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Abstract—The paper studies the possibilities of 

mathematical models of cyclic processes in algebraic form 

for forecasting purposes. It is shown that such 

mathematical models can be used for reliable prediction 

only in a small local neighborhood of the initial data which 

are necessary for the synthesis of mathematical model. 

Outside of this area the forecast is not stable and 

additional conditions is needed. These conditions can be 

obtained from the physical laws of the studied processes or 

from additional requirements of specialists. 

 

Keywords— cyclic processes, neural network, adequacy 

of a quantitative type, forecast.  

I. INTRODUCTION 

t is hard to develop a modern science without a wide use of 

mathematical models. An important place in this approach 

is occupied by neural network methods for simulation of 

physical processes. One of the types of neural networks are 

mathematical models in the form of algebraic relations. They 

are used in econometrics, in problems of search regularities, in 

problems of cryptography. 

In this case, the question of the adequacy of the model and 

the process under study is important [1]. If a mathematical 

model does not meet the conditions of adequacy, then further 

use of such a model (neural network) is problematic. In the 

practice of synthesizing neural networks, expert assessments 

are usually used for these purposes. In this paper, the 

questions of the synthesis of adequate mathematical models 

(neural networks) in algebraic form are discussed, as well as 

the questions of the use of mathematical models of this type 

for the purpose of predicting the characteristics of physical 

processes. 

II. MATHEMATICAL MODELS (NEURAL NETWORKS) IN 

ALGEBRAIC FORM 

Consider a mathematical model of a physical process in 

the form of algebraic relations [1] 

 

 
 

𝑞𝑛 = 𝑧1𝑞1 + 𝑧2𝑞2 + ⋯ 𝑧𝑛−1𝑞𝑛−1 + 𝑧𝑛,                                 (1) 

where 𝑞1, 𝑞2, … 𝑞𝑛−1 are characteristics of a physical process 

(inputs of a neural network), 𝑞𝑛 is an output characteristic of a 

process (output of a neural network), 𝑧1, 𝑧2, … 𝑧𝑛 are the 

required constant coefficients of the mathematical model 

(synoptic weights of the neuron). Equation (1) is written in 

dimensionless form. 

It can be shown that the mathematical model (1) corresponds 

to a single-layer neural network with (n-1) inputs and one 

output with constant parameters [2]. Mathematical models of 

this type describe well the physical processes of the cyclic 

type, for example, the baking of a dish, the smelting of metal, 

and so on. 
. In this paper, the model (neural network) (1) is synthesized 

on experimental data. Such a problem in the literature is called 

the problem of parameter identification [3]. 

The problem of identifying the parameters of the stationary 

process is to build some mathematical model of the 

relationship between the selected characteristics of the 

process. The problem of identifying the parameters of the 

stationary process is to build some mathematical model of the 

relationship between the selected characteristics of the process 

  𝑞1, 𝑞2, 𝑞3 … … 𝑞𝑛. For simplicity, we consider only the 

problem of constructing a linear model (1). 

Let 𝑧𝑇 = (𝑧1, 𝑧2, 𝑧3, … 𝑧𝑛), (. )𝑇 is the transposition sign. It is 

assumed that for each variable 𝑞𝑖   (𝑖 = 1,2, … 𝑛) we have m 

measurements 𝑞𝑖𝑘 = (𝑘 = 1,2, … 𝑚), 𝑛 ≤ 𝑚. Denote by 𝑞𝑖
𝑇 =

(𝑞𝑖1, 𝑞𝑖2, 𝑞𝑖3, … . 𝑞𝑖𝑚). The construction of a linear 

multidimensional model in the classical formulation can be 

reduced to finding the solution of a redefined linear 

inhomogeneous system of algebraic equations by the least 

squares (MLS) method, for example. It is assumed that each 

measurement is given its statistical characteristics. 

