
Abstract: This paper proves the existence and uniqueness of solution of irregular transport problem with
variable speed and initial data in the Colombeau algebra G, and some important proprieties of Colombeau
algebra. The existence of distribution solutions to some classes of such equations is proven.
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1 Introduction
The transport equation describes the movement
of a scalar quantity over space. It is often used to
transfer a scalar field (such as chemical concen-
tration, material characteristics, or temperature)
within an incompressible flow. The transport
equation is also known as the convection-diffusion
equation, which is a first-order PDE from a
mathematical standpoint (partial differential
equation). The most prevalent transportation
models are based on the convection-diffusion
equation.

In colombeau algebra, the concept of associ-
ation is a true generalization of the equality of
distributions, allowing us to explain findings in
terms of distributions once again. Colombeau
theory has found widespread use in a variety of
natural sciences and technical sectors, particularly
in domains involving products of distributions
with coincident singularities [1][2].

The paper is organized as follows. After the
introductory part,we give some basic preliminar-
ies such as notations and definitions of the ob-
jects we shall work with, we also introduce dif-
ferent spaces of Colombeau algebra of generalized
functions. In the third section we proved the ex-
istence and uniqueness of solution of transport
equation with variable speed and initial data in
the Colombeau algebra G. Finally, in the fifth
section we study the association (Application).

2 Preliminaries
2.1 Colombeau algebra
In this section, we list some notations and formu-
las to be used later. The elements of Colombeau
algebras G are equivalence classes of regulariza-

tions, i.e., sequences of smooth functions satisfy-
ing asymptotic conditions in the regularization pa-
rameter ε. Therefore, for any set X, the family
of sequences (uε)ε∈[0;1] of elements of a set X will
be denoted by X [0;1], such sequences will also be
called nets and simply written as uε.
Let D(Rn) be the space of all smooth functions
φ : Rn −→ C with compact support.
For q ∈ N we denote:

Aq(Rn) = {φ ∈ D (Rn) /
∫
φ(x)dx = 1and∫

xαφ(x)dx = 0 for 1 ≤ α ≤ q}

The elements of the set Aq are called test func-
tions.

It is obvious that A1 ⊃ A2 . . . . Colombeau
in his books has proved that the sets Ak are non
empty for all k ∈ N.

For φ ∈ Aq(Rn) and ϵ > 0 it is denoted
as φϵ(x) = 1

εφ
(

x
ε

)
for φ ∈ D (Rn) and

φ̌(x) = φ(−x).

We denote by:
E (Rn) = {u : A1 × Rn → C/ with u(φ, x) is C∞

to the second variable x}
u (φε, x) = uε(x) ∀φ ∈ A1

EM (Rn) = {(uε)ε>0 ⊂ E (Rn) /∀K ⊂ Rn, ∀α ∈ N,

∃N ∈ N such that sup
x∈K

∥Dαuε(x)∥ = O
(
ε−N

)
as ε → 0}
N (Rn) = {(uε)ε>0 ∈ E (Rn) /∀K ⊂ Rn, ∀α ∈ N,
∀p ∈ N such that sup

x∈K
∥Dαuε(x)∥ = O (εp)

as ε → 0}
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The generalized functions of Colombeau
are elements of the quotient algebra
G (Rn) = EM [Rn] /N [Rn] , where the elements of
the set EM (Rn) are moderate while the elements
of the set N (Rn) are negligible.

The meaning of the term association in G(R) is
given with the next two definitions.

Definition 1. Generalized functions f, g ∈ G(R)
are said to be associated, denoted f ≈ g, if for each
representative f(φε, x) and g(φε, x) and arbitrary
ψ(x) ∈ D(R) there is a q ∈ N such that for any
φ(x) ∈ Aq(R), we have:

lim
ε→0+

∫
R

∥f(φε, x) − g(φε, x)∥ψ(x)dx = 0

Definition 2. Generalized functions f ∈ G(R) is
said to admit some as u ∈ D′(R) associated distri-
bution, denoted f ≈ u, if for each representative
f(φε, x) of f and any ψ(x) ∈ D(R) there is a q ∈ N
such that for any φ(x) ∈ Aq(R), we have:

lim
ε→0+

∫
R
f(φε, x)ψ(x)dx = ⟨u, ψ⟩

Below is the statement of a problem called ir-
regular transport problem on the domain Ω =
R+ × R.

