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Abstract: - Graph theory is a delightful playground for the exploration of proof techniques in discrete 
mathematics and its results have applications in many areas of the computing, social, and natural sciences. The 
fastest growing area within graph theory is the study of domination and Independence numbers. Domination 
number is the cardinality of a minimum dominating set of a graph. Independence number is the maximal 
cardinality of an independent set of vertices of a graph. The concept of Fibonacci numbers of graphs was first 
introduced by Prodinger and Tichy in 1982. The Fibonacci numbers of a graph is the number of independent 
vertex subsets. In this paper, introduce the identities of domination, independence and Fibonacci numbers of 
graphs containing vertex-disjoint cycles and edge-disjoint cycles.  
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1 Introduction 

Graph theory is a delightful playground for the 
exploration of proof techniques in discrete 
mathematics and its results have applications in 
many areas of the computing, social, and natural 
sciences. The fastest growing area within graph 
theory is the study of domination, the reason being 
its many and varied applications in such fields as 
social sciences, communications networks, 
algorithmic designs etc. Dominating and 
independent sets are among the most well-studied 
graph sets. Domination can be a useful tool for 
determining business network and making decisions. 

The topic of domination was given formal 
Mathematical definition by C. Berge in 1958 and O. 
Ore [15] in 1962. Berge called the domination as 
external stability and domination number of 
coefficient of external stability. Ore introduced the 
world domination in his famous book [15]. This 
concept lived in hibernation until 1975 when a paper 
[8] published in 1977. This paper brought to light 

new ideas and potentiality of being applied in 
variety of areas. The research in domination theory 
has been broadly classified in [17], [18]. Domination 
can be a useful tool for determining business 
network and making decisions. Business would 
benefit from the use of the concept of domination to 
strategically plan the location of their stores in order 
to reach the maximum amount of areas with 
minimal stores locations. 

Independent sets were introduced into the 
communication theory on noisy channels [9].  

In the literature, especially in mathematics and 
physics, there are a lot of integer sequences, which 
are used in almost every field of modern sciences. 
Admittedly, the Fibonacci sequence is one of the 
most famous and curious numerical sequence in 
mathematics and have been widely studied from 
both algebraic and combinatorial prospective. Also, 
there is the Lucas sequence, which is as important as 
the Fibonacci sequence. Fibonacci numbers are a 
sequence of numbers in which each successive 
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number is the sum of two previous numbers:  0,1, 1, 
2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …       

Similarly Lucas numbers are 2,1, 3, 4, 7, 11, 18, 
29,…. 

The Fibonacci sequence and Lucas Sequence [19]  
are defined by the recurrence relation: 

11   nnn FFF , where 1n  with initial 
conditions 1,0 10  FF                               [1.1]    

11   nnn LLL , where 1n  with initial 
conditions  1,2 10  LL                             [1.2]           

In this paper, we present results on domination, 
independence, Fibonacci numbers of   graphs 
containing vertex-disjoint cycles and edge-disjoint 
cycles.  

 

2 Preliminaries and Notations 

Let ( , )G V E be a simple graph (i.e., undirected, 
without loops and multi edges). The number of 
vertices namely the cardinality of V is called the 
order of G and is denoted by G . The number of 
edges of a graph namely the cardinality of E is 
called the size of G and is denoted by .E  We write 

( )i je v v E G  to mean the pair 

, ( ) and if ( )i j i jv v E G e v v E G   we say that 

 and i jv v are adjacent and  and ,   and i je v e v are 
incident.  

The open neighbourhood ( )N v of the vertex v 
consists of the set of vertices adjacent to v. That is 

( ) { : }N v w V vw E   . The closed 
neighbourhood of v is [ ] ( ) { }N v N v v  .   For a 
set S V , the open neighbourhood N(S) is defined 
by ( ) ( )v SN S N v and the closed neighbourhood 

[ ]N S  by [ ] ( )N S N S S  . A vertex v S is 
called “an enclave of S”, if [ ] .N S S  A vertex 
v S is called “an isolate of of S”, if 

( ) .N S V S   

The degree of a point v is denoted by deg( )v is 
defined as the number of edges incident with v. That 

is deg( ) ( )v N v . The maximum and minimum of 
the degree of vertices of G are denoted by 

( ) and ( )G G  respectively.  If ( ) = ( )G G r   
, then G is said to be a regular graph of degree r or 
simply r-regular. 

