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1 Introduction 

Statistical process control (SPC) is frequently 

used in production process or manufacturing  to 

measure how consistently a product performs 

according to its given specifications. It helps us 

to monitor, control, and improve the process by 

eliminating special cause variation in a process 

(Porter and Oakland1). The level of deviation of 

a process relative to its specification limits is 

measured by the process capability index (PCI) 

that can be measured using various statistics in 

literature. The most commonly used PCI is Cp 

(Juran2, Kane3, and Zhang4), which is the 

fraction of the range between the process 

specifications to the spread of the process 

values, as measured by six standard deviation 

units. In fact, Cp gives the size of the range 

over which the process actually differs. In this 

paper we will empathize Cp which  is suggested 

by Kane (1986) and defined  as follows: 

                Cp =
USL−LSL

6σ
,                                

(1.1) 

where USL is the upper specification limit, LSL 

is the lower specification limit and σ is the 

process standard deviation. The numerator of 

Cp provides the size of the range over which the 

process capacities can differ. The denominator 
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offers the size of the range over which the 

process essentially differs (Kotz and Lovelace 

(1998)). Since both USL and LSL are 

predetermined by the practitioners, Cp mostly 

depends on the value of the process standard 

deviation σ. Let X1, X2, …,Xn be a random 

sample of size n from a distribution with finite 

mean µ  and variance σ2. The estimated Cp can 

be obtained follows,  

                  𝐶̂𝑝 =
USL−LSL

6S
,                              

(1.2) 

where 𝑆 = √
1

𝑛−1
∑ (𝑋𝑖 − 𝑋̅)2𝑛

𝑖=1  is the sample 

standard deviation. More on Cp can be found in 

Montgomery (2020) among others.  An 

overview of the process capability indices is 

given by Porter and Oakland (1991) and a 

compact survey and brief interpretations and 

comments on 170 publications on capability 

indices between 1992 to 2000 are given by Kotz 

and Johnson (2002).  

Although the point estimator of Cp can be a 

suitable measure, however, it is obvious that the 

interval estimates and test of the hypothesis of 

Cp are also crucial. Numerous researchers have 

considered several techniques for estimating Cp 

by the confidence interval method. For 

examples, Kocherlakota and Kocherlakota, 

(1994), Abu-Shawiesh et al. (2020 a,b), 

Hummel and Hettmansperger (2004), 

Panichkitkosolkul (2014, 2016), Zhang, (2010) 

and very recently Kibria and Chen (2021) 

among others. However, the literature on the 

test statistics for testing the Cp is very 

inadequate.  

We can see from (1.2) that the estimated Cp 

heavily depends on the value of the sample 

standard deviation S. For a skewed distribution, 

the median describes the center of the 

distribution better than the mean. Thus for 

skewed data, it make sense to define the sample 

standard deviation in terms of the median rather 

than the mean (Shi and Kibria, 2007).  Wright 

(1995) and Chang et al. (2002) concluded that 

the process capability index is sensitive to the 

skewness.  Therefore, the objective of this paper 

is to consider and also to propose some new test 

statistics based on the modified standard 

deviation for testing the population Cp and 

compare them with some existing tests under 

both normal and non-normal distributional 

conditions. It is important to note that tests with 

correct sizes and good powers are essential, 

particularly in finite samples. The organization 

of the paper is as follows. Several test statistics 

are  provided in section 2. To compare the 

performance of the test statistics, a simulation 

study has been conducted in Section 3. Some 

concluding remarks are drawn in Section 4. 

 

2 Statistical Methodology 

 

We will review and propose some new test 

statistics for testing the null hypothesis H0: 

𝐶𝑝 ≤ 𝐶𝑝0 (the process is not capable) against 
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the alternative hypothesis H1: 𝐶𝑝 >  𝐶𝑝0 (the 

process is capable) in this section. 

 

2.1  Classical test 

Suppose ),(N~X,...,X,X 2

n21  , then it can 

be shown that under the null hypothesis, the 

ancillary statistic  
(𝑛−1)𝐶𝑝𝑜

2   

𝐶̂𝑝   
2    has a   Chi-square 

distribution with (n-1) degrees of freedom. 

Thus,  to test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, 

the test statistic is defined as 

                     2 =
(𝑛−1)(𝐶𝑝0)2

𝐶̂𝑝
22 ,                     (2.1) 

where 𝐶̂𝑝 is the sample estimate of population 

Cp. At α level of significance, the null 

hypothesis will be rejected when 𝜒2 >

 𝜒1−𝛼,𝑛−1
2  and  𝜒1−𝛼,𝑛−1

2   is the upper 1− α 

quintile of the central chi-squared distribution 

with n-1 degrees of freedom. 

 

2.2  Test based on adjusted degrees of 

freedom 

Hummel and Hettmansperger (2004) proposed 

an estimate for the degrees of freedom using the 

method of matching. It depends on the fact that 

the sample variance is a sum of squares and, for 

sufficiently large samples, is approximated as a 

chi-square estimate with the appropriate degrees 

of freedom. They matched the first two 

moments of the distribution of sample variance 

with that of a random variable X, which is 

distributed as c
𝑟
2. The solution for r and c is 

solved using the following systems of 

equations:  

1) 2 = cr and  

2)  
𝜎4

𝑛
( −

𝑛−3

𝑛−1
)=2rc2  

where  is the kurtosis of the distribution.  

Following Panichkitkosolkul (2016), to test H0: 

𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test statistic is 

defined as 

                      2 =
𝑟̂ (𝐶𝑝0)2

𝐶𝑝̂2                 (2.2) 

where 𝑟̂ =
2𝑛

 ̂+2𝑛/(𝑛−1)
  and  ̂ =

𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)

∑ (𝑋𝑖 − 𝑋̅)4𝑛
𝑖=1

𝑆4 −  
3(𝑛−1)2

(𝑛−2)(𝑛−3)
.   

