Formulas to approximate Legendre's Complete Elliptic Integrals using Peano's Law on Ellipse's Perimeter and a Recurrent-Iterative Scheme (Landen's Transform Included)

Richard Selescu
Flow Physics Department, Experimental Aerodynamics Compartment, Trisonic Wind Tunnel Laboratory "Elie Carafoli" National Institute for Aerospace Research - INCAS (under the Aegis of the Romanian Academy) Bucharest, Sector 6, Bd. Iuliu Maniu, No. 220, Code 061126

ROMANIA

Abstract

Two sets of closed analytic functions are proposed for the approximate calculus of the complete elliptic integrals $K(k)$ and $E(k)$ in the normal form due to Legendre, their expressions having a remarkable simplicity and accuracy. The special usefulness of the newly proposed formulas consists in they allow performing the analytic study of variation of the functions in which they appear, using derivatives (they being expressed in terms of elementary functions only, without any special function; this would mean replacing one difficulty by another of the same kind). Comparative tables of so found approximate values with the exact ones, reproduced from special functions tables, are given (vs. the elliptic integrals' modulus k). The 1 st set of formulas was suggested by Peano's law on ellipse's perimeter. The new functions and their derivatives coincide with the exact ones at the left domain's end only. As for their simplicity, the formulas in k / k^{\prime} do not need mathematical tables (are purely algebraic). As for accuracy, the 2nd set, more intricate, gives more accurate values and extends itself more closely to the right domain's end. An original fast converging recurrent-iterative scheme to get sets of formulas with the desired accuracy is given in appendix.

Key-Words: analytic methods; Legendre complete elliptic integrals $K(k)$ and $E(k)$; elliptic integrals' moduli \mathbf{k}, \mathbf{k}^{\prime}; tables of Legendre complete elliptic integrals; Peano's approximate law for ellipse's perimeter; recurrent-iterative scheme; Landen transformation

I. INTRODUCTION - ELLIPTIC INTEGRALS

There are many interesting domains in pure and applied mathematics where appear both (or, often, only one) complete elliptic integrals of the $1^{\text {f }}$ and $2^{\text {nd }}$ kind in the nommal form due to Legendre. The arc length of a lemniscate, as well as the period of oscillations in a vacuum of the simple pendulum, in the dynamics of a constrained heavy particle, are given by a complete elliptic integral of the 1^{Δ} kind. The perimeter of an ellipse, as well as the lift coefficient of a thin delta wing with subsonic leading edges, in supersonic aerodynamics (small perturbations theory), are given by a complete elliptic integral of the $2^{\text {nd }}$ kind. In electromagnetic theory, the electric
and magnetic fields firm a circular coil can be expressed using the complete elliptic integrals. The relations below define the integrals of the $1^{\text {st }}$ and $2^{\text {nd }}$ kind, in canonical form, $\mathrm{K}(k)$ and $\mathrm{E}(k)$, resp.: $\mathrm{K}(k)=\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \varphi\right)^{-1 / 2} d \varphi=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)\right]^{-1 / 2} d t ;$ $\mathrm{E}(k)=\int_{0}^{\pi / 2}\left(1-k^{2} \sin ^{2} \varphi\right)^{1 / 2} d \varphi=\int_{0}^{1}\left[\left(1-t^{2}\right)\left(1-k^{2} t^{2}\right)\right]^{1 / 2} d t ;$ $k=\sin \theta \geq 0$ is called modulus. $\mathrm{K}(k), \mathrm{E}(k)$ aretypical elliptic integrals. They do not admit primitive functions (cannot be expressed in terms of elementary functions), being calculated by expanding the integrands into series, integrating term-by-term, and presented vs. $k \in[0,1]$, or vs. $\theta \in[0, \pi 2]$, in some mathematical tables $[1]-[6]$. Moderm mathematics defines an elliptic integral as any function f which can be expressed in the form $f(x)=\int_{c}^{x} R\left[t, P(t)^{1 /}\right] d t, R$ is a rational function of its two arguments; P is a polynomial of degree 3 or 4 with no repeated roots; c is a constant. The values given in some special tables allow performing the calculus for a given case (point), but not the analytic study of variation of the functions in which these integrals appear, using the derivatives. In chapter 2 two original sets (subscripts $0 ; 1$) of closed analytic finctions are given for the approximate calculus of $\mathrm{K}(k)$ and $\mathrm{E}(k)$. We use an original purely analytic method (not some numerical, or sophisticated computer programs, like most authors). There also is a Legendre complete elliptic integral of the $3^{\text {tid }} \mathrm{kind}$. With an appropriate reduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the three Legendre canonical forms (of the $1^{{ }^{\text {t }}, 2^{\text {nd }} \& 3^{\text {rd }} \text { kind). }}$

II. THE TWO SETS OF NEWLY PROPOSED FORMULAS

The complementary modulus is $k^{\prime}=\left(1-k^{2}\right)^{12}=\cos \theta$. The $\mathrm{E}_{0}(k)$ formula in the $1^{\text {st }} \operatorname{set}\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$ is suggested by Peano's law.