Now explain domination, independence and 
Fibonacci numbers of graph. 

2.1 Domination Number 

The concept of domination in graphs is now well 
studied in graph theory. A subset ( )S V G  is 
called a dominating set, if every vertices of V S is 
adjacent to a member of S. A dominating set of G 
with minimum cardinality is called a minimum 
dominating set and the cardinality of a minimum 
dominating set is called the domination number and 
denoted by ( )G . The upper domination number of 
a graph G denoted by ( )G is defined as the 
maximum cardinality of a minimum dominating set 
of G. 

2.2 Independence Number 

A sub set ( )S V G is an independent set, if no two 
vertices of S are adjacent. Moreover, the subset 
containing only one vertex and the empty set also 
are independent. The number of all independent sets 
in G is denoted by ( )NI G . For a graph G on

( )V G  , we put ( ) 1NI G  . Independence 
number ( )G of graph G is the maximal cardinality 
of an independent set of vertices. 

2.3 Independent Domination Number 

A set S of vertices in a graph G is called an 
independent dominating set of G if S is both an 
independent and a dominating set of G. This set is 
also called a Stable set or a Kernel of the graph. 
Independent dominating sets were introduced into 
the theory of games by Neumann and Margenstern 
in 1944 [14]. The independent domination number 
( )i G is the cardinality of the smallest independent 

domination set. 
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2.4 Fibonacci Numbers of Graphs  

The concept of Fibonacci numbers of graphs was 
first introduced by Prodinger and Tichy [13]. The 
Fibonacci number of a graph G is defined as the 
number of independent vertex subsets of G, where a 
set of vertices is said to be independent if it contains 
no pair of connected vertices. Prodinger and Tichy 
[13] defined  

1( )n nNI P F  , where 
nF  is nth Fibonacci number.

                [1.3] 

( )n nNI C L , 3n  where 
nL  is nth Lucas number 

               [1.4] 

3 Graph Containing Vertex-Disjoint   

   Cycles 

Theorem 3.1 Let G be a graph of order n containing 
two vertex-disjoint cycles. Then 

3( ) 5 ,  6nNI G F n   

Proof  Let G be a graph of order n and having two 
disjoint cycles. If n=6, 7 and 8 then

3( ) 5 15NI G F  , 4( ) 5 25NI G F  and 

5( ) 5 40.NI G F   

For larger values of n, consider two fixed vertices
 and i jv v . If delete one vertex iv from graph, the 

total number of independent set is 
4( ) 5 ,  nNI G F  If delete another vertex 

jv  from 
graph, the total number of independent set is 

5( ) 5 ,  nNI G F  Independent sets including 
vertices  and i jv v  must determine by combining 

both cases, Thus 4 5 3( ) 5 5 5 .n n nNI G F F F      

Theorem 3.2  Let G be a graph of order n 
containing three vertex-disjoint cycles. Then 

4( ) 7 ,  9nNI G F n   

The proof can be given same as theorem 3.1. 

Theorem3.3. Let G be a graph of order n containing 
four vertex-disjoint cycles. Then 

3( ) 4 ,  12nNI G F n   

The proof can be given same as theorem 3.1. 

Theorem 3.3 Let G be a graph of order n containing 
vertex-disjoint cycles. Then  

( ) ( ),  6G i G n    

4 Graph Containing Edge-Disjoint  

   Cycles 

Theorem 4.1. Let G be a graph of order n 
containing two edge-disjoint cycles. Then 

2( ) 3 ( 4),  5nNI G F n n     

Proof. Let G be a graph of order n and having two 
edge-disjoint cycles. If n=5, 6 and 7 then

3( ) 3 1 10NI G F   , 4( ) 3 2 17NI G F  

and 5( ) 3 3 27.NI G F     

By inspection, it can be derived and verified. 

Theorem 4.2 Let G be a graph of order n containing 
three edge-disjoint cycles. Then 

2( ) 3 ,  7.nNI G F n   

The proof can be given same as theorem 4.1. 

Theorem 4.3 Let G be a graph of order n containing 
edge-disjoint cycles. Then  

( ) ( ),  6G i G n    

5 Conclusions 

Identities of Domination, independence, Fibonacci 
numbers of   graphs containing vertex-disjoint 
cycles and edge-disjoint cycles are described.  
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