At α level of significance, the null hypothesis 

will be rejected when 𝜒2 >  
1−𝛼,𝑟̂
2 , where  


1−𝛼,𝑟̂
2   is the upper 1− α quintile of the central 

chi-squared distribution with 𝑟̂ degrees of 

freedom.   

2.3  Test based on the large sample theory 

If the normality assumption is invalid, then one 

can use the large sample theory, where S2 ~ 

N(2,
𝜎4

𝑛
(𝑒 +

2𝑛

𝑛−1
 )) , 𝑒 is the excess kurtosis. 

Following, Panichkitkosolkul (2016), to test  

H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test statistic 

is defined as 

             𝑍 =  
2𝑙𝑜𝑔𝑐𝑝̂−2𝑙𝑜𝑔𝐶𝑝0

√𝐴
                             

(2.3) 
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where A = 
𝐺2++2𝑛/(𝑛−1)

𝑛
 and 𝐺2 =

𝑛−1

(𝑛−2)(𝑛−3)
[(𝑛 − 1)𝑔2 + 6], 𝑔2 =

𝑚4

𝑚2
2 − 3,                                

𝑚4 = 𝑛−1 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅4𝑛
𝑖=1  and 𝑚2 =

𝑛−1 ∑ (𝑋𝑖 − 𝑋)̅̅ ̅2𝑛
𝑖=1 .  At α level of significance, 

the null hypothesis will be rejected when 𝑍 >

 𝑍𝛼, where  𝑍𝛼  is the upper 1− α quintile of the 

standard normal distribution. 

2.4  Test based on the augmented large 

sample theory 

Burch (2014) considered a modification to the 

approximate distribution of log(S) by using a 

three-term Taylor’s series expansion. 

Employing the large sample properties of S2, 

and following Burch (2014) and 

Panichkitkosolkul (2016), to test H0: 𝐶𝑝 ≤ 𝐶𝑝0 

vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test statistic is defined as 

                𝑍 =  
2𝑙𝑜𝑔 𝑐𝑝̂−2𝑙𝑜𝑔𝐶𝑝0−𝐶

√𝐵
                    

(2.4) 

where B= 𝑣𝑎𝑟̂ log(𝑆2) ≈
1

𝑛
(𝑒 +

2𝑛

𝑛−1
) (1 +

1

2𝑛
(𝑒 +

2𝑛

𝑛−1
)), C = 

̂𝑒,5+2𝑛/(𝑛−1)

2𝑛
, ̂𝑒,5 =

(
𝑛+1

𝑛−1
) 𝐺2(1 +

5𝐺2

𝑛
). At α level of significance, 

the null hypothesis will be rejected when 𝑍 >

 𝑍𝛼, where  𝑍𝛼  is the upper 1− α quintile of the 

standard normal distribution. 

2.5  Robust test 

The sample mean and the sample variation can 

be influenced by the outliers or extreme values 

of the distribution. To overcome the extreme 

value problem, the trimmed technique is very 

useful (Burch (2014), Tukey (1948), and Dixon 

and Yuen (1974) among others). To modify the 

variance of the trimmed mean, Sindhumol et al. 

(2016) recommended an amendment, which is 

multiplying the variance of the trimmed mean 

with a fine-tuning constant.  This technique can 

be described as follows: Consider Xi ~ N(,2),  

i=1,2,…,n. Assume that the order statistics of 

above random samples is denoted by 𝑋(1) ≤

𝑋(2) ≤ . . . ≤ 𝑋(𝑛). Then the r-times 

symmetrically trimmed sample is obtained by 

reducing both bottommost and uppermost 𝑟 

values. Then the trimmed sample mean and the 

trimmed sample standard deviation is defined 

respectively as follows: 𝑋̅𝑇 =
1

𝑛−2𝑟
∑ 𝑋(𝑖)

𝑛−𝑟
𝑖=𝑟+1    

and ST = √
1

n−2r−1
∑ (X(i) − X̅T)2n−r

i=r+1  , where 

𝑟 =  [𝛼𝑛], trimming is done for 100α% (0 ≤ α 

≤ 0.5) of 𝑛. The modified trimmed standard 

deviation, suggested by Sindhumol et al. 

(2016)) and is defined as follows: S*
T= 

1.4826ST (For details, see Abu-Shawiesh et al. 

(2020a, b)).  Now, in the view of equations 

(2.1) and (2.2), to test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 

𝐶𝑝 >  𝐶𝑝0, the test statistic is defined as 

                 2 =
(𝑛−1)(𝐶𝑝0)2

𝐶̂𝑝
∗2                            (2.5) 

where 𝐶̂𝑝
∗ =

USL − LSL

6 𝑆𝑇
∗  is the sample estimate of 

population Cp. At α level of significance, the 

null hypothesis will be rejected when 𝜒2 >

 
1−𝛼,𝑟̂
2 , where  1−𝛼,𝑟̂

2   is the upper 1− α quintile 

of the central chi-squared distribution with 𝑟̂ 

degrees of freedom.   
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2.6  Bootstrap test 

Efron (1979) introduced the Bootstrap 

technique, which involves no assumptions 

about the primary population and can be applied 

to a range of situations. The accurateness of the 

bootstrap statistic relies on the number of 

bootstrap samples. If the number of bootstrap 

samples is large enough, the estimate may be 

precise. A bootstrap method is summarized as 

follows: Let X(*) = (*)
1X , (*)