$$
\begin{aligned}
& \mathrm{K}_{0}(k)=\frac{\pi}{\sqrt[4]{1-k^{2}}}\left(1-\frac{1}{2 \sqrt{2}} \sqrt{\frac{1+\sqrt{1-k^{2}}}{\sqrt[4]{1-k^{2}}}}\right)=\pi\left(\frac{1}{\sqrt{k^{\prime}}}-\frac{1}{2 \sqrt{2}} \frac{\sqrt{1+k^{\prime}}}{k^{\prime 3 / 4}}\right), \\
& \mathrm{K}_{0}(\theta)=\frac{\pi}{\cos ^{1 / 2} \theta}\left(1-\frac{1}{2} \frac{\cos \theta / 2)}{\cos ^{1 / 4} \theta}\right)=\pi\left(\frac{1}{\cos ^{1 / 2} \theta}-\frac{1}{2} \frac{\cos \theta / 2)}{\cos ^{3 / 4} \theta}\right) . \\
& \mathrm{E}_{0}(k)=\frac{\pi}{4} \sqrt[4]{1-k^{2}}\left(\frac{31+\sqrt{1-k^{2}}}{2}-1\right)=\frac{\pi}{\sqrt[4]{1-k^{2}}}\left[\frac{3}{2}\left(1+k^{\prime}\right)-\sqrt{k^{\prime}}\right], \\
& \mathrm{E}_{0}(\theta)=\frac{\pi}{4} \cos ^{1 / 2} \theta\left(3 \frac{\cos ^{2}(\theta / 2)}{\cos ^{1 / 2} \theta}-1\right)=\frac{\pi}{4}\left(3 \cos ^{2} \frac{\theta}{2}-\sqrt{\cos \theta}\right) .
\end{aligned}
$$

Similarly, for the $2^{\text {nd }} \operatorname{set}\left(K_{1}, E_{1}\right)$, are proposed the formulas:

$$
\begin{aligned}
& \mathrm{K}_{1}(k)=\frac{\pi \sqrt{2}}{\sqrt{\left(1+k^{\prime}\right) \sqrt{k^{\prime}}}}\left(1-\frac{\sqrt[4]{2}}{4} \frac{1+\sqrt{k^{\prime}}}{\sqrt[4]{\left(1+k^{\prime}\right) \sqrt{k^{\prime}}}}\right), \\
& \mathrm{K}_{1}(\theta)=\frac{\pi}{\cos (\theta / 2) \cos ^{1 / 4} \theta}\left(1-\frac{1}{4} \frac{1+\cos ^{1 / 2} \theta}{\cos ^{1 / 2}(\theta / 2) \cos ^{1 / 8} \theta}\right) . \\
& \mathrm{E}_{1}(k)=\frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k^{\prime}}\right)^{2}-\sqrt{2} \sqrt{1+k^{\prime}} \sqrt[4]{k^{\prime}}\right]-k^{\prime} \cdot \mathrm{K}_{1}(k), \\
& \mathrm{E}_{1}(\theta)=\frac{\pi}{4}\left[\frac{3}{2}(1+\sqrt{\cos \theta})^{2}-2 \cos \frac{\theta}{2} \sqrt[4]{\cos \theta}\right]-\cos \theta \cdot \mathrm{K}_{1}(\theta) .
\end{aligned}
$$

$A 3^{\text {rd }}$ set $\left(K_{2}, E_{2}\right)$, even more accurate than previous two sets, can be built (a recurrent-iterative scheme) - see appendix.

Table 1. Values of the functions K (part one)

$\theta\left({ }^{\circ}\right)$	$k=\sin \theta$	$\mathrm{K}(k)$	$\mathrm{K}_{0}(k)$	$\mathrm{K}_{1}(k)$
0	0.00000	1.5708	1.5708	1.5708
1	0.01745	1.5709	1.5709	1.5709
2	0.03490	1.5713	1.5713	1.5713
3	0.05234	1.5719	1.5719	1.5719
4	0.06976	1.5727	1.5727	1.5727
5	0.08716	1.5738	1.5738	1.5738
6	0.10453	1.5751	1.5751	1.5751
7	0.12187	1.5767	1.5767	1.5767
8	0.13917	1.5785	1.5785	1.5785
9	0.15643	1.5805	1.5805	1.5805
10	0.17365	1.5828	1.5828	1.5828
11	0.19081	1.5854	1.5854	1.5854
12	0.20791	1.5882	1.5882	1.5882
13	0.22495	1.5913	1.5913	1.5913
14	0.24192	1.5946	1.5946	1.5946
15	0.25882	1.5981	1.5981	1.5981
16	0.27564	1.6020	1.6020	1.6020
17	0.29237	1.6061	1.6061	1.6061
18	0.30902	1.6105	1.6105	1.6105
19	0.32557	1.6151	1.6151	1.6151
20	0.34202	1.6200	1.6200	1.6200
21	0.35837	1.6252	1.6252	1.6252
22	0.37461	1.6307	1.6307	1.6307
23	0.39073	1.6365	1.6365	1.6365
24	0.40674	1.6426	1.6426	1.6426
25	0.42262	1.6490	1.6490	1.6490
26	0.43837	1.6557	1.6557	1.6557
27	0.45399	1.6627	1.6627	1.6627
28	0.46947	1.6701	1.6701	1.6701
29	0.48481	1.6777	1.6777	1.6777
30	0.50000	1.6858	1.6857	1.6858
31	0.51504	1.6941	1.6941	1.6941
32	0.52992	1.7028	1.7028	1.7028
33	0.54464	1.7119	1.7119	1.7119
34	0.55919	1.7214	1.7214	1.7214
35	0.57358	1.7312	1.7312	1.7312
36	0.58779	1.7415	1.7415	1.7415
37	0.60182	1.7522	1.7522	1.7522
38	0.61566	1.7633	1.7632	1.7633
39	0.62932	1.7748	1.7748	1.7748
40	0.64279	1.7868	1.7867	1.7868

