\theta \ge 84.8^{\circ}$)

$\theta(\circ)$	$k = \sin \theta$	$\varepsilon_{K1}(\%)$	$\varepsilon_{K_2}(\%)$	$\epsilon_{E_1}(\infty)$	$\epsilon_{E_2}(\%)$
84.8	0.99588	-0.369	0	+0.607	0
85	0.99619	-0.396	0	+0.592	0
85.2	0.99649	-0.451	0	+0.705	0
85.4	0.99678	-0.500	0	+0.748	0
85.6	0.99705	-0.582	0	+0.823	0
85.8	0.99731	-0.652	0	+0.932	0
86	0.99756	-0.737	0	+1.076	0
86.2	0.99780	-0.832	0	+1.160	0
86.4	0.99803	-0.945	0	+1.284	0
86.6	0.99824	-1.077	0	+1.453	0
86.8	0.99844	-1.214	0	+1.571	0
87	0.99863	-1.421	0	+1.743	0
87.2	0.99881	-1.626	0	+1.976	0
87.4	0.99897	- 1.894	0	+2.275	0
87.6	0.99912	-2.234	0	+2.553	0
87.8	0.99926	-2.655	0	+2.922	0
88	0.99939	-3.156	0	+3.397	0
88.2	0.99951	-3.808	0	+4.004	0

Tab	le 6.	Relat	tive error	sε	distribution	(part	two))
-----	-------	-------	------------	----	--------------	-------	------	---

88.4	0.99961	-	0	-	0
88.6	0.99970	-	0	-	0
88.8	0.99978	-	0	-	0
89	0.99985	-	0	-	0
89.1	0.99988	-	0	-	0
89.2	0.99990	-	0	-	0
89.3	0.99993	-	0	-	0
89.4	0.99995	-	0	-	0
89.5	0.99996	-	-0.033	-	+0.1
89.6	0.99998	-	-0.047	-	+0.1
89.7	0.99999	-	-0.075	-	+0.1
89.8	0.99999	-	-0.170	-	+0.3
89.9	1.00000	-	-0.452	-	+0.7
90	1.00000	-2000	-2000	178.097	178.097

The errors strings are stopped if their modulus is ≥ 4 ‰. From the tables 3 and 6 one can see that, for any nth set of approximation and at any k value, $\varepsilon_{\rm K} < 0$ (K_n < K) and $\varepsilon_{\rm E} > 0$ $(E_n > E)$, i.e. K is approximated by lack, while E – by excess. The "0" $\varepsilon_{K,E}$ values mean "the first 4 decimal digits identical to those in tables [6]". One can also build the 3^{rd} set $[K_2(\theta), E_2(\theta)]$, expressed in trigonometric functions, replacing k' in $[K_2(k)]$, $E_2(k)$ set by $\cos \theta$ and applying usual trigonometric identities. The comparative series representations and the graphic comparison are superfluous, due to the great accuracy of the approximate values given by the 3rd set (practically identical to the exact ones, which could be already noticed from the analysis of the 2nd set, this showing the fast converging character of this recurrent-iterative scheme). Except for the domain's right end (k = 1), the 3rd set of approximation (K_2, E_2) , even more accurate than the 2nd one (K_1, E_1) , may be considered and successfully used instead of the exact values of K(k) and E(k) from mathematical tables. A false minimum takes place for all $E_n(k)$: for $E_2(k)$, at $\theta = 89^{\circ}.7 \ (k = 0.99999);$ for $E_1(k)$, at $\theta = 88^{\circ} \ (k = 0.99939)$, and for $E_0(k)$, at $\theta = 83^{\circ}.62$ (k = 0.99381). The graphs of all $E_n(k)$ pass through the point $(1, 3\pi/8 = 1.178097)$; for k tending to unity, the graphs of all $K_n(k)$ go toward $(-\infty)$ – singularity; the higher n^{th} sets ($n \ge 4$) give better accuracy). Unlike the mathematical tables (and in addition to them), all approximation sets (the 1^{st} , 2^{nd} , 3^{rd} and the higher n^{th} (n \geq 4) ones) allow performing the *analytic study of variation* of the functions in which K(k) and / or E(k) appear /s, using the derivatives of the 1^{st} and 2^{nd} order (with respect to k). Remarks: 1. As a first step in applying the new recurrentiterative scheme, even the obtaining of the 2^{nd} set (K_1, E_1) as a function of the 1^{st} one (K₀, E₀) (in ch. 2) may be considered, i.e. this scheme starts really at the 2^{nd} set. It is to be highlighted the used method is a *purely analytic* one (neither numerical methods nor sophisticated software, at most using MatLab's (software package for engineers) "Symbolic Math" toolbox, for analytically solving the more intricate algebraic equations encountered). Its simplicity, accuracy and fast convergence, as well as its *limitations* depend *exclusively* on the *correct* choice of its starting point (approximation set) (K₀, E₀). It must be quite precise, and especially, as simple as possible.