The paper proposes a deterministic approach to the problem of 

constructing multiple regression parameters, which does not 

use information about the statistical properties of 

measurements. The number of measurements is minimal and 

equal to the number of variables of the studied process. 

We present the problem of constructing a linear model with 

respect to 𝑞𝑛 for the number of measurements 𝑚 = 𝑛, as the 

problem of solving the system 

 

𝐴𝑝(𝑞1, 𝑞2, … 𝑞𝑛−1)𝑧 = 𝑞𝑛,                                                     (2) 
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where the operator 𝐴𝑝(𝑞1, 𝑞2, … 𝑞𝑛−1)𝑧 is defined as follows 

 

𝐴𝑝(𝑞1, 𝑞2, … 𝑞𝑛−1)𝑧 = 𝑧1𝑞1 + 𝑧2𝑞2 + ⋯ + 𝑧𝑛−1𝑞𝑛−1 + 𝑧𝑛𝑒, 

 

𝑒 is a vector with unit components of dimension 𝑛; 𝑧, 𝑞𝑖(𝑖 =

1,2, … . 𝑛) is vector with 𝐸𝑛. For the norm of the vector in 𝐸𝑛 

we take the value 

 

‖𝑞𝑖‖
2 = (𝑞𝑖 , 𝑞𝑖) = 𝑞𝑖1

2 + 𝑞𝑖2
2 + ⋯ + 𝑞𝑖𝑛

2 , 
 

It is easy to see that the operators 𝐴𝑝 are linear. Since the 

measurements of variables are performed experimentally, we 

will think that each dimension 𝑞𝑖𝑘 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑘 ≤ 𝑛 has 

some error, the maximum value of which is known a priori: 

 

|𝑞𝑖𝑘 − 𝑞𝑖𝑘
𝑒𝑥| ≤ 𝛿𝑖;  1 ≤ 𝑘 ≤ 𝑛;  𝑖 = 1,2, … 𝑛;            (3) 

 

where 𝑞𝑖𝑘
𝑒𝑥 are the exact measurement of the variable 𝑞𝑖 , 1 ≤

𝑘 ≤ 𝑛. 
Statistical characteristics of measurement errors are not used. 

Denote by 𝑝 the vector with 𝐸𝑛⨂𝐸𝑛⨂𝐸𝑛 ⨂ … ⨂𝐸𝑛 =

𝐸(𝑛−1)𝑛: 
𝑝 =

(𝑞11, 𝑞12, … . . 𝑞1𝑛, 𝑞21, … . 𝑞2𝑛, … . . 𝑞(𝑛−1)1, 𝑞(𝑛−1)2, … . . 𝑞(𝑛−1)𝑛)𝑇

. 

Due to inequalities (3), the vector 𝑝 can take values in some 

closed domain 𝐷 = 𝐷𝑛⨂𝐷𝑛⨂𝐷𝑛 ⨂ … ⨂𝐷𝑛 ⊂ 𝐸(𝑛−1)𝑛. The 

exact vector 𝑝𝑒𝑥 will correspond to the exact measurements 

𝑝𝑒𝑥 = (𝑞11
𝑒𝑥, 𝑞12

𝑒𝑥 , … 𝑞(𝑛−1)𝑛
𝑒𝑥 )𝑇 and the "exact" operator 𝐴𝑒𝑥 is 

defined as 

 

𝐴𝑒𝑥𝑧 = 𝑧1𝑞1
𝑒𝑥 + 𝑧2𝑞2

𝑒𝑥 + ⋯ + 𝑧𝑛−1𝑞𝑛−1
𝑒𝑥 + 𝑧𝑛𝑒,  

 

where 𝑞𝑖
𝑒𝑥 = (𝑞𝑖1

𝑒𝑥, 𝑞𝑖2
𝑒𝑥 , … , 𝑞(𝑛−1)𝑛

𝑒𝑥 )𝑇 , 𝑖 = 1,2,3, … . , 𝑛.. Rewrite 

(2) in the form 

 

𝐴𝑝𝑧 = 𝑢𝛿1
                                                                              (4) 

 

where 𝑢𝑞1
= 𝑞1;  ‖𝑢𝛿1

− 𝑢1
𝑒𝑥‖ ≤ 𝛿1;  𝑢1

𝑒𝑥 = 𝑞𝑛
𝑒𝑥;  𝑢𝛿1

, 𝑢1
𝑒𝑥 ∈

𝑅𝑛; 𝑧 ∈ 𝑅𝑛 . 
Each vector in the region corresponds to a certain operator 𝐴𝑝. 