41	0.65606	1.7992	1.7992	1.7992
42	0.66913	1.8122	1.8121	1.8122
43	0.68200	1.8256	1.8256	1.8256
44	0.69466	1.8396	1.8395	1.8396
45	0.70711	1.8541	1.8540	1.8541
46	0.71934	1.8691	1.8691	1.8691
47	0.73135	1.8848	1.8847	1.8848
48	0.74314	1.9011	1.9009	1.9011
49	0.75471	1.9180	1.9178	1.9180
50	0.76604	1.9356	1.9354	1.9356
51	0.77715	1.9539	1.9536	1.9539
52	0.78801	1.9729	1.9726	1.9729
53	0.79864	1.9927	1.9923	1.9927
54	0.80902	2.0133	2.0128	2.0133
55	0.81915	2.0347	2.0341	2.0347
56	0.82904	2.0571	2.0564	2.0571
57	0.83867	2.0804	2.0795	2.0804
58	0.84805	2.1047	2.1037	2.1047
59	0.85717	2.1300	2.1288	2.1300
60	0.86603	2.1565	2.1551	2.1565
61	0.87462	2.1842	2.1825	2.1842
62	0.88295	2.2132	2.2111	2.2132
63	0.89101	2.2435	2.2410	2.2435
64	0.89879	2.2754	2.2723	2.2754
65	0.90631	2.3088	2.3051	2.3088
66	0.91355	2.3439	2.3394	2.3439
67	0.92050	2.3809	2.3754	2.3809
68	0.92718	2.4198	2.4132	2.4198
69	0.93358	2.4610	2.4530	2.4610
70	0.93969	2.5046	2.4948	2.5045
70.5	0.94264	2.5273	2.5165	2.5273
71	0.94552	2.5507	2.5389	2.5507
71.5	0.94832	2.5749		2.5749
72	0.95106	2.5998		2.5998
72.5	0.95372	2.6256		2.6255
73	0.95630	2.6521		2.6521
73.5	0.95882	2.6796		2.6796
74	0.96126	2.7081		2.7081
74.5	0.96363	2.7375		2.7375
75	0.96593	2.7681		2.7680
75.5	0.96815	2.7998		2.7997
76	0.97030	2.8327		2.8326
76.5	0.97237	2.8669		2.8669
77	0.97437	2.9026		2.9025
77.5	0.97630	2.9397		2.9397
78	0.97815	2.9786		2.9785
78.5	0.97992	3.0192		3.0191
79	0.98163	3.0617		3.0616
79.5	0.98325	3.1064		3.1063
80	0.98481	3.1534		3.1533
80.2	0.98541	3.1729		3.1727
80.4	0.98600	3.1928		3.1927
80.6	0.98657	3.2132		3.2130
80.8	0.98714	3.2340		3.2338
81	0.98769	3.2553		3.2551

Table 1. Values of the functions K (part two)

81.2	0.98823	3.2771	3.2769
81.4	0.98876	3.2995	3.2992
81.6	0.98927	3.3223	3.3221
81.8	0.98978	3.3458	3.3455
82	0.99027	3.3699	3.3696
82.2	0.99075	3.3946	3.3942
82.4	0.99122	3.4199	3.4196
82.6	0.99167	3.4460	3.4456
82.8	0.99211	3.4728	3.4724
83	0.99255	3.5004	3.4999
83.2	0.99297	3.5288	3.5283
83.4	0.99337	3.5581	3.5575
83.6	0.99377	3.5884	3.5877
83.8	0.99415	3.6196	3.6188
84	0.99452	3.6519	3.6510
84.2	0.99488	3.6852	3.6843
84.4	0.99523	3.7198	3.7187
84.6	0.99556	3.7557	3.7545
84.8	0.99588	3.7930	3.7916
85	0.99619	3.8317	3.8302
85.2	0.99649	3.8721	3.8704
85.4	0.99678	3.9142	3.9122
85.6	0.99705	3.9583	3.9560
85.8	0.99731	4.0044	4.0018
86	0.99756	4.0528	4.0498
86.2	0.99780	4.1037	4.1003
86.4	0.99803	4.1574	4.1535
86.6	0.99824	4.2142	4.2097
86.8	0.99844	4.2744	4.2692
87	0.99863	4.3387	4.3325
87.2	0.99881	4.4073	4.4001
87.4	0.99897	4.4811	4.4726
87.6	0.99912	4.5609	4.5507
87.8	0.99926	4.6477	4.6354
88	0.99939	4.7427	4.7277
88.2	0.99951	4.8478	4.8293
88.4	0.99961	4.9654	
88.6	0.99970	5.0988	
88.8	0.99978	5.2527	
89	0.99985	5.4349	
89.1	0.99988	5.5402	
89.2	0.99990	5.6579	
89.3	0.99993	5.7914	
89.4	0.99995	5.9455	
89.5	0.99996	6.1278	
89.6	0.99998	6.3509	
89.7	0.99999	6.6385	
89.8	0.99999	7.0440	
89.9	1.00000	7.7371	1.00000