2X , …, (*)
nX , where 

the ith sample is denoted X(i) for i=1,2 ,…, B, 

and B are the number of bootstrap samples. The 

number of bootstrap samples is naturally 

between 1000 and 2000. Following, 

Panichkitkosolkul (2014) to test H0: 𝐶𝑝 ≤ 𝐶𝑝0 

vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test statistic is defined as  

 

              𝑡0
∗ =

1

2
(

𝐶𝑝0
2

𝐶𝑝̂2 𝑆2𝑘1 − 𝑘1),              (2.6) 

where 𝑘1 =  √2𝑛 − 2  . We will reject the null 

hypothesis, when 𝑡0
∗ >  𝑡̂1−𝛼

∗  , where  𝑡̂1−𝛼
∗  is the  

quintiles of the following statistic, 𝑇∗ =

𝑆∗2
− 𝑆2

√𝑣𝑎𝑟̂(𝑆∗2
)

, where 𝑠∗2
 is a bootstrap replication of 

the statistic  𝑠2, 𝑣𝑎𝑟̂(𝑠∗2
) =

1

𝑛
(𝜇̂4

∗ −
𝑛−3

𝑛−1
𝑠∗4

) 

and 𝜇̂4
∗  = 

1

𝑚
∑ (𝑋𝑖

∗ − 𝑋̅∗)4.𝑚
𝑖=1  

 

2.7. Proposed Modified (new) Test Statistics 

Motived by the robust test statistic in section 

2.5, we would like to use the sample median 

which is more resistant to outliers and skewed 

distribution, to define the sample standard 

deviation. The benefit of modified standard 

deviation for showed population was found in 

Shi and Kibria (2007). Now, we will propose 

following some new test statistics by 

modifying Equations (2.1), (2.2), (2.3) and (2.4)  

just by replacing each S by SM, where 

 

          𝑆𝑀 = √
∑ (𝑋𝑖−𝑀𝑑)2𝑛

𝑖=1

𝑛−1
                          (2.7) 

and Md is the median of the observations of X1, 

X2,…., Xn.  

 

2.7.1  Modified Classical test 

To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test 

statistic is defined as 

2 =
(𝑛−1)(𝐶𝑝0)2

(𝐶𝑝
𝑀)

2                                                  

(2.8) 

where  𝐶𝑝
𝑀 =

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑀
   is the modified sample 

estimate of population Cp. At α level of 

significance, the null hypothesis will be rejected 

when 𝜒2 >  𝜒1−𝛼,𝑛−1
2  and  𝜒1−𝛼,𝑛−1

2   is the 

upper 1− α quintile of the central chi-squared 

distribution with n-1 degrees of freedom. It is 

noted that we have assumed the distribution of 

the test statistic will be approximately chi-

squared as classical test.  Since, our objective is 
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to compare the performance of the test statistics 

using empirical power,  the critical values from 

chi-squared distribution does not effect that 

much as long as it attained the nominal level of 

the test. The same explanation is applicable for 

the following modified test statistics. 

2.7.2 Modified Test based on adjusted 

degrees of freedom 

To test H0: Cp≤𝐶𝑝0 vs. H1: Cp>𝐶𝑝0, the test 

statistic is defined as 

              2 =
𝑟̂ (𝐶𝑝0)2

(𝐶𝑝
𝑀)

2           (2.9) 

where 𝑟̂ =
2𝑛

 ̂+2𝑛/(𝑛−1)
  and  ̂ =

𝑛(𝑛+1)

(𝑛−1)(𝑛−2)(𝑛−3)

∑ (𝑋𝑖 − 𝑀𝑑)4𝑛
𝑖=1

𝑆𝑀
4 −  

3(𝑛−1)2

(𝑛−2)(𝑛−3)
.   

At α level of significance, the null hypothesis 

will be rejected when 𝜒2 >  
1−𝛼,𝑟̂
2  and  1−𝛼,𝑟̂

2   

is the upper 1− α quintile of the central chi-

squared distribution with 𝑟̂ degrees of freedom.   

2.7.3  Modified Test based on the large 

sample theory 

To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test 

statistic is defined as\ 

                 𝑍 =  
2𝑙𝑜𝑔𝐶𝑝

𝑀−2𝑙𝑜𝑔𝐶𝑝0

√𝐴
            (2.10) 

where A = 
𝐺2++2𝑛/(𝑛−1)

𝑛
 and 𝐺2 =

𝑛−1

(𝑛−2)(𝑛−3)
[(𝑛 − 1)𝑔2 + 6], 𝑔2 =

𝑚4

𝑚2
2 − 3,                                

𝑚4 = 𝑛−1 ∑ (𝑋𝑖 − 𝑀𝑑)4𝑛
𝑖=1  and 𝑚2 =

𝑛−1 ∑ (𝑋𝑖 − 𝑀𝑑)2𝑛
𝑖=1 .  At α level of 

significance, the null hypothesis will be rejected 

when 𝑍 >  𝑍𝛼, where  𝑍𝛼  is the upper 1− α 

quintile of the standard normal distribution. 

 

2.7.4  Modified Test based on the 

augmented large sample theory 

To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test 

statistic is defined as 

𝑍 =  
2𝑙𝑜𝑔 𝐶𝑝

𝑀−2𝑙𝑜𝑔𝐶𝑝0−𝐶

√𝐵
             (2.11) 

where B= 𝑣𝑎𝑟̂ log(𝑆𝑀) ≈
1

𝑛
(𝑒 +

2𝑛

𝑛−1
) (1 +

1

2𝑛
(𝑒 +

2𝑛

𝑛−1
)), C = 

̂𝑒,5+2𝑛/(𝑛−1)

2𝑛
, ̂𝑒,5 =

(
𝑛+1

𝑛−1
) 𝐺2(1 +

5𝐺2

𝑛
). At α level of significance, 

the null hypothesis will be rejected when 𝑍 >

 𝑍𝛼, where  𝑍𝛼  is the upper 1− α quintile of the 

standard normal distribution. 