The set 𝐷 ⊂ 𝐸(𝑛−1)𝑛 will correspond to the operator class 

{𝐴𝑝} = 𝐾𝐴. 

 

III. SYNTHESIS OF A MATHEMATICAL MODEL WITH THE 

ADEQUACY OF THE QUANTITATIVE TYPE 

We define an adequate mathematical model in form (2). 

Fix the operator 𝐴𝑝 from the set 𝐾𝐴. Consider the set of 

possible solutions of equation (4) for the fixed operator 𝐴𝑝  ∈

𝐾𝐴: 

𝒬𝛿1,𝑝 = {𝑧: ‖𝐴𝑝𝑧 − 𝑢𝛿1
‖ ≤ 𝛿1}. 

Definition. A mathematical model in the form (1) with a 

vector of synoptic weights of neuron 𝑧 will be called adequate 

of quantitative type, if by substituting 𝑧 in the left part of 

equation (4) we obtain the vector 𝑞𝑛, which differs from the 

exact vector  𝑞𝑛
𝑒𝑥  by no more than 𝛿1 [1,4]. Comparison of the 

results of mathematical modelling with experimental data 

ensures the objectivity of the adequacy property of the 

mathematical model (neural network). 

Comparison of the results of mathematical modelling with 

experimental data ensures the objectivity of the property of the 

adequacy of the mathematical model (neural network). Thus, 

any vector from the set 𝒬𝛿1,𝑝 gives an adequate mathematical 

model of a quantitative process. 

If for a fixed 𝑝 ∈ 𝐷 ∆= det 𝐴𝑝 ≠ 0, then the set 𝒬𝛿1,𝑝 is 

bounded. If for a fixed 𝑝 ∈ 𝐷 ∆= det 𝐴𝑝 = 0, then the set 

𝒬𝛿1,𝑝 will be unbounded. If all errors are directed to zero 𝛿𝑖 →

0,, then ∆→ 0. Thus, if the measurements coincide with the 

exact measurements or are close to each other, the determinant 

∆ will be equal to zero or close to zero. In addition, when 

performing numerical calculations with finite accuracy, some 

sets 𝒬𝛿1,𝑝 (with a small value of the determinant ∆) fall into 

the number of unbounded ones. 

The sets 𝒬𝛿1,𝑝 are convex and closed. In addition, the sets 

𝒬𝛿1,𝑝 will be unbounded for a special choice of the vector 𝑝 ∈

𝐷. So, there is an infinite set of sets containing elements with 

any large deviations from one another. In addition, when 

performing numerical calculations with finite accuracy, some 

sets (with a small value of the determinant) fall into the 

number of unlimited ones. 

Thus, in the general case, the set of possible solutions to 

system (4) 𝒬𝛿1,𝑝 (the set of adequate mathematical models) is 

unlimited. 

Let us consider the formulation of the parameter identification 

problem as a synthesis problem. Each vector from the set 

𝒬𝛿1,𝑝 is an adequate mathematical model of the process. The 

problem of finding a vector 𝑧 ∈ 𝒬𝛿1,𝑝 can be called the 

problem of synthesizing the parameters of a mathematical 

model. To select a specific model 𝑧𝑝 from sets 𝒬𝛿1,𝑝 (which 

may be unlimited), additional conditions must be used [5]. 