The values strings in the last two columns of table 1 were canceled when each of the two closed analytic formulas proposed for the approximation of the Legendre complete elliptic integral of the $1^{\text {st }}$ kind $K(k)$ gives too great relative errors $(\geq 4 \%$ - also see
chapter 3) for being still accepted in the usual mathematical / technical calculus. The same procedure will be applied in case of the next table (no. 2), for the same reason, concerning the accuracy of the values given by each of the other two closed analytic formulas proposed for the approximation of the Legendre complete elliptic integral of the $2^{\text {nd }}$ kind $\mathrm{E}(k)$. The accuracy analysis of the two sets of formulas will be performed in the next chapter (no. 3). In chapter 4 some series representations for the exact functions and for both sets of approximation, as well as for their first order derivatives, will be given. For $\left(\mathrm{K}_{0,1}, \mathrm{E}_{0,1}\right)$ behaviour in the right domain's side see appendix.

Table 2. Values of the functions E (part one)

$\theta\left({ }^{\circ}\right)$	$k=\sin \theta$	$\mathrm{E}(k)$	$\mathrm{E}_{0}(k)$	$\mathrm{E}_{1}(k)$
0	0.00000	1.5708	1.5708	1.5708
1	0.01745	1.5707	1.5707	1.5707
2	0.03490	1.5703	1.5703	1.5703
3	0.05234	1.5697	1.5697	1.5697
4	0.06976	1.5689	1.5689	1.5689
5	0.08716	1.5678	1.5678	1.5678
6	0.10453	1.5665	1.5665	1.5665
7	0.12187	1.5649	1.5649	1.5649
8	0.13917	1.5632	1.5632	1.5632
9	0.15643	1.5611	1.5611	1.5611
10	0.17365	1.5589	1.5589	1.5589
11	0.19081	1.5564	1.5564	1.5564
12	0.20791	1.5537	1.5537	1.5537
13	0.22495	1.5507	1.5507	1.5507
14	0.24192	1.5476	1.5476	1.5476
15	0.25882	1.5442	1.5442	1.5442
16	0.27564	1.5405	1.5405	1.5405
17	0.29237	1.5367	1.5367	1.5367
18	0.30902	1.5326	1.5326	1.5326
19	0.32557	1.5283	1.5283	1.5283
20	0.34202	1.5238	1.5238	1.5238
21	0.35837	1.5191	1.5191	1.5191
22	0.37461	1.5141	1.5141	1.5141
23	0.39073	1.5090	1.5090	1.5090
24	0.40674	1.5037	1.5037	1.5037
25	0.42262	1.4981	1.4981	1.4981
26	0.43837	1.4924	1.4924	1.4924
27	0.45399	1.4864	1.4864	1.4864
28	0.46947	1.4803	1.4803	1.4803
29	0.48481	1.4740	1.4740	1.4740
30	0.50000	1.4675	1.4675	1.4675
31	0.51504	1.4608	1.4608	1.4608
32	0.52992	1.4539	1.4539	1.4539
33	0.54464	1.4469	1.4469	1.4469
34	0.55919	1.4397	1.4397	1.4397
35	0.57358	1.4323	1.4323	1.4323
36	0.58779	1.4248	1.4248	1.4248
37	0.60182	1.4171	1.4171	1.4171
38	0.61566	1.4092	1.4093	1.4092
39	0.62932	1.4013	1.4013	1.4013
40	0.64279	1.3931	1.3932	1.3931
41	0.65606	1.3849	1.3849	1.3849

Table 2. Values of the functions E (part two)				
42	0.66913	1.3765	1.3765	1.3765
43	0.68200	1.3680	1.3680	1.3680
44	0.69466	1.3594	1.3594	1.3594
45	0.70711	1.3506	1.3507	1.3506
46	0.71934	1.3418	1.3419	1.3418
47	0.73135	1.3329	1.3330	1.3329
48	0.74314	1.3238	1.3239	1.3238
49	0.75471	1.3147	1.3148	1.3147
50	0.76604	1.3055	1.3057	1.3055
51	0.77715	1.2963	1.2964	1.2963
52	0.78801	1.2870	1.2872	1.2870
53	0.79864	1.2776	1.2778	1.2776
54	0.80902	1.2681	1.2684	1.2681
55	0.81915	1.2587	1.2590	1.2587
56	0.82904	1.2492	1.2496	1.2492
57	0.83867	1.2397	1.2401	1.2397
58	0.84805	1.2301	1.2307	1.2301
59	0.85717	1.2206	1.2212	1.2206
60	0.86603	1.2111	1.2118	1.2111
61	0.87462	1.2015	1.2024	1.2015
62	0.88295	1.1920	1.1930	1.1920
63	0.89101	1.1826	1.1838	1.1826
64	0.89879	1.1732	1.1745	1.1732
65	0.90631	1.1638	1.1654	1.1638
66	0.91355	1.1545	1.1564	1.1545
67	0.92050	1.1453	1.1475	1.1453
68	0.92718	1.1362	1.1387	1.1362
69	0.93358	1.1272	1.1301	1.1273
70	0.93969	1.1184	1.1217	1.1184
70.5	0.94264	1.1140	1.1176	1.1140
71	0.94552	1.1096	1.1135	1.1096
71.5	0.94832	1.1053		1.1053
72	0.95106	1.1011		1.1011
72.5	0.95372	1.0968		1.0968
73	0.95630	1.0927		1.0927
73.5	0.95882	1.0885		1.0885
74	0.96126	1.0844		1.0844
74.5	0.96363	1.0804		1.0804
75	0.96593	1.0764		1.0764
75.5	0.96815	1.0725		1.0725
76	0.97030	1.0686		1.0686
76.5	0.97237	1.0648		1.0648
77	0.97437	1.0611		1.0611
77.5	0.97630	1.0574		1.0574
78	0.97815	1.0538		1.0538
78.5	0.97992	1.0502		1.0503
79	0.98163	1.0468		1.0468
79.5	0.98325	1.0434		1.0435
80	0.98481	1.0401		1.0402
80.2	0.98541	1.0388		1.0389
80.4	0.98600	1.0375		1.0376
80.6	0.98657	1.0363		1.0364
80.8	0.98714	1.0350		1.0351
81	0.98769	1.0338		1.0339