∂tu(t, x) + c(t, x)∂xu(t, x) = f(t, x)u(t, x)
+a(t, x), (t, x) ∈ R∗,+ × R
u(0, x) = u0(x), x ∈ R

(1)
with c, f and a are discontinuous functions such
that c > 0.

2.2 Positive, negative and bounded
generalized function

Definition 3. [5]
a- U ∈ G[Ω] is said globally bound if it exists c > 0
and a representative u ∈ EM [Ω] of U and N ∈ N
such as ∀ϕ ∈ AN , we have

sup
y∈Ω

∥u (ϕε, y) ∥ ≤ c

when ε → 0
b- U ∈ G[Ω] is said to have local logarithmic growth
if for any representative u ∈ EM [Ω] of U and for
any compact K of Ω it exists N ∈ N such as ∀ϕ ∈
AN , ∃c > 0, such as

sup
y∈Ω

∥u (ϕε, y) ∥ ≤ c ln
(1
ε

)

when ε → 0
c- U ∈ G[Ω] is said to be strictly positive and
we note U > 0 if for all compact K of Ω, there
is a representative u ∈ EM [Ω] of U,∃N ∈ N, c >
0,∀ϕ ∈ AN , we have

u (ϕε, y) ≥ cεN ∀y ∈ K

when ε → 0
d- U ∈ G[Ω] is said to be strictly negative and
we note U < 0 if for all compact K of Ω, there
is a representative u ∈ EM [Ω] de U,∃N ∈ N, c >
0,∀ϕ ∈ AN , we have

u (ϕε, y) ≤ −cεN ∀y ∈ K

when ε → 0

Proposition 1. (c) and (d) of the previous defi-
nition do not depend on the chosen representative.

Proof. c- Let U an element of G[Ω] strictly posi-
tive. Be a compact K of Ω. So there is a represen-
tative u ∈ EM [Ω] of U,∃N ∈ N,∃c > 0, ∀ϕ ∈ AN

such as
u (ϕε, y) ≥ cεN y ∈ K

Let u2 another representative of U . So

u− u2 ∈ N [Ω]

i.e
u (ϕε, y) − u2 (ϕε, y) < εq ∀q

so
u2 (ϕε, y) > −εq + u (ϕε, y)

> −εq + cεN

> cεN

(
1 − εq−N

c

)
By crossing the limit q −→ +∞, so

u2 (ϕε, y) > cεN , y ∈ K

d- Let U an element of G[Ω], suppose that U is
strictly negative. Be a compact K of Ω, So there
is a representative u ∈ EM [Ω] of U,∃N ∈ N,∃c >
0,∀ϕ ∈ AN such that

U (ϕε, y) < −cεN y ∈ K

Let u2 another representative of U . so

u− u2 ∈ N [Ω]

thus
u2(ϕϵ, y) − u(ϕϵ, y) < ϵq
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so
u2 (ϕε, y) < εq + u (ϕε, y)

< εq − cεN

< −cεN

(
1 − εq−N

c

)
By crossing the limit q −→ +∞, so

u2 (ϕε, y) < −cεN , y ∈ K

Proposition 2. (a) of the previous definition does
not depend on the chosen representative.
Proof. Let u2 another representative of U . so

u− u2 ∈ N [Ω]

then
∥u2 (ϕε, y) − u (ϕε, y) ∥ < εq ∀y ∈ Ω ∀q

∥u2 (ϕε, y) ∥ − ∥u (ϕε, y) ∥ < εq

∥u2 (ϕε, y) ∥ < εq + ∥u (ϕε, y) ∥

∥u2 (ϕε, y) ∥ < εq + c By crossing the limit q −→
+∞, we find

∥u2 (ϕε, y) ∥ < c ∀y ∈ Ω

3 Existence and uniqueness of
the generalized solution

we consider the following irregular transport prob-
lem on the domain Ω = R+ × R:

∂tu(t, x) + c(t, x)∂xu(t, x) = f(t, x)u(t, x)
+a(t, x), (t, x) ∈ R∗,+ × R
u(0, x) = u0(x), x ∈ R

(2)
Now we will transform the problem (2) to the

Colombeau algebra G.
∂tuε(t, x) + cε(t, x)∂xuε(t, x) = fε(t, x)uε(t, x)
+aε(x, t), (t, x) ∈ R+,∗ × R
uε(0, x) = uε,0(x), x ∈ R

(3)
Theorem 1. We assume that c is globally bounded
such that c > 0, ∂xc and f are with local logarith-
mic growth. So for an initial data u0 ∈ G[R] and a
element of G[Ω], the problem (3) admits a unique
solution u ∈ G.
Proof. Existence:

The problem (3) admits a unique class solution
C∞.

By hypothesis c is globally bounded, then ∃M > 0
such as :

∥cε(x, t)∥ ≤ M, ∀(x, t) ∈ Ω

so
∥dλε(x, t, s)

ds
∥ ≤ M, ∀(x, t) ∈ Ω

with λε(x, t, .) the characteristic curve correspond-
ing to cε issue of the point (x, t), by drawing the
lines passing through the point (x, t) and slope M
and −M, we can determine a domain (compact of
Ω) of determination of the solution that does not
depend on ε.

..
x

.

t

.

KT

.
K0

.

−M

.

M

In this case, for all (x, t) ∈ KT ⊂ Ω,, the charac-
teristic curves resulting from this point remain in
KT , so the integral solution of the equation (3) is:

ui,ε(x, t) = u0,ε (λε(x, t, 0))

+
∫ t

0
fε (λε(x, t, s), s)uε (λε(x, t, s), s) ds

+
∫ t

0
ai,ε (λε(x, t, s), s) ds

∥uε(x, t)∥ ≤ supx∈K0 ∥u0,ε(x)∥
+
∫ T

0 sup(t,x)∈KT
∥fε(t, x)∥ supKT

∥uε(t, x)∥ds
+
∫ T

0 sup(t,x)∈KT
∥aε(t, x)∥ds

sup(t,x)∈KT
∥uε(t, x)∥ ≤ supx∈K0 ∥u0,ε(x)∥ +

T sup(t,x)∈KT
∥aε(t, x)∥

+
∫ t

0 sup(t,x)∈KT
∥fε(t, x)∥ sup(t,x)∈KT

∥uε(t, x)∥ds

Apply Gronwall’s lemma to the function
uε → sup(t,x)∈KT

∥uε(t, x)∥

sup(t,x)∈KT
∥uε(t, x)∥ ≤[

sup
x∈K0

∥u0,ε(x)∥ + T sup
(t,x)∈KT

∥aε(t, x)∥
]

× exp
(
T sup

(t,x)∈KT

∥fε(t, x)∥
)

International Journal of Computational and Applied Mathematics & Computer Science 
DOI: 10.37394/232028.2022.2.10

Abdelmjid Benmerrous, 
Lalla Saadia Chadli, 

Abdelaziz Moujahid, Said Melliani

E-ISSN: 2769-2477 53 Volume 2, 2022 



As f is local logarithmic growth, then:

sup
(t,x)∈KT

∥uε(t, x)∥ = O
(
ε−N

)
, N ∈ N

Now let’s apply the operator ∂x on equation (3)
∂t(∂xuε(t, x)) + cε(t, x)∂x∂xuε(t, x) =
fε(t, x)∂xuε(t, x) − ∂xcε(t, x)uε(t, x)

+∂xfε(t, x)uε(t, x) + ∂xaε(x, t), (t, x) ∈ R+,∗ × R
∂xuε(0, x) = u′

0(x), x ∈ R
(4)