The starting approximate formula-definition giving $E_0(k)$ was suggested to the author by an old approximate formula (Peano, [20], [21]) for the perimeter L of an ellipse of semiaxes a and $b \leq a$: $L \approx \pi [1.5(a+b) - (ab)^{1/2}] - a \text{ good } (\& \text{ simple}) \text{ approx. with the}$ best accuracy for b = a (circle): $L = 2\pi a$, and the worst one for b=0 (Ox' segment): $L=1.5\pi a$, instead of L=4a ($\epsilon\approx 17.81$ %), or by Peano's optimized law: $L_1 \approx \pi [1.32(a+b) - 0.64(ab)^{1/2}]$, with the smallest overall error [22] (about 7 times smaller than that of the original law); for b = a: $L_1 = L = 2\pi a$, and for b = 0: $L_1 =$ 1.32 πa , much closer to the exact value L = 4a ($\epsilon \approx 3.67$ %). For its behaviour at low b/a ratios (is not tangent at k = 0 to the exact curve, cutting it), this formula is not found on the list of the very accurate (but not simple) approximations [22] (Padé, Jacobsen, Ramanujan (2 expressions), Rackauckas), all expressed in terms of a particular ratio: $h = [(a-b)/(a+b)]^2 \equiv k_1^2$. Thus a reliable approximate (by excess) formula-definition was obtained (see chapter 2) for the Legendre complete elliptic integral of the 2nd kind (in the 1st set of approximation): $E_0(\vec{k}) = (\pi/4)[1.5(1+k') - (k')^{0.5}]; k' = (1-k^2)^{0.5} = b/a;$ or: $E_{01}(k) = (\pi/4)[1.32(1+k') - 0.64(k')^{0.5}]$ (Peano's optimized). If in the power series we stop at the 'rank 5' term (see ch. 4), the error is $(3/2^{14})k^8 = (3/16384)k^8$, i.e. small enough (asymptotic expansion). As for the pair approximate formula-definition giving $K_0(k)$, this was obtained using the previous one for $E_0(k)$ and applying the definition of the first derivative of E(k) with respect to k. dE(k)/dk = [E(k) - K(k)]/k (see chapter 4), thus getting: K(k) = E(k) - k[dE(k)/dk]; replacing K(k) and E(k) by their 1^{st} approximations: $K_0(k)$ and the previously given $E_0(k)$, one gets: $K_0(k) = (\pi/8)[3/2(1+1/k') - (k')^{0.5}(1+1/(k')^2)]$, of a lesser accuracy (esp. for $\theta > \pi/3$) than E₀(k). To improve this, one uses a descending Landen transformation: $K(k) = (1 + k_1)K(k_1)$ with $k_1 = (1 - k')/(1 + k') \le k$, and replacing in K(k), one gets: $K_0(k) = \pi [1/(k')^{0.5} - (1/2^{1.5})(1+k')^{0.5}/(k')^{0.75}] \ge K_0(k)$ (see ch. 2), of an accuracy (in modulus) much closer to that of its pair $E_0(k)$. Being practically generated by the same mathematical source, $K_0(k)$ and $E_0(k)$ vary (ordinates, slopes, asymptote, extrema, concavities, convexities, inflections) in perfectly correlated way. So, at the value k_{extr} corresponding to a false minimum for $E_0(k)$, $K_0(k)$ must equate $E_0(k)$, to satisfy the annulment of $dE_0(k)/dk$. To prepare this, $K_0(k)$ must stop its vertiginous ascension to ∞ , making a false inflection, and then a false max. at $k_{\text{Extr}} < k_{\text{extr}}$ and a vertiginous (k = 1 – vertical asymptote) fall toward ($-\infty$); so $K_0 = E_0$ at k = 0 and $k = k_{extr.}$ But, due to its additional step (to have $|\varepsilon_{K_0}| \approx |\varepsilon_{E_0}|$), K_0 is not generated by the same mathematical source as E₀. To minimise the unwished events, limiting them to a getting thinner region for rising n (already 1/300 of the field $[0, \pi/2]$ at n = 2) near k = 1, one applies the descending Landen transformation, passing from k to $k_1 \leq k$, where all goes well, also keeping all advantages of the asymptotic behaviour of the new functions (K_n, E_n) , i.e. applying a higher n^{th} $(n \ge 2)$ set (repeating this scheme until the desired accuracy for (K_n, E_n) is obtained; fortunately, this scheme is fast converging); though it keeps the limitation at k=1, Peano's optimized law accelerates the scheme. 2. Besides the formulas for transforming the modulus using the descending Landen transformation, there are formulas using the ascending Landen transformation (not of interest here).