2.8   Test Based on IQR 

To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test 

statistic is defined as 

2 =
(𝑛−1)(𝐶𝑝0)2

(𝐶𝑝
𝐼𝑄𝑅

)
2                               (2.12) 

where  𝐶𝑝
𝐼𝑄𝑅 =

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑆𝐼𝑄𝑅
     is the modified 

sample estimate of population Cp and SIQR = 

IQR/1.349.  At α level of significance, the null 

hypothesis will be rejected when 𝜒2 >

 𝜒1−𝛼,𝑛−1
2  and  𝜒1−𝛼,𝑛−1

2   is the upper 1− α 

quintile of the central chi-squared distribution 

with n-1 degrees of freedom. 

2.9   Test Based on Sn 
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To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test 

statistic is defined as 

2 =
(𝑛−1)(𝐶𝑝0)2

(𝐶𝑝
𝑆𝑛)

2                (2.13) 

where  𝐶𝑝
𝑆𝑛 =

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑛
 is the modified sample 

estimate of population Cp and Sn estimator is 

proposed by Rousseeuw and Croux (1993) and 

is defined as the median of the n medians of the 

absolute differences between values,  

 At α level of significance, the null hypothesis 

will be rejected when 𝜒2 >  𝜒1−𝛼,𝑛−1
2  and  

𝜒1−𝛼,𝑛−1
2   is the upper 1− α quintile of the 

central chi-squared distribution with n-1 

degrees of freedom. 

2.10  Test Based on AAMD 

The AADM is a robust scale estimator that 

measures the deviation of the data from the 

sample median, MD, which is less influenced 

by outliers. It is defined as follows: SAADM=

√𝜋 2⁄

𝑛
∑ |𝑋𝑖 − 𝑀𝐷|𝑛

𝑖=1 . The MD is best known for 

being insensitive to outliers and has a maximal 

50% breakdown point (Rousseeuw and Croux, 

1993). To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, 

the test statistic is defined as 

                  2 =
(𝑛−1)(𝐶𝑝0)2

(𝐶𝑝
𝐴𝐴𝑀𝐷)

2                                

(2.14) 

where  𝐶𝑝
𝐴𝐴𝑀𝐷 =

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝐴𝐴𝑀𝐷
   is the modified 

sample estimate of population Cp. At α level of 

significance, the null hypothesis will be rejected 

when 𝜒2 >  𝜒1−𝛼,𝑛−1
2  and  𝜒1−𝛼,𝑛−1

2   is the 

upper 1− α quintile of the central chi-squared 

distribution with n-1 degrees of freedom2 

 

2.11  Test Based on MAD 

The MAD was first introduced by Hampel 

(1974) and is widely used in various 

applications as an alternative to S. MAD for a 

random sample is defined as follows: 𝑆𝑀𝐴𝐷 =

1.4826𝑀𝐷{|𝑋𝑖 − 𝑀𝐷|}, 𝑖 = 1,2,3, . . . , 𝑛. The 

1.4826 factor given in SMAD adjusts the scale for 

maximum efficiency when the data comes from 

a normal distribution.  

To test H0: 𝐶𝑝 ≤ 𝐶𝑝0 vs. H1: 𝐶𝑝 >  𝐶𝑝0, the test 

statistic is defined as 

                   2 =
(𝑛−1)(𝐶𝑝0)2

(𝐶𝑝
𝑀𝐴𝐷)

2                          

(2.15) 

where  𝐶𝑝
𝑀𝐴𝐷 =

𝑈𝑆𝐿−𝐿𝑆𝐿

6𝑆𝑀𝐴𝐷
 is the modified sample 

estimate of population Cp.  At α level of 

significance, the null hypothesis will be rejected 

when 𝜒2 >  𝜒1−𝛼,𝑛−1
2  and  𝜒1−𝛼,𝑛−1

2   is the 

upper 1− α quintile of the central chi-squared 

distribution with n-1 degrees of freedom. 

Since a theoretical comparison among the test 

statistics is not possible, a simulation study has 

been conducted in the section follow.  
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3 Simulation Study 

 

3.1 Simulation Design 

In order to determine the effectiveness of the 

test statistics under symmetric and skewed 

distributions, we have generated data from the 

following distributions:  

 

I. Standard Normal distribution, N(50,1)  

II. Chi-Square distribution,
2

)1(   

III. t(6)  (t distribution with 6 DF) 

IV. Beta (4,1 ) (will give skewness =-0.86, 

which is left skewed) 

 

MATLAB R2018a programming language is 

used for all types of calculations. The number 

of simulation replications was 5000 for each 

case. Random samples were generated from 

each of the above-mentioned distributions with 

Cp =1.0 to calculate size of the test and Cp = 

1.33 for power of the test respectively. We 

consider sample sizes, n=15, 30, 50, 80, 100 

and 200 and B=2000 for bootstrap samples. The 

most common significance level (=0.05) is 

used for estimating the size and power of the 

selected tests. Simulated results are tabulated in 

Tables 3.1 to 3.8 for selected random samples. 

 

3.2. Results and Discussions 

In this section, we will discuss the results of the 

simulation study, which test statistics have sizes 

close to the nominal level and also have good 

powers in finite samples. In Tables 3.1 to 3.4 

(corresponding Figures 3.1 to 3.4 for better 

understanding), we have reported simulated 

sizes when data were generated from the 

N(50,1) 
2

)1( , t(6) and Beta(4,1) distributions 

respectively. In Table 3.1 (see Figure 3.1), we 

have reported estimated sizes for selected tests.  