Then, the integral solution is:
∂xuε(t, x) = u′

0,ε (λε(x, t, 0))
+
∫ t

0 ∂xfε (λε(x, t, s), s)uε (λε(x, t, s), s) ds
+
∫ t

0 fε (λε(x, t, s), s) ∂xuε (λε(x, t, s), s) ds
−
∫ t

0 ∂xcε (λε(x, t, s), s)uε (λε(x, t, s), s) ds
+
∫ t

0 ∂xai,ε (λε(x, t, s), s) ds

∥∂xuε(x, t)∥ ≤ supx∈K0 ∥u′
0,ε(x)∥ +∫ T

0 sup(t,x)∈KT
∥∂xfε(t, x)∥ sup(t,x)∈KT

∥uε(t, x)∥ds
+
∫ T

0 sup(t,x)∈KT
∥fε(t, x)∥ sup(t,x)∈KT

∥∂xuε(t, x)∥ds
+
∫ T

0 sup(t,x)∈KT
∥∂xcε(t, x)∥ sup(t,x)∈KT

∥uε(t, x)∥ds
+
∫ T

0 sup(t,x)∈KT
∥∂xaε(t, x)∥ds

Apply Gronwall’s lemma to the function
uε → sup(t,x)∈Ks

∥∂xuε(t, x)∥, then:

supKT
∥∂xuε(t, x)∥ ≤ [supx∈K0 ∥u′

0,ε(x)∥ +
T sup(t,x)∈KT

∥∂xfε(t, x)∥ sup(t,x)∈KT
∥uε(t, x)∥

+ T supKT
∥∂xcε(t, x)∥ sup(t,x)∈KT

∥uε(t, x)∥ +
T sup(t,x)∈KT

∥∂xaε(t, x)∥]
× exp(T sup(t,x)∈KT

∥fε(t, x)∥)

As f is local logarithmic growth and (uε) is
moderate, so

sup
(t,x)∈KT

∥∂xuε(t, x)∥ = O
(
ε−N

)
, N ∈ N

By doing the same reasoning, we find that for all
m ∈ N and m ≥ 2, we have:

sup
(t,x)∈KT

∥∂m
x uε(t, x)∥ = O

(
ε−N

)
, N ∈ N

on the other hand, we have

∂tuε(t, x) = −cε(t, x)∂xuε(t, x) +
fε(t, x)uε(t, x) + aε(x, t)

as f has local logarithmic growth and (∂xuε) is
moderate, then:

sup
(t,x)∈KT

∥∂tuε(t, x)∥ = O
(
ε−N

)
, N ∈ N

We also have

∂t∂xuε(t, x) = −∂xcε(t, x)∂xuε(t, x) −
cε(t, x)∂2

xuε(t, x) + ∂xfε(t, x)uε(t, x) +
fε(t, x)∂xuε(t, x) + ∂xaε(x, t)

∂2
t uε(t, x) = −∂tcε(t, x)∂xuε(t, x) −

cε(t, x)∂t∂xuε(t, x) + ∂tfε(t, x)uε(t, x) +
fε(t, x)∂tuε(t, x) + ∂taε(x, t)

etc. . . . .
Hence, for any derivative operator ∂n

t ∂
m
x , ∃N ∈ N

sup
(t,x)∈KT

∥∂n
t ∂

m
x uε(t, x)∥ = O

(
ε−N

)
then

u ∈ G(Ω)
Uniqueness:
Suppose that problem (3) admits two solutions
uε, vε ∈ G[Ω], so ∃d0,ε ∈ N [R] such as: ∂t(uε(t, x) − vε(t, x)) + λiε(x, t)∂x(uε(t, x)

−vε(t, x)) = fε(x, t)(uε(x, t) − vε(x, t))
uε(x, 0) − vε(x, 0) = d0,ε(x)

The integral solution is:

uε(t, x) − vε(t, x) = d0,ε (λε(x, t, 0)) +∫ t
0 fε (λε(x, t, s), s) (uε(λε(x, t, s), s) −
vε(λε(, , s), s))ds

∥uε(t, x) − vε(t, x)∥ ≤ supx∈K0 ∥d0,ε(x)∥
+
∫ T

0 sup(t,x)∈KT
∥fε(t, x)∥ sup(t,x)∈KT

∥uε(t, x) −
vε(t, x)∥ds

Apply Gronwall’s lemma to the function uε →
sup(t,x)∈KT

∥uε(t, x) − vε(t, x)∥

sup(t,x)∈KT
∥uε(t, x) − vε(t, x)∥ ≤(

supx∈K0 ∥d0,ε(x)∥
)