However, there is no reason to believe that the model 𝑧𝑝 will 

be close to the exact mathematical model. The mathematical 

model obtained by the regularization method [5] is a model 

with a minimum norm, which is maximally resistant to 

changes in unaccounted factors. This property of the solution 

𝑧𝑝 is especially important for further use for forecasting 

processes (indicator 𝑞𝑛). 

An algorithm for the numerical solution of the problem of 

synthesis of an adequate model (adequate neural network) is 

described in detail into [1]. 

IV. NUMERICAL CALCULATIONS 

As a test example, the problem of constructing a linear 

algebraic mathematical model of the steel smelting process is 

considered [1]. This process is cyclical and can be described 

using a linear mathematical model in a small area of the 

selected point of the data change area. The initial data for test 

calculations were selected from the work [6] on the chemical 

composition, the parameters of heat treatment and properties 

of steel strength are presented in Table 1 and in Table 2 (see 
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attached page). Here were accepted the following designations 

C (𝑞1) is the amount of carbon [kg]; Si (𝑞2) is amount of 

silicon [kg]; Mn (𝑞3) is amount of manganese [kg]; P (𝑞4) - 

amount of phosphorus [kg]; S (𝑞5) is the amount of sulfur 

[kg]; Cr (𝑞6) is amount of chromium [kg]; Ni (𝑞7) is amount 

of nickel [kg];  Al (𝑞8) is the amount of aluminium; Cu (𝑞9) is 

the amount of copper [kg]; Ti (𝑞10) is the amount of titanium 

[kg]; V(𝑞11) is the amount of vanadium [kg]; T1 (𝑞12) is 

quenching temperature [oC];  T2 (𝑞13) is the  quenching time 

[oС]; w (𝑞14) is water consumption [m3/hour]; Topt (𝑞15) is  the 

optimum temperature [oС];  τopt (𝑞16) is the optimum time 

[oС]; 𝜎𝑏 (𝑞17) is the strength of steel [MPa]. 

As a result of the calculations, an adequate mathematical 

model of the steel smelting process was obtained in algebraic 

form. 

 

z = (15.2158, 73.1382, 43.3567, 0.3820, 0.2196, -0.8670,        

-0.2950, 1.0681, 4.5157, 0.0930, 1.2498, 0.0151, -1.2778, 

10.2737, 1.2555, -1.3005, 16.9142)T. 

As follows from the calculation results, the parameters of an 

adequate mathematical model 

have no reasonable physical meaning. For example, the 

composition of the alloy cannot contain components with a 

negative sign. However, this model gives the most accurate 

simulation results. But one expert, when building a neural 

network, is not able to offer such coefficients. The loss in 

physical interpretation is compensated for by the high 

accuracy of the simulation. 

V. THE PROBLEM OF PREDICTING THE PROPERTIES OF STEEL 

Adequate mathematical models (neural networks), first of 

all, are aimed at predicting the behavior of physical processes. 

In the general case, adequacy is understood as the fulfillment 

of two conditions: the adequacy of the quantitative type and 

the adequacy of the qualitative type. For mathematical models 

in algebraic form, the second criterion cannot be met.  

Let us determine the limits of change in the initial data for 

𝑞1, 𝑞2,   .  .  ,  𝑞16  according to Table 1: 

 

𝑞1 ∈ [0.57; 0.61], 𝑞2 ∈ [0.30; 1.43], 𝑞3 ∈ [0.78; 1.46], 𝑞4 ∈
[0.006; 0.012], 𝑞5 ∈ [0.003; 0.009], 𝑞6 ∈ [0.07; 0.09], 𝑞7 ∈
[0.05; 0.06], 𝑞8 ∈ [0.023; 0.035], 𝑞9 ∈ [0.04; 0.09], 𝑞10 ∈
[0.006; 0.009], 𝑞11 ∈ [0.082; 0.088], 𝑞12 ∈ [860; 900], 𝑞13 ∈
[120; 220], 𝑞14 ∈ [70; 80], 𝑞15 ∈ [500; 520], 𝑞16 ∈
[130; 150].  
 