In Table 3.1, we have presented estimated sizes 

when data are generated from N(50,1) 

distribution. We have assumed USL = 53 and 

LSL = 47 to calculate the sample Cp. Our 

simulation results in Table 3.1 (Figure 3.1) 

show that when data are generating from N(50, 

1) distribution, the classical test, adjusted 

classical test, augmented large sample, 

Bootstrapped test, our proposed modified 

classical, the modified adjusted degrees of 

freedom, the modified large samples tests, 

modified augmented large sample and classical 

AAMD tests have sizes close to the nominal 

level. When n increases, it is noticeable that 

estimated sizes are going to converge with the 

5% nominal level for the classical test, adjusted 

classical test, augmented large sample, 

Bootstrapped test, our proposed modified 

classical, the modified adjusted degrees of 

freedom, the modified large samples tests. 

Overall,  Large sample,  Robust 5% and 10%,  

classical IQR, classical Sn and classical MAD 

tests have  sizes much higher than the observed 

nominal 5% level 

[(.05+1.96*sqrt((.05*.95)/5000)=0.06] and 

therefore may not be suitable for testing when 

data are from Normal distribution.  
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Table 3.1: Empirical sizes for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the 

N(50,1) distribution with skewness 0 and Cp = 1.0 
 

   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical (C) 0.0532 0.0496 0.0484 0.0488 0.0448 0.0536 0.05 

Adjusted Classical (AC) 0.0668 0.0576 0.0568 0.0516 0.0478 0.0534 0.06 

Large sample (L) 0.0970 0.0800 0.0686 0.0684 0.0652 0.0588 0.07 

Augmented large sample (ALS) 0.0138 0.0210 0.0270 0.0360 0.0474 0.0562 0.03 

Robust_5% (R5) 0.2564 0.3006 0.4252 0.6830 0.7406 0.9222 0.55 

Robust 10% (R10) 0.0530 0.1034 0.1002 0.0844 0.0768 0.0418 0.08 

Bootstrap (B) 0.0068 0.0092 0.0210 0.0262 0.0394 0.0646 0.03 

Modified classical (MC) 0.0642 0.0576 0.0556 0.0534 0.0492 0.0556 0.06 

Modified Adjusted DF (MADF) 0.0674 0.0606 0.0602 0.0564 0.0500 0.0548 0.06 

Modified large sample (MLS) 0.0774 

 

0.0664 

 

0.0600 

 

0.0600 

 

0.0600 

 

0.0556 

 

0.06 

Modified augmented LS (MALS) 0.0138 0.0206 0.0280 0.0260 0.0374 0.0456 0.03 

Classical_IQR 0.1348 0.1426 0.1508 0.1580 0.1372 0.1610 0.15 

Classical_Sn 0.1446 0.1316 0.1246 0.1204 0.1098 0.1184 0.12 

Classical_AAMD 0.0404 0.0440 0.0514 0.0528 0.0480 0.0582 0.05 

Classical_MAD 0.1256 0.1202 0.1340 0.1382 0.1354 0.1518 0.13 

 

Figure 3.1: Estimated sizes for selected tests when data generated from the N(50,1) distribution 
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Table 3.2: Empirical sizes for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the 

2
)1(

distribution with skewness 2.828 and Cp = 1.0 

 
   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.1496 0.1844 0.1950 0.2072 0.2082 0.2404 0.20 

Adjusted Classical 0.0828 0.0800 0.0706 0.0642 0.0572 0.0548 0.07 

Large sample 0.2952 0.2156 0.1952 0.1726 0.1556 0.1208 0.19 

Augmented large 

sample 

0.1516 0.1150 0.1052 0.0986 0.0862 0.0770 0.11 

Robust_5% (R5) 0.1438 0.1186 0.1116 0.1412 0.0652 0.0550 0.11 

Robust 10% (R10) 0.0592 0.0598 0.0542 0.0518 0.0524 0.0513 0.05 

Bootstrap 0.1370 0.1262 0.1180 0.1086 0.0982 0.0729 0.11 

Modified classical 0.1200 0.1626 0.1724 0.1914 0.1937 0.1928 0.17 

Modified Adjusted DF 0.0786 0.0783 0.0681 0.0623 0.0612 0.0532 0.07 

Modified large sample  0.2042 

 

0.1362 

 

0.1052 

 

0.0842 

 

0.0658 

 

0.0590 0.11 

Modified augmented 

large sample theory 

0.1314 0.1056 0.0988 0.0934 0.0816 0.0750 0.10 

Classical_IQR 0.0410 0.0488 0.0474 0.0486 0.0493 0.0496 0.05 

Classical_Sn 0.1246 0.1116 0.1046 0.1004 0.0981 0.0984 0.11 

Classical_AAMD 0.0504 0.0449 0.0587 0.0513 0.0493 0.0482 0.05 

Classical_MAD 0.1003 0.0901 0.0940 0.0932 0.0941 0.0910 0.09 

 

 

Figure 3.2: Estimated sizes for selected tests when data generated from the
2

)1( distribution 
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In the Table 3.2, we have reported estimated 

sizes when  DGP is 
2

)1( . We have assumed 

USL = 5.243 and LSL = -3.243 to estimate the 

sample Cp. From Table 3.2 and  Figure 3.2 we 

observed  that the adjusted classical test, our 

proposed trimmed 10% robust test, the modified 

adjusted degrees of freedom, the classical IQR 

test and the AAMD tests have sizes close to the 

nominal level. When n increases, we have 

observed that the modified large sample test, 

the modified adjusted large sample test, the 

trimmed 5% robust test and the augmented 

large sample test sizes are converging to 

nominal level. Other considered tests sizes are 

observed higher than the nominal level.  The 

estimated nominal sizes when random samples 

are drawn from the student’s t distribution with 

5 degrees of freedom are presented in Table 3.3 

and graphical representation in Figure 3.3.  We 

have assumed USL = 3.873 and LSL = -3.873 

to find the estimated value of Cp. Both Table 

3.3 and Figure 3.3 indicated that the adjusted 

classical test, augmented large sample, Robust 

10%, all of our proposed tests but the modified 

large sample test  have sizes close to the 

nominal level.  