81.2	0.98823	1.0326		1.0327
81.4	0.98876	1.0314		1.0315
81.6	0.98927	1.0302		1.0303
81.8	0.98978	1.0290		1.0292
82	0.99027	1.0278		1.0280
82.2	0.99075	1.0267		1.0269
82.4	0.99122	1.0256		1.0258
82.6	0.99167	1.0245		1.0247
82.8	0.99211	1.0234		1.0236
83	0.99255	1.0223		1.0226
83.2	0.99297	1.0213		1.0215
83.4	0.99337	1.0202		1.0205
83.6	0.99377	1.0192	false min.	1.0196
83.8	0.99415	1.0182		1.0186
84	0.99452	1.0172		1.0176
84.2	0.99488	1.0163		1.0167
84.4	0.99523	1.0153		1.0158
84.6	0.99556	1.0144		1.0150
84.8	0.99588	1.0135		1.0141
85	0.99619	1.0127		1.0133
85.2	0.99649	1.0118		1.0125
85.4	0.99678	1.0110		1.0118
85.6	0.99705	1.0102		1.0110
85.8	0.99731	1.0094		1.0103
86	0.99756	1.0086		1.0097
86.2	0.99780	1.0079		1.0091
86.4	0.99803	1.0072		1.0085
86.6	0.99824	1.0065		1.0080
86.8	0.99844	1.0059		1.0075
87	0.99863	1.0053		1.0071
87.2	0.99881	1.0047		1.0067
87.4	0.99897	1.0041		1.0064
87.6	0.99912	1.0036		1.0062
87.8	0.99926	1.0031		1.0060
88	0.99939	1.0026		1.0060
88.2	0.99951	1.0021		1.0061
88.4	0.99961	1.0017		
88.6	0.99970	1.0014		
88.8	0.99978	1.0010		
89	0.99985	1.0008		
89.1	0.99988	1.0006		
89.2	0.99990	1.0005		
89.3	0.99993	1.0004		
89.4	0.99995	1.0003		
89.5	0.99996	1.0002		
89.6	0.99998	1.0001		
89.7	0.99999	1.0001		
89.8	0.99999	1.0000		
89.9	1.00000	1.0000		
90	1.00000	1.0000	1.1781	1.1781
At $\theta=\cos ^{-1}(1 / 9)=83.62063^{\circ}, \mathrm{E}_{0}(\theta)=\pi / 3=1.0472-$ false min. In the comparative tables 1 and 2 , the $4 D$ (four decimal digit) exact values of both Legendre complete elliptic integrals reproduced from special functions tables [6] (tab. 29, p. 117), as well as their $4 D$ approximate values obtained by applying the two sets of closed				

analytic formulas were given (all versus the respective elliptic integrals modulus $k=\sin \theta$). It is to be noticed that both sets of approximate formulas are not given by spline or regression functions, but by asymptotic expressions, these ones having a remarkable simplicity (see, e.g: the $2{ }^{\text {nd }}$ formof $E_{0}(k)$, suggested by Peano's law on ellipse's perimeter, all newly found formulas in k / k^{\prime} do notneed any mathematical table, being purely algebraic) and accuracy (see table 3). The identity with the exact functions is satisfied for the left domain's end $k=0\left(\theta=0^{\circ}\right)$. The $2^{\text {nd }} \operatorname{set}\left(\mathrm{K}_{1}, \mathrm{E}_{1}\right)$, although a bit more intricate, gives more accurate values than the 1^{t} one $\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$ and arrives more closely to the right domain's end $k=1\left(\theta=90^{\circ}\right)$.

III. THE ACCURACY OF THE TWO SETS OF FORMULAS

Let us define the following relative error functions: $\varepsilon_{\mathrm{K}_{0}}(k)=\mathrm{K}_{0}(k) / \mathrm{K}(k)-1 ; \quad \varepsilon_{\mathrm{K}_{1}}(k)=\mathrm{K}_{1}(k) / \mathrm{K}(k)-1$, $\varepsilon_{\mathrm{E}_{0}}(k)=\mathrm{E}_{0}(k) / \mathrm{E}(k)-1 ; \quad \varepsilon_{\mathrm{E}_{1}}(k)=\mathrm{E}_{1}(k) / \mathrm{E}(k)-1$, for both sets of approximation of the $1^{\text {st }}$ and $2^{\text {nd }}$ kind integrals, resp. Their values are given in table 3, expressed in thousandths $(\%)$. These errors were calculated for the $1^{s t} \operatorname{set}\left(\mathrm{~K}_{0}, \mathrm{E}_{0}\right)$ only in the field $\theta \in\left[54^{\circ}, 71^{\circ}\right]$ of the domain, with an increment of 1°, while for the $2^{\text {nd }} \operatorname{set}\left(\mathrm{K}_{1}, \mathrm{E}_{1}\right)$ only in the field $\theta \in\left[84^{\circ} .8\right.$, $88^{\circ} .2$], with an increment of $0^{\circ} .2$, like in tables $1 \& 2$.