× exp
(
T sup(t,x)∈KT

∥fε(t, x)∥
)

as f is local logarithmic growth, then

sup
(t,x)∈KT

∥uε(t, x) − vε(t, x)∥ = O (εq) , ∀q ∈ N

For the other derivatives, it is the same as the first
part of the proof of the theorem.
Consequently the problem (3) admits a unique so-
lution u ∈ G[Ω].
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4 Application
We consider the following problem which presents
the propagation of a wave in a discontinuous
medium:{
∂tu(t, x) + c(t, x)∂xu(t, x) = 0, (t, x) ∈ R+,∗ × R
u(0, x) = u0(x), x ∈ R

(5)
with

c(t, x) =
{
cL, x ≤ x0
cR, x > x0

and u0 is a continuous function almost everywhere,
and zero in the neighborhood of 0.
If we set a condition of transition to x0 (continuity
of u on point x0 ), then the solution of the problem
(5) is given by:

u(t, x) = u0(λ(t, x, 0))

with λ the characteristic curve resulting from the
point (t, x) and sloping c (figure(2)).

..
x

.

t

.

CR

.

CL

.
λ(x, t, 0)

.
x0

c ∈ L∞(Ω), then there is C ∈ G[Ω] such as C ≈ c,
c is globally bounded and ∂xC ∈ N [Ω] local
logarithmic growth, and according to Theorem
1 the problem (5) admits a unique solution
U = [(uε)] ∈ G[Ω].

Now we will transform the problem (5) to the
Colombeau algebra, we have:{
∂tuε(t, x) + cε(x)∂xuε(t, x) = 0, (t, x) ∈ R∗+ × R
uε(0, x) = u0,ε(x), x ∈ R

Take:
λε = λ ∗ ϕηε

with ϕ ∈ D (R+) such as :∫
R+
ϕ(x)dx = 1 supp (ϕηε) ⊂ ]x0 − ηε, x0 +

ηε[ ηε =| logε |−1

We pose:

uε(t, x) = u0,ε (λε(t, x, 0))

To proof that U ≈ u, just prove that :

limε→0
∫

Ω(u0,ε(λε(t, x, , 0)) −
u0(λ(t, x, 0)))ψ(t, x)dtdx = 0

for all ψ ∈ D(Ω)
We have∫

Ω (u0,ε (λε(t, x, 0)) − u0(λ(t, x, 0)))ψ(t, x)dtdx =∫
Ω (u0,ε (λε(t, x, 0)) − u0 (λε(t, x, 0)))ψ(t, x)dtdx

+
∫

Ω (u0 (λε(t, x, 0)) − u0(λ(t, x, 0)))ψ(t, x)dtdx

But∫
Ω (u0,ε (λε(t, x, 0)) − u0 (λε(t, x, 0)))ψ(t, x)dtdx =∫

Ω (u0,ε − u0) (λε(t, x, 0))ψ(t, x)dtdx
≤ supx∈R ∥u0 ∗ ϕε − u0∥∥

∫
sup p(ϕ) ψ(t, x)dtdx∥

so

lim
ε→0

∫
Ω

(u0,ε (λε(t, x, 0)) − u0(λ(t, x, 0)))ψ(t, x)dtdx = 0

To prove that

lim
ε→0

∫
Ω

(u0 (λε(t, x, 0)) − u0(λ(t, x, 0)))ψ(t, x)dtdx = 0

We must prove:

lim
ε→0

(λε(t, x, 0) − λ(t, x, 0)) = 0

We know that c is globally bounded.
So there is M > 0 such as

sup
(t,x)∈Ω

∥cε(t, x)∥ < M

So, we can frame the curve λε between two broken
curves, and we take the intersection of these two
curves with the axis (ox), given by:

x1 = 1
cL

[−2Mηε + cR (x− x0 − ηε)] − t
cL

− ηε + x0
x2 = 1

cL
[2Mηε + cR (x− x0 − ηε)] − t

cL
− ηε + x0
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such that

x1 ≤ λε(t, x, 0) ≤ x2

Since

lim
ε→0

λε(t, x, 0) = cR

cL
(x− x0) − t

cL
+ x0

= λ(x, t, 0)

so
U ≈ u

�
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