 

 

 

 

 

Table 3.3: Empirical sizes for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the t(5) 

distribution with skewness 0 and Cp = 1.0 

 
   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.1048 0.1046 0.1208 0.1234 0.1400 0.1520 0.12 

Adjusted Classical 0.0682 0.0558 0.0534 0.0464 0.0474 0.0440 0.05 

Large sample 0.1802 0.1698 0.1488 0.1400 0.1328 0.1168 0.15 

Augmented large 

sample 

0.0410 0.0462 0.0436 0.0410 0.0382 0.0388 0.04 

Robust_5% 0.1382 0.1116 0.1218 0.0956 0.1114 0.0956 0.11 

Robust 10% 0.0188 0.0302 0.0070 0.0026 0.0012 0.0004 0.01 

Bootstrap 0.0242 0.1242 0.1816 0.1768 0.3814 0.6348 0.25 

Modified classical 0.1156 0.1134 0.1278 0.1300 0.1432 0.1554 0.13 

Modified Adjusted 

Degrees of freedom 

0.0696 0.0568 0.0550 0.0474 0.0488 0.0450 0.05 

Modified large sample 

theory 

0.1518 

 

0.1516 

 

0.1394 

 

0.1316 

 

0.1272 

 

0.1134 

 

0.14 

Modified augmented 

large sample theory 

0.0398 0.0454 0.0434 0.0410 0.0382 0.0388 0.04 

Classical_IQR 0.0510 0.0334 0.0162 0.0090 0.0066 0.0002 0.02 

Classical_Sn 0.0572 0.0326 0.0176 0.0102 0.0066 0.0002 0.02 

Classical_AAMD 0.0354 0.0286 0.0248 0.0170 0.0152 0.0060 0.02 

Classical_MAD 0.0476 0.0274 0.0112 0.0072 0.0064 0.0004 0.02 
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Figure 3.3: Estimated sizes for selected tests when data generated from the t(6) distribution 

 

Table 3.4: Empirical sizes for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the Beta(4,1) 

distribution with skewness -0.86 and Cp = 1.0 

 

   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.0244 0.0212 0.0220 0.0210 0.0230 0.0244 0.02 

Adjusted Classical 0.0704 0.0652 0.0646 0.0596 0.0552 0.0574 0.06 

Large sample 0.0708 0.0550 0.0570 0.0558 0.0570 0.0574 0.06 

Augmented large sample 0.0068 0.0042 0.0036 0.0016 0.0028 0.0008 0.00 

Robust_5% 0.3314 0.4452 0.2124 0.6362 0.8512 0.3858 0.48 

Robust 10% 0.0952 0.1053 0.2390 0.2690 0.2882 0.3942 0.23 

Bootstrap 0.0090 0.0100 0.0150 0.0200 0.0220 0.0250 0.02 

Modified classical 0.0424 0.0286 0.0300 0.0258 0.0280 0.0264 0.03 

Modified Adjusted DF 0.0744 0.0690 0.0690 0.0632 0.0594 0.0612 0.07 

Modified large sample 0.0544 0.0440 0.0430 0.0466 0.0504 0.0518 0.05 

Modified augmented large 

sample theory 

0.0066 0.0042 0.0024 0.0016 0.0028 0.0008 0.00 

Classical_IQR 0.2058 0.2686 0.3422 0.3194 0.4442 0.5810 0.36 

Classical_Sn 0.1850 0.2136 0.2366 0.2210 0.2850 0.3720 0.25 

Classical_AAMD 0.0438 0.0570 0.0766 0.0712 0.0632 0.0612 0.06 

Classical_MAD 0.1756 0.2380 0.3044 0.2920 0.4226 0.5612 0.33 
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Figure 3.4: Estimated sizes for selected tests when data generated from the Beta(4,1) distribution 

We have reported estimated nominal sizes when 

data are generated from the negative skewed 

distribution B(4,1) in Table 3.4 and graphical 

representation in Figure 3.4. We have assumed 

USL = 1.06 and LSL = -0.067 to estimate the 

sample Cp. Both Table 3.4 and  Figure 3.4 

evidenced  that classical, adjusted classical, 

Large sample, Adjusted large sample, Boot 

strap, modified classical, modified adjusted 

degrees of freedom, modified large sample, 

modified augmented large sample, and classical 

AAMD tests  have sizes close to the nominal 

level.    

In the following Tables 3.5 to 3.8 we reported 

the empirical power of the tests when Cp=1.33.  