Table 3. Relative errors ε distribution

$\theta\left({ }^{\circ}\right)$	$k=\sin \theta$	$\varepsilon_{\mathrm{K} 0}(\%)$	$\varepsilon_{\mathrm{K}_{1}}(\%)$	$\varepsilon_{\mathrm{E} 0}(\%)$	$\varepsilon_{\mathrm{E}_{1}}\left(\%{ }_{0}\right)$
54	0.80902	-0.250		$+0.255$	
55	0.81915	-0.272		$+0.243$	
56	0.82904	-0.353		+0.293	
57	0.83867	-0.420		+0.334	
58	0.84805	-0.497		+0.454	
59	0.85717	-0.558		+0.502	
60	0.86603	-0.669		+0.566	
61	0.87462	-0.799		+0.742	
62	0.88295	-0.961		+0.874	
63	0.89101	-1.118		+0.973	
64	0.89879	- 1.366		+1.135	
65	0.90631	- 1.619		+1.377	
66	0.91355	-1.918		+1.627	
67	0.92050	-2.299		+ 1.900	
68	0.92718	-2.709		+2.215	
69	0.93358	-3.253		+2.573	
70	0.93969	-3.907		+2.959	
71	0.94552	-4.642		+3.525	
		-		-	
84.8	0.99588	-	-0.369	-	+ 0.607
85	0.99619	-	-0.396	-	+0.592
85.2	0.99649	-	-0.451	-	+0.705
85.4	0.99678	-	-0.500	-	+0.748
85.6	0.99705	-	-0.582	-	+0.823
85.8	0.99731	-	-0.652	-	+0.932
86	0.99756	-	-0.737	-	+ 1.076
86.2	0.99780	-	-0.832	-	+1.160
86.4	0.99803	-	-0.945	-	+1.284
86.6	0.99824	-	- 1.077	-	+1.453

86.8	0.99844	-	-1.214	-	+1.571
87	0.99863	-	-1.421	-	+1.743
87.2	0.99881	-	-1.626	-	+1.976
87.4	0.99897	-	-1.894	-	+2.275
87.6	0.99912	-	-2.234	-	+2.553
87.8	0.99926	-	-2.655	-	+2.922
88	0.99939	-	-3.156	-	+3.397
88.2	0.99951	-	-3.808	-	+4.004

The relative errors strings are stopped for values $\geq 4 \%$. One can see that both sets given in chapter 2 have a much lesser relative error for $K(k)$ than the well-known asymptotic expression: $\mathrm{K}(k) \approx \pi / 2+(\pi / 8)\left[k^{2} /\left(1-\mathrm{k}^{2}\right)\right]-(\pi / 16)\left[k^{4} /\left(1-\mathrm{k}^{4}\right)\right]$, with a relative precision of $3 \cdot 10^{-4}$ for $k<0.5\left(\theta<30^{\circ}\right)$, only.

IV. COMPARATIVE SERIES

REPRESENTATIONS; LEGENDRE'S FUNCTIONAL RELATION

Expanding into power series, one obtains for the complete elliptic integrals the set of representations below ([5] - [7]):

$$
\begin{aligned}
& \mathrm{K}(k)=\frac{\pi}{2}\left(1+\frac{1}{4} k^{2}+\frac{9}{64} k^{4}+\frac{25}{256} k^{6}+\frac{1225}{16384} k^{8}+\frac{3969}{65536} k^{10}\right. \\
& \left.+\frac{53361}{1048576} k^{12}+\frac{184041}{4194304} k^{14}+\frac{41409225}{1073741824} k^{16}+\ldots\right)=
\end{aligned}
$$

$$
\frac{\pi}{2}\left\{1+\sum_{n=1}^{\infty}\left[\frac{1 \cdot 3 \cdot \ldots(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot 2 n}\right]^{2} k^{2 n}\right\}=\frac{\pi}{2}\left\{1+\sum_{n=1}^{\infty}\left[\frac{(2 n-1)!!}{2^{n} n!}\right]^{2} k^{2 n}\right\}
$$

$$
\mathrm{E}(k)=\frac{\pi}{2}\left(1-\frac{1}{4} k^{2}-\frac{3}{64} k^{4}-\frac{5}{256} k^{6}-\frac{175}{16384} k^{8}-\frac{441}{65536} k^{10}\right.
$$

$$
\left.-\frac{4851}{1048576} k^{12}-\frac{14157}{4194304} k^{14}-\frac{2760615}{1073741824} k^{16}-\ldots\right)=
$$

$$
\left.\frac{\pi}{2}\left\{1-\sum_{n=1}^{\infty}\left[\frac{1 \cdot 3 \cdot . .(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot 2 n}\right]^{2} \frac{k^{2 n}}{2 n-1}\right\}=\frac{\pi}{2}\left\{1-\sum_{n=1}^{\infty} \frac{(2 n-1)!!}{2^{n} n!}\right]^{2} \frac{k^{2 n}}{2 n-1}\right\} .
$$