The vector product of these segments forms the neighborhood 

𝑄 ∈ 𝐸16, which we will call the basic neighborhood. 

This paper explores the possibilities of forecasting without 

using a qualitative criterion of adequacy. 

For this purpose, retrospective calculations of steel strength 

were performed for the cases of steel smelting specified in the 

original table. As an example of such a check, the calculations 

of steel strength for the all experiments are given (lines 1-17 in 

Table 1). Calculations have shown good agreement between 

the calculated value 𝑞17 and the tabulated value (see Table 1). 

The maximum deviation of the calculated value of steel 

strength and the experimental value does not exceed 7%. 

Numerical calculations of the prediction of steel properties 

have shown that if the initial parameters (chemical 

composition) are within the basic neighborhood of initial 

data 𝑄, for which an adequate mathematical model of steel 

smelting was built, then the prediction of steel strength 

practically coincides with the tabular values. 

Other results were obtained for experiments in the initial data 

[6], which are not included in matrix A. For example, a 

retrospective calculation of the strength of steel for the 25th 

line in Table 1 [6] showed that the calculated value of steel 

strength is 1170.0, and the experimental the magnitude is 

960.4. The forecast error is 22%. Similar calculations for the 

26th row are as follows: the calculated value of the steel 

strength is 1151.4, and the experimental value is 970.2. The 

margin of error is 19%. The calculations for the 38th row are 

as follows: the calculated value of the steel strength is 1189.6, 

and the experimental value is 1009.4, the error is 18%. The 

calculations for row 32 are as follows: the calculated value of 

the steel strength is 1395.1, and the experimental value is 

970.2. The margin of error is 44%. 

For all these cases, the initial data 𝑞1, 𝑞2,   .  .  ,  𝑞16 went 

beyond the base neighborhood 𝑄. In this case, a large forecast 

error corresponds to a larger deviation of the initial forecast 

data from the base neighborhood. 

In addition, the analysis showed that the input data from the 

basic neighborhood forms an area with a sufficiently deformed 

shape, for example, in comparison with a multidimensional 

ellipsoid. Let's depict in Figure 1. - Figure 8. three-

dimensional intersections of the basic neighborhood of the 

input data (Table 1) in order to analyze the forecast errors. 

 

 

Fig. 1. Data dependence in space  𝑞1𝑞2𝑞3. 
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Fig. 2. Data dependence in space  𝑞1𝑞4𝑞5. 

 

 
Fig. 3. Data dependence in space    𝑞1𝑞6𝑞7. 

 

 
Fig. 4. Data dependence in space    𝑞1𝑞8𝑞9. 

 

 
Fig. 5. Data dependence in space  𝑞1𝑞10𝑞11. 

 

 

Fig. 6. Data dependence in space  𝑞1𝑞12𝑞13. 

 

 
Fig. 7. Data dependence in space  𝑞1𝑞14𝑞15. 

 

 
Fig. 8. Data dependence in space  𝑞1𝑞161. 

 

Unstable forecast results were obtained if the initial 

parameters go beyond the boundary of the basic 

neighborhood. 

Obviously, in order to obtain good forecast results, it is 

necessary to have a more correct basic neighborhood. In other 

words, for forecasting purposes it is necessary to have 

specially organized experimental measurements. 

To replace the property of qualitative type adequacy, it is 

possible to use some other characteristics of the physical 

process for forecasting. For example, the proportions of the 

characteristics of a mixture of alloy components must obey a 

certain ratio. For example, a soup cannot contain salt in the 

size of cabbage or potatoes. So, to replace the property of of 

qualitative type adequacy, it is necessary to involve the ratio 

and dependences from the general physical laws of nature. It is 

also possible to form special conditions for forecasting 

purposes. 