In the Table 3.5 (see Figure 3.5), we have 

tabulated estimated powers when data are  

generated from the normal distribution. It is 

observed from both Table 3.5 and Figure 3.5  

 

that when the sample size increases, power of 

the tests are also increases. We also noticed that 

for sample sizes 100 and 200,  all tests reach 

power 100% except the followings five tests 

and they are Large sample, Augmented large 

sample, Bootstrap, modified large sample and 

modified augmented large sample. For 

moderate sample sizes (50 and 80), classical 

test, adjusted classical, adjusted large, Robust 

5% & 10%, moderate classical, moderate 

adjusted classical, CIQR, CSn and CAAMD 

have  better powers than the rest. For small 

sample size (15, 30), Robust 5% performed the 

best. However, it fails to obtain the nominal 

level 0.05. However, among fifteen tests, the 

following six test statistics, classical, adjusted 

classical, modified classical, modified adjusted 

DF and classical AAMD performed very well  

and attained the nominal level 0.05. Our 

proposed modified classical test statistic 

performed the best.  
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Table 3.5: Empirical powers for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the 

N(50,1) distribution with skewness 0 and Cp = 1.33 

   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.5068     0.7372     0.8770     0.8896     0.9878     1.0000     0.83* 

Adjusted Classical 0.5184     0.7396     0.8786          0.8838          0.9886          1.0000          0.83* 

Large sample 0.0584     0.1036          0.3456 0.4563 0.5510 0.6634 0.36 

Augmented large 

sample 

0.0704     0.1324 0.3923 0.5012 0.6026 0.7654 0.41* 

Robust_5% 0.7426     0.9042     0.9810     0.8340     1.0000     0.9974 0.91 

Robust 10% 0.3794 0.7124 0.8340 0.9246     0.9574 1.0000     0.80 

Bootstrap 0.0150     0.1170     0.1940     0.2616     0.5516      0.8836     0.34* 

Modified classical 0.5432     0.7526     0.8880     0.8990     0.9894     1.0000     0.85* 

Modified Adjusted DF 0.5242     0.7456     0.8828          0.8880          0.9894          1.0000          0.84* 

Modified large sample  0.0656 0.1206 0.3867 0.4710 0.5745 0.6834 0.83* 

Modified augmented 

large sample  

0.0804     0.1652 0.4012 0.5018 0.6125 0.7800 0.42* 

Classical_IQR 0.4926     0.6444     0.7602     0.7632     0.9154     0.9924     0.76 

Classical_Sn 0.5476     0.7218 0.8446     0.8428     0.9640     0.9990     0.82 

Classical_AAMD 0.4234     0.6796     0.8440     0.8512     0.9790     1.0000     0.80* 

Classical_MAD 0.4482 0.6022 0.7442 0.7474 0.9070 0.9914 0.74 

Note: Power with star (*) marks attained the nominal level 0.05 

 

Figure 3.5: Estimated powers for all tests when data generated from the N(50,1) distribution 

 

 

 

Next we have observed power properties of our 

proposed tests when data are generated from the 

positive skewed distribution, namely the chi-

square distribution. Results are tabulated in the 
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Table 3.6 and the graphical representation in 

Figure 3.6. From both Table 3.6 and Figure 3.6, 

we  observed that power depends on the size of 

the samples, ie. with increasing n, power 

increases for all tests. We have observed that 

our proposed tests have better power properties 

as compared to existing tests. Among all tests, 

for large n (50 and above) the proposed 

modified classical test performed the best 

followed by classical test, MADF, CAAMD, 

CMAD, CSn and so on. For small sample size 

(15, 30), the proposed CAAMD performed the 

best followed by CSn, MC and CAAMD. 

Overall, our proposed modified classical test 

performed the best followed by proposed 

classical AAMD, classical test and classical 

IQR and attained the nominal level 0.05. 

Table 3.6: Empirical powers for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the 
2

)1(

distribution with skewness 2.828 and Cp = 1.33 

 

   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.3628 0.4998 0.6282 0.7424 0.7896 0.9288 0.66* 

Adjusted Classical 0.2710 0.3368 0.4390 0.5402 0.5858 0.7968 0.49 

Large sample 0.1388 0.2692 0.3310 0.4124 0.5092 0.6510 0.41 

Augmented large 

sample 

0.1572 0.2901 0.3826 0.4368 0.5130 0.6671 0.41 

Robust_5% 0.3580 0.4104 0.5336 0.5674 0.6150 0.8780 0.56* 

Robust 10% 0.1540 0.2170 0.2700 0.4814 0.5750 0.7380 0.41* 

Bootstrap 0.1516 0.1910 0.4132 0.5508 0.5344 0.8896 0.46 

Modified classical 0.4362 0.5958 0.7274 0.8420 0.8870 0.9798 0.75* 

Modified Adjusted DF 0.3014 0.4000 0.5310 0.6604 0.7190 0.9088 0.59 

Modified large sample 0.1860 0.2348 0.3536 0.4260 0.5128 0.6723 0.40 

Modified augmented 

large sample  

0.1492 0.2944 0.3936 0.4266 0.5328 0.6721 0.41 

Classical_IQR 0.3438 0.4240 0.5358 0.6798 0.7642 0.8262 0.60* 

Classical_Sn 0.5600 0.6021 0.6102 0.6587 0.7080 0.7778 0.65 

Classical_AAMD 0.5534 0.5730 0.6510 0.7142 0.8220 0.8540 0.69* 

Classical_MAD 0.4081 0.4641 0.5044 0.5623 0.7912 0.8610 0.60 

Note: Power with star (*) marks attained the nominal level 0.05 

 

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2022.2.13 B. M. Golam Kibria, Shipra Banik

E-ISSN: 2769-2477 83 Volume 2, 2022



 

Figure 3.6: Estimated powers for selected tests when data generated from the 
2

)1( distribution 

Next, we reported the empirical power of the 

tests when data are generated from t-

distribution in Table 3.7 and graphical 

representation in Figure 3.7. It appears from  

Table 3.7 and Figure 3.7 that all but the 

trimmed 10% robust test, the classical IQR test, 

CSn  and the classical MAD tests are powerful 

for large sample size (say n=100 and 200). 