Appendix' 1 conclusions

Some authors (e.g.: Bagis - see [14]) choose to start from more precise formulas for the perimeter of an ellipse (similar to Ramanujan's "type π formulas" (1914) – see [23]): $L_1 = \pi \{3(a+b) - [(a+3b)(3a+b)]^{1/2}\} = \pi \{3(a+b) - [10ab+3(a^2+b^2)]^{1/2}\} - Ramanujan 1^{st}$ approximation; $L_{II} = \pi(a+b)\{1+3h/[10+(4-3h)^{12}]\}; h = [(a-b)/(a+b)]^2 \equiv k_1^2$ - the more famous Ramanujan 2nd approximation; the errors in these empirical relations are of order h^3 and h^5 (both are very accurate, but not as simple as possible), in order to get approximate formulas as accurate as possible for Legendre's *complete elliptic integrals.* In [14], instead of ' π ' from Ramanujan's formulas, appears the constant $\Gamma^2(1/4)/\pi^{3/2}$ (the length of the entire Bernoulli's lemniscate is: $L_{\rm B} = 2^{3/2} a K (2^{-1/2})$ = $[\Gamma^2(1/4)/(2\pi)^{1/2}]a; a = 2^{1/2}c$ - the half-width; c - focal coord.). We cite from [22]: "What makes Ramanujan's first formula interesting to this Author is the fact that, like the first form of Peano's approximation, it can be interpreted as a combination of the arithmetic mean with another one, denoted as R(a, b, w)and defined by: $R(a, b, w) = [(a + wb)(b + wa)]^{1/2}/(1 + w)$. In Ramanujan's formula we have w = 3 and the two means are combined linearly with the relative weights +3 and -2, resp." Although it seems to conflict with the beginning of its remark 1, this appendix demonstrates that even choosing as a starting point a "not so precise" (with big problems at the domain's right end, k = 1), but especially simple formula (like Peano's one, or better, Peano's optimized one), and applying the fast converging recurrent-iterative scheme (including the descending Landen transformation, to solve the unwished behaviour of $E_n(k)$ appeared near k = 1, due to any of Peano's approximate laws – method's major limitation (see the 2^{nd} part of remark 1)), similar results (from the viewpoint of their accuracy) for Legendre's complete elliptic integrals [K(k),E(k) (with very small values of the relative errors (ε_{K} , ε_{E}) - practically zero) can be obtained already beginning even with the 3^{rd} set of approximation (K_2, E_2) – see tables 4 – 6. As regards the relations describing the recurrence, they are: $K_n(k) = [2/(1 + k')]K_{n-1}(k_1)$, and:

 $E_n(k) = (1 + k')E_{n-1}(k_1) - [2k'/(1 + k')]K_{n-1}(k_1)$, resp., with $k_1 = (1 - k')/(1 + k') \le k$, this representing even the source of the descending Landen transformation; they express the values of the $(n + 1)^{th}$ set in function of those of the n^{th} one. The recurrent-iterative scheme has two advantages over the interpolation, regression and spline methods: 1. does not require the points' coordinates; 2. its accuracy can be improved no matter how much. To bypass it, the here found direct formulas for (K₂, E₂) can be applied; (for practical applications, the 3rd set is accurate enough; it can be used until $\theta = 89^\circ$.7; k = 0.99999; see tables 4 - 6). $E_{1,2}(k)$ lead also to better expressions for ellipse's perimeter than $E_0(k)$ (the original Peano's one).

Appendix' 1 references:

[16] Landen, J., XXXVI. A Disquisition Concerning Certain Fluents, which are Assignable by the Arcs of the Conic Sections; Wherein are Investigated Some New and Useful Theorems for Computing Such Fluents, Philosophical Transactions of the Royal Society of London, vol. 61, 1771, pp. 298 - 309; https://doi.org/doi:10.1098/rstl.1771.0037 [17] Landen, J., XXVI. An Investigation of a General Theorem for Finding the Length of Any Arc of Any Conic Hyperbola, by means of Two Elliptic Arcs, with Some Other New and Useful Theorems Deduced Therefrom, Philosophical Transactions of the Royal Society of London, vol. 65, 1775, pp. 283-289; https://doi.org/doi:10.1098/rstl.1775.0028. [18] Selescu, R., Simple Closed Analytic Formulas to approximate the First Two Legendre's Complete Elliptic Integrals by a Fast Converging Recurrent-Iterative Scheme, WSEAS Transactions on Computer Research, Vol. 9, pp. 55 – 67, 6 July 2021, DOI: 10.37394/232018.2021.9.7; https://wseas.com/journals/cr/2021.php.

[19] Selescu, R., Formulas to approximate Legendre's Complete Elliptic Integrals using Peano's Law on Ellipse's Perimeter and a Recurrent-Iterative Scheme (Landen's Transform Included), International Journal of **Computational and Applied Mathematics & Computer** *Science*, Vol. 1, pp. 46 – 58, 2021, ISSN 2769 – 2477; http://www.icamcs.co/papers/2021/icamcs(2021)-007.pdf. [20] Peano, G., Applicazioni geometriche del calcolo infinitesimale, Fratelli Bocca Editori, Torino, 1887; (in Italian), p. 233; the approximate formula for the ellipse perimeter was: $L \approx \pi(a+b) + (\pi/2)(a^{1/2} - b^{1/2})^2$. [21] Peano, G., VIII An approximation formula for the perimeter of the ellipse, 1889, pp. 135 – 136 in Selected Works of Giuseppe Peano, Translated and edited, with a biographical sketch and bibliography, by Hubert C. Kennedy; Series: Heritage; Copyright Date: 1973; Published by: University of Toronto Press; Pages: 262; the approximate formula for ellipse perimeter (due to J. Boussinesq in the Comptes rendus, Académie des Sciences, Paris, 1889, p. 695) was given in the wellknown equivalent form: $L \approx \pi [3(a + b)/2 - (ab)^{1/2}];$ https://www.jstor.org/stable/10.3138/j.ctt1vxmd8x. [22] Sýkora, St., Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae, Review by Stanislav Sýkora, Extra Byte, Ed. S. Sýkora, Vol.I; First release: December 27, 2005. Permalink via DOI: 10.3247/SL1Math05.004; http://www.ebyte.it/ library/docs/math05a/EllipsePerimeterApprox05.html. [23] Ramanujan, S., Modular Equations and Approxi-