The presence of an adequate mathematical model makes it 

possible also to make some forecast on the value of the 

coefficients of this model. For example, a large positive 

coefficient for a physical variable will indicate a large increase 

in the strength of the steel with an increase in this physical 

parameter. Confirmation of this property can be observed 

inside the area of  𝑄. 
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VI. CONCLUSION 

For the cyclic processes under consideration, an algorithm 

for constructing an adequate mathematical model in algebraic 

form is proposed. Such models describe well the physical 

process only in a small neighborhood of the initial data. 

Several possible directions for improving the quality of 

forecasting using adequate models in algebraic form are 

proposed. 

The results of the work can be used  also when constructing 

adequate neural networks of almost any physical processes 

with a continuous change in properties. In this case, the most 

accurate network can be obtained, however, with the loss of 

physical meaning for the network coefficients.  
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Таble 1. Chemical components for steelmaking. 

 
N  
/ 
N 

C 

(q1) 

Si 

(q2) 

Mn 

(q3) 

P 

(q4) 

S 

(q5) 

Cr 

(q6) 

Mi 

(q7) 

Al 

(q8) 

Cu 

(q9) 

Ti 

(q10) 

V 

(q11) 

T1 

(q12) 

T2 

(q13) 

w 

(q14

) 

Topt 

(q15) 

τopt 

 (q16) 

𝜎𝑏  

(q17) 

1. 0.60  0.3 0.8 0.009 0.009 0.08 0.05 0.023 0.09 0.006 0.088 900 180 70 500 130 1048.4 

2. 0.5 0.33 0.84 0.006 0.005 0.07 0.05 0.024 0.08 0.006 0.087 900 180 70 520 130 1039 

3. 0.63  0.94 0.824 0.009 0.003 0.09 0.05 0.029 0.085 0.007 0.088 900 220 80 500 130 1159 

4. 0.60 0.94 0.82 0.009 0.003 0.09 0.05 0.028 0.08 0.007 0.088 0.880 200 80 500 150 1136 

5. 0.57  1.31 0.80 0.008 0.006 0.08 0.05 0.032 0.09 0.008 0.086 900 180 70 500 130 1137 

6. 0.60  0.93 0.80 0.009 0.006 0.08 0.05 0.028 0.09 0.007 0.086 900 180 70 500 130 1127 

7. 0.59 1.36 0.78 0.008 0.006 0.08 0.05 0.032 0.08 0.008 0.083 900 220 76 500 130 1166 

8. 0.59 1.09 0.79 0.008 0.007 0.08 0.05 0.032 0.09 0.007 0.084 900 220 76 500 130 1127 

9. 0.57 1.43 0.79 0.007 0.006 0.08 0.06 0.035 0.08 0.008 0.084 900 180 70 520 130 1156 

10. 0.58  1.33 0.78 0.008 0.007 0.09 0.05 0.032 0.09 0.008 0.086 900 220 76 520 130 1078 

11. 0.60 0.96 0.84 0.012 0.004 0.09 0.06 0.028 0.05 0.008 0.083 860 200 80 500 150 1137 

12. 0.61 0.97 0.84 0.008 0.004 0.09 0.06 0.027 0.06 0.008 0.083 860 200 80 500 150 1137 

13. 0.59 0.97 0.86 0.009 0.003 0.09 0.06 0.026 0.06 0.008 0.084 860 200 80 500 150 1123 

14. 0.59 0.96 0.86 0.011 0.004 0.09 0.06 0.026 0.04 0.009 0.085 860 200 80 500 150 1139 

15. 0.59 0.98 0.86 0.009 0.003 0.09 0.06 0.026 0.06 0.008 0.082 880 200 80 500 150 1147 

16. 0.58  0.98 0.87 0.009 0.005 0.09 0.06 0.026 0.05 0.008 0.084 880 220 80 500 150 1137 

17. 0.57 0.97 1.46 0.008 0.006 0.08 0.05 0.026 0.08 0.008 0.086 900 180 70 500 130 1137 
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