At $k=0: \mathrm{K}(0)=\mathrm{E}(0)=\pi / 2$; at $k=1: \mathrm{K}(1) \uparrow \infty ; \mathrm{E}(1)=1$.
Proceeding in the same manner, we get for the $1^{\text {st }}$ set (the most inaccurate) of approximate functions the expansions
$\mathrm{K}_{0}(k)=\frac{\pi}{2}\left(1+\frac{1}{4} k^{2}+\frac{9}{64} k^{4}+\frac{25}{256} k^{6}+\frac{1222}{16384} k^{8}+\ldots\right) ;$
$\mathrm{E}_{0}(k)=\frac{\pi}{2}\left(1-\frac{1}{4} k^{2}-\frac{3}{64} k^{4}-\frac{5}{256} k^{6}-\frac{172}{16384} k^{8}-\ldots\right)$,
for the $2^{\text {nd }}$ set being practically identical with the exact ones
$\mathrm{K}_{1}(k)=\frac{\pi}{2}\left(1+\frac{1}{4} k^{2}+\frac{9}{64} k^{4}+\frac{25}{256} k^{6}+\frac{1225}{16384} k^{8}+\frac{3969}{65536} k^{10}\right.$
$\left.+\frac{53361}{1048576} k^{12}+\frac{184041}{4194304} k^{14}+\frac{41409222}{1073741824} k^{16}+\ldots\right)$;
$\mathrm{E}_{1}(k)=\frac{\pi}{2}\left(1-\frac{1}{4} k^{2}-\frac{3}{64} k^{4}-\frac{5}{256} k^{6}-\frac{175}{16384} k^{8}-\frac{441}{65536} k^{10}\right.$
$\left.-\frac{4851}{1048576} k^{12}-\frac{14157}{4194304} k^{14}-\frac{2760606}{1073741824} k^{16}-\ldots\right)$.
The difference with respect to the expansions of the exact functions (K, E) begins at the terms in k^{8} for the $1^{\text {st }}$ set of approximation $\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$, and at the terms in k^{16} for the $2^{\text {nd }}$ one $\left(K_{1}, E_{1}\right)$. For the $1^{\text {st }}$ derivatives of K, E we get
$\frac{d \mathrm{~K}(k)}{d k}=\frac{\mathrm{E}(k)}{k\left(1-k^{2}\right)}-\frac{\mathrm{K}(k)}{k}=\frac{\pi}{4} k\left(1+\frac{9}{8} k^{2}+\frac{75}{64} k^{4}+\frac{1225}{1024} k^{6}\right.$
$\left.+\frac{19845}{16384} k^{8}+\frac{160083}{131072} k^{10}+\frac{1288287}{1048576} k^{12}+\frac{41409225}{33554432} k^{14}+\right)$
$=\frac{\pi}{4} \sum_{n=1}^{\infty}\left[\frac{1 \cdot 3 \cdot \ldots(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot 2 n}\right]^{2} n k^{2 n-1}=\frac{\pi}{4} \sum_{n=1}^{\infty}\left[\frac{(2 n-1)!!}{2^{n-1} n!}\right]^{2} n k^{2 n-1}$;
$\frac{d \mathrm{E}(k)}{d k}=\frac{\mathrm{E}(k)-\mathrm{K}(k)}{k}=-\frac{\pi}{4} k\left(1+\frac{3}{8} k^{2}+\frac{15}{64} k^{4}+\frac{175}{1024} k^{6}+\right.$
$\left.\frac{2205}{16384} k^{8}+\frac{14553}{131072} k^{10}+\frac{99099}{1048576} k^{12}+\frac{2760615}{33554432} k^{14}+\ldots\right)=$ $-\frac{\pi}{4} \sum_{n=1}^{\infty}\left[\frac{1 \cdot 3 \cdot \ldots(2 n-1)}{2 \cdot 4 \cdot \ldots \cdot 2 n}\right]^{2} \frac{n k^{2 n-1}}{2 n-1}=-\frac{\pi}{4} \sum_{n=1}^{\infty}\left[\frac{(2 n-1)!!}{2^{n-1} n!}\right]^{2} \frac{n k^{2 n-1}}{2 n-1}$.
At $k=0: d \mathrm{~K} / d k=d \mathrm{E} / d k=0$; at $k=1: d \mathrm{~K} / d k \uparrow \infty ; d \mathrm{E} / d k \downarrow(-\infty)$. Applying the previous two exact relations and using the four definitions from chapter 2 one gets the expansions: $\left[\frac{d \mathrm{~K}(k)}{d k}\right]_{0}=\frac{\pi}{4} k\left(1+\frac{9}{8} k^{2}+\frac{75}{64} k^{4}+\frac{1225.75}{1024} k^{6}+\ldots\right) ;$ $\left[\frac{d \mathrm{E}(k)}{d k}\right]_{0}=-\frac{\pi}{4} k\left(1+\frac{3}{8} k^{2}+\frac{15}{64} k^{4}+\frac{174.25}{1024} k^{6}+\ldots\right)$,
for the $1^{\text {st }}$ set of approximate functions $\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$, and resp.
$\left[\frac{d \mathrm{~K}(k)}{d k}\right]_{1}=\frac{\pi}{4} k\left(1+\frac{9}{8} k^{2}+\frac{75}{64} k^{4}+\frac{1225}{1024} k^{6}+\frac{19845}{16384} k^{8}\right.$
$\left.+\frac{160083}{131072} k^{10}+\frac{1288287}{1048576} k^{12}+\frac{41409226125}{33554432} k^{14}+\ldots\right) ;$
$\left[\frac{d \mathrm{E}(k)}{d k}\right]_{1}=-\frac{\pi}{4} k\left(1+\frac{3}{8} k^{2}+\frac{15}{64} k^{4}+\frac{175}{1024} k^{6}+\frac{2205}{16384} k^{8}\right.$
$\left.+\frac{14553}{131072} k^{10}+\frac{99099}{1048576} k^{12}+\frac{276061425}{33554432} k^{14}+\ldots\right)$,
for the $2^{\text {nd }}$ set of approximate functions $\left(\mathrm{K}_{1}, \mathrm{E}_{1}\right)$. The difference with respect to the expansions of the $1^{\text {st }}$ derivatives of the exact functions (K, E) begins at the terms in k^{7} for the $1^{\text {st }}$ set, and at the terms in k^{15} for the $2^{\text {nd }}$ one, so much lesser than that for the expansions of the respective sets $\left(\mathrm{K}_{0,1}, \mathrm{E}_{0,1}\right)$. One can also easily find the analytic expressions and series representations for the $2^{\text {nd }}$ derivatives of all $\mathrm{K}, \mathrm{K}_{0,1}, \mathrm{E}, \mathrm{E}_{0,1}$, with similar results, but a lesser precision than for $\mathrm{K}, \mathrm{E}, \mathrm{K}^{\prime}, \mathrm{E}^{\prime}$. Besides the above definitions of the derivatives $\mathrm{K}^{\prime}(=d \mathrm{~K} / d k)$, $\mathrm{E}^{\prime}(=d \mathrm{E} / d k)$, there is a useful functional relation (Legendre's): $\mathrm{K}(k) \cdot \mathrm{E}\left(k^{\prime}\right)+\mathrm{E}(k) \cdot \mathrm{K}\left(k^{\wedge}\right)-\mathrm{K}(k) \cdot \mathrm{K}\left(k^{\prime}\right)=\pi / 2$.