[23] Ramanujan, S., *Modular Equations and Approximations to* π , § 16, *Quart. J. Pure App. Math.*, vol. 45, pp. 350 – 372, 1914, ISBN 9780821820766. Appendix 2 – Approximating the integral $\Pi(n, k)$ Using the previously given theoretical results (consisting of high-accuracy simple closed purely algebraic functions found by applying our scheme of approximation as desired for the integrals K(k) and E(k)) and *the expressions established for the partial derivatives* of the complete elliptic integral of the 3rd kind, $\Pi(n, k)$ (introduced by Legendre, in canonical form:

$$\Pi(n,k) = \int_0^{\pi/2} d\varphi / [(1 - n \sin^2 \varphi)(1 - k^2 \sin^2 \varphi)^{1/2}],$$

being sometimes defined with an inverse sign for *n*:

$$\Pi'(n,k) = \int_0^{n/2} d\varphi / [(1 + n \sin^2 \varphi)(1 - k^2 \sin^2 \varphi)^{1/2}]),$$

with respect to *n* (characteristic; *n* can take on any value), and to *k* (modulus; $k \in [0, 1]$) with $k^2 = m$ (parameter), resp. – a system of two linear PDEs of the first order (https://en. wikipedia.org/wiki/Elliptic_integral#Partial_derivatives):

$$\frac{\frac{\partial \Pi(n,k)}{\partial n} = \frac{1}{2(k^2 - n)(n - 1)} \left[E(k) + \frac{1}{n} (k^2 - n) K(k) + \frac{1}{n} (n^2 - k^2) \Pi(n,k) \right];$$

$$\frac{\partial \Pi(n,k)}{\partial k} = \frac{k}{n - k^2} \left[\frac{1}{k^2 - 1} E(k) + \Pi(n,k) \right]$$

(so that: $d\Pi(n, k) = [\partial \Pi(n, k)/\partial n] dn + [\partial \Pi(n, k)/\partial k] dk$) in canonical form, both expressed through K(k), E(k) and $\Pi(n, k)$, with the unknown function $\Pi(n, k)$. (The above definition of $\Pi(n, k)$ has two remarkable particular cases: $\Pi(0, k) \equiv K(k)$, and $\Pi(k^2, k) \equiv E(k)/(1-k^2) - \text{see}[7].$ In the 1st PDE K(k) and E(k) are considered constants. Just like the other two complete elliptic integrals, (K(k)) and E(k), $\Pi(n, k)$ can be computed very efficiently using the arithmetic-geometric mean AGM – see [24] – [27]); for the 2^{nd} equation of the system above also see [24], § 19.4(i) Derivatives, Eq. 19.4.4 (https://dlmf.nist.gov/19). One can solve (integrate, preferably analytically) this system, expecting to find for $\Pi(n, k)$ similar closed analytic approxi*mate functions*, of a similar order of precision to the purely algebraic (differentiable and integrable) ones found for K(k)and E(k). In the first solving step K and E are kept in symbolic form (not expressed wrt k), then our approximations are used. The indefinite integral of $\Pi(n, k)$ wrt k (a "partial" integral) can also be expressed through K(k), E(k) and $\Pi(n, k)$: $\int \Pi(n, k) dk = 2[E(k) - K(k) + (k - n)\Pi(n, k)]$ (https://functions. wolfram.com/EllipticIntegrals/EllipticPi/introductions/ CompleteEllipticIntegrals/ShowAll.html; here is also the relationship of $\Pi(n, k)$ with $F(\varphi, k)$ and $E(\varphi, k)$ the incomplete elliptic integrals of the 1st and 2nd kind; see sect. "Connections within the group of complete elliptic integrals and with other function groups", sub-s "Representations through more general functions").