Overall, the augmented large sample and  

proposed modified augmented large sample test 

performed better than the rest of the tests and 

attained the nominal level 0.05. For small 

sample, proposed modified augmented large 

sample test performed better than the 

counterpart augmented large sample and for 

large sample, the augmented large sample test  

performed better than the counterpart proposed 

modified augmented large sample test.  

 

 

 

 

To see the performance of the test statistics  for  

negatively skewed distribution, we have 

generated data from the beta distribution with 

parameters values 4 and 1. Results are tabulated 

in the Table 3.8 and also for visual inspection in 

the Figure 3.8 respectively.  It is found that 

classical test, adjusted classical test modified 

classical test and classical AAMD tests 

performed better than the rest of the estimators. 

Overall, it may be concluded that our proposed 

tests have good powers in finite samples and 

attained the nominal level 0.05.  
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Table 3.7: Empirical powers for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the t(5) 

distribution with skewness 0 and Cp = 1.33 

                Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.4098     0.5834     0.5926     0.8782     0.9266     0.9924     0.73 

Adjusted Classical 0.3728     0.5186     0.5206     0.8212     0.8886     0.9870          0.68* 

Large sample 0.4256     0.6074     0.6472     0.8441          0.9304           0.9929 0.74 

Augmented large 

sample 

0.4426     0.6089     0.6606     0.8539 0.9421  0.9923 0.75* 

Robust_5% 0.5356     0.6696     0.3826     0.9118     0.5494     0.9966     0.67 

Robust 10% 0.3654 0.3856 0.4438 0.5012 0.5368 0.6349 0.48* 

Bootstrap 0.1570     0.3358     0.2710     0.3288     0.7070     0.9666     0.46 

Modified classical 0.4366     0.6018     0.6070     0.8838     0.9288     0.9926     0.74 

Modified Adjusted DF 0.3784     0.5222     0.5252     0.8248     0.8918     0.9872          0.69* 

Modified large sample 0.5194 

 

0.6168 

 

0.6654 

 

0.8604 

 

0.9002 

 

0.9912          0.76 

Modified augmented 

large sample  

0.5226     0.6114     0.6606     0.8023 0.8972 0.9534 0.74* 

Classical_IQR 0.2770     0.3252     0.3070     0.4424     0.4712     0.5992     0.40* 

Classical_Sn 0.3322     0.3988     0.4048     0.5750     0.6258     0.7958     0.52* 

Classical_AAMD 0.2914     0.4326     0.4328     0.7420     0.8158     0.9632     0.61* 

Classical_MAD 0.2398 0.2956 0.2864 0.4216 0.4558 0.5944 0.38* 

Note: Power with star (*) marks attained the nominal level 0.05 

 

 

Figure 3.7: Estimated powers for selected tests when data generated from the t(5) distribution
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Table 3.8: Empirical powers for testing H0: Cp≤1.0 vs. H1: Cp>1.0 when data generated from the Beta(4,1) 

distribution with skewness -0.86 and Cp = 1.33 

 

   Sample 

sizes 

    

Test Statistics n=15 n=30 n=50 n=80 n=100 n=200 Average 

Classical 0.5230 0.7806 0.9286 0.9878 0.9974 1.0000 0.87* 

Adjusted Classical 0.5882 0.8132 0.9458 0.9906 0.9982 1.0000 0.89* 

Large sample 0.3336 0.5602 0.5923 0.5989 0.6045 0.6342 0.55* 

Augmented large 

sample 

0.3606 0.5032 0.6032 0.6048 0.6123 0.6432 0.55* 

Robust_5% 0.8228 0.9538 0.9958 0.9998 1.0000 1.0000 0.96 

Robust 10% 0.5082 0.8452 0.9530 0.9886 0.9964 1.0000 0.88 

Bootstrap 0.3526 0.3987 0.4015 0.5742 0.6543 0.8964 0.55* 

Modified classical 0.5704 0.7970 0.9356 0.9884 0.9974 1.0000 0.88* 

Modified Adjusted DF 0.5904 0.8170 0.9480 0.9908 0.9982 1.0000 0.89 

Modified large sample  0.3524 0.4902 0.6312 0.6123 0.6328 0.6545 0.56* 

Modified augmented 

large sample theory 

0.3606 0.4876 0.6032 0.6231 0.6419 0.6662 0.56* 

Classical_IQR 0.6000 0.7796 0.8942 0.9704 0.9880 0.9996 0.87 

Classical_Sn 0.6408 0.8356 0.9440 0.9890 0.9962 1.0000 0.90 

Classical_AAMD 0.4778 0.7660 0.9320 0.9878 0.9974 1.0000 0.86* 

Classical_MAD 0.5288 0.7432 0.8864 0.9638 0.9840 0.9998 0.85 

Note: Power with star (*) marks attained the nominal level 0.05 

 

 

 

 

 
 

Figure 3.8: Estimated powers for selected tests when data generated from the Beta(4,1) distribution 
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4. Concluding remarks 

This paper considers fifteen different test 

statistics (7 existing and 8 proposed) for testing 

the population process capability ratio. Since, a 

theoretical comparison among the tests is not 

possible, a simulation study has been conducted 

to compare the performance of the test statistics 

under various kinds of distribution such as 

symmetric and skewed distributions. Empirical 

size and power of the test were considered as 

performance criterion.  Our simulation results 

show that  some of test statistics have sizes 

close to the 5% nominal level and also have 

good powers in finite samples. We believe that 

the findings of this paper will contribute to 

process capability literature, and it will be 

helpful to choose a test statistic when some 

researchers are interested in testing the 

population process capability index. Since the 

conlcusions of the paper is based on the 

simulation study,  for the definite statement 

about a specific test and for a specific 

distribution, we need more analysis.   
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