Besides the here given Legendre normal form, the elliptic integrals can also be expressed in Carlson symmetric form. For other computation method and for tables see [28]–[30]. In ([29], [30]) all three elliptic integrals K, E, Π are computed. The effective determining of the approximate formulas for $\Pi(n, k)$ (Π_{0-2}) will form the object of a future research work.

Appendix' 2 references

[24] Carlson, B. C. (2010), *Elliptic Integrals*, ch. 19 in Olver, F. W. J., Lozier, D. M., Boisvert, R. F., Clark, C. W. (eds.), *NIST Handbook of Mathematical Functions*, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248; version 1.1.7 – released on Oct. 15, 2022.
[25] Carlson, B. C., *A Table of Elliptic Integrals of the Third Kind*, *Math. Comp.*, Vol. 51, No. 183 (1988), pp. 267 – 280, MR 89k: 33003.

[26] Gray, N., Automatic Reduction of Elliptic Integrals Using Carlson's Relation, Math. Comp., Vol. 71, No. 237 (Jan. 2002), pp. 311-318, AMS; https://ams.org/journals/mcom/2002-71-237/S0025-5718-01-01333-3/S0025-5718-01-01333-3.pdf. [27] Carlson, B. C., Three Improvements in Reduction and Computation of Elliptic Integrals, J Res Natl Inst Stand Technol, 2002, Sep-Oct; 107(5), pp. 413-418, Published online 2002 Oct 1; doi: 10.6028/res.107.034. [28] Fettis, H. E., Calculation of Elliptic Integrals of the Third Kind by Means of Gauss' Transformation, *Math. Comp.*, Vol. 19, No. 89 (1965), pp. 97 – 104. [29] Fettis, H. E., Caslin, J. C., Tables of Elliptic Integrals of the First, Second and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio, 1964. [30] Horig, P., Elliptic Integrals; the Landen Transformation and Carlson Duplication, PhD thesis, 132 pp., 2014 (https: //www.academia.edu/11191001/Elliptic Integrals the Landen Transformation and Carlson Duplication).

Acknowledgements:

Unlike numerical methods (somewhat standard), analytic ones needs a lot of imagination from the developer. The author is fully indebted to some renowned scholars: Bille C. Carlson, Leonhard Euler (addition formula: $\int_{a}^{b} \omega + \int_{a}^{q} \omega = \int_{a}^{b^{+q}} \omega; \omega = dx/y; y^2 = P(x);$ $\int_{a}^{b} \omega = \int_{a}^{b} dx/P(x)^{12}$ – elliptic integral; for *P* see ch. 1), Carl Friedrich Gauss (Gauss' transformation), John Landen, Adrien-Marie Legendre, Giuseppe Peano, Srinivasa Ramanujan, for their valuable mathematical theories – starting ideas for this work.

Final note (work history)

Without appendix' 1 conclusions and no acknowledgement, with a reduced remark 1, the work's 1st version appeared in unitary form (the sets (0; 1) of formulas + the appendix 1) as [18]. The 2nd one (revision) was needed (published as [19]). In this 3rd version the title was limited to ten words and an explanation in remark 1 was corrected (improved). The MSC2020 (Mathematics Subject Classification, namely: elliptic functions and integrals; systems of linear first-order PDEs; initial value problems for systems of linear first-order PDEs; initial-boundary value problems for systems of linear first-order PDEs; initial-boundary value problems for systems of linear first-order approximation by polynomials; approximation by rational functions; Padé approximation; asymptotic approximations, asymptotic expansions) was introduced and the appendix 2 and the acknowledgements were added.

Creative Commons Attribution License 4.0 (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0 <u>https://creativecommons.org/licenses/by/4.0/deed.en_US</u>