V. GRAPHIC COMPARISON

The variation curves of Legendre complete elliptic integrals, as well as that of the two sets of closed analytic functions are graphically represented in the comparative figures 1 and 2 , all vs. θ, in sexagesimal degrees, and given by $\theta=\sin ^{-1} k$. In both figures the exact functions $\mathrm{K}(k)$, $\mathrm{E}(k)$ were represented by solid (continuous) black lines, the $1^{\text {st }}$ set of approximation $\left[\mathrm{K}_{0}(k), \mathrm{E}_{0}(k)\right]$ by dashed black lines, and the $2^{\text {nd }}$ set of approximation $\left[\mathrm{K}_{1}(k), \mathrm{E}_{1}(k)\right]$ by solid red lines. At $k=1$ the graphs of all $\mathrm{K}_{0,1}(k)$ fall to $(-\infty)$; the graphs of all $\mathrm{E}_{0,1}(k)$ pass through $(1,3 \pi / 8)$.

Fig. 1. Comparison of $\mathrm{K}(k)$ with the closed analytic functions $\mathrm{K}_{0}(k), \mathrm{K}_{1}(k)$; also see the $2^{\text {nd }}$ part of remark 1 in the appendix

Fig. 2. Comparison of $\mathrm{E}(k)$ with the closed analytic functions $\mathrm{E}_{0}(k), \mathrm{E}_{1}(k)$; also see the $2^{\text {nd }}$ part of remark 1 in the appendix

VI. CONCLUSIONS

As for simplicity, the formulas in k / k^{\prime} do not need mathematical tables (are purely algebraic). As for accuracy, in mathematical/ technical applications, it must use the $1^{\text {st }}$ set until $\theta=70^{\circ} .5(k=$ 0.94264) only, and (for a better accuracy or a greater upper limit of the validity domain) the $2^{\text {nd }}$ set, until $\theta=88^{\circ} .2(k=0.99951)$.

VII. NOTES; OTHER METHODS; FUTURE RESEARCH

Without the comparative tables 1 and 2, the errors table becoming so table 1 , this work was published previously in a proceedings volume (scientific bulletin), in Romanian [8]. For the first English version of this work see [9], [10]. Approximations for the complete elliptic integrals based on the trapezoidal-type numerical integration formulas discussed in [11], are developed in [12], [13] (a mixed numerical-analytic method). Newer formulas (using Γ function-not anelementary, but a special one, likeK \& E, even if these formulas are the most accurate) are in [14], [15]; as stated in their abstracts, the works [9], [14] do not have the same goal. An original fast converging recurrent-iterative scheme to get a $3^{\text {rd }}$ (and higher) set of closed analytic formulas (seemingly intricate) with desired accuracy is given in article's appendix. This article represents a fully extended version of the paper [9]. Notable special functions suitable for applying such an approximate method of calculation are: $\operatorname{Si}(\mathrm{x}) ; \operatorname{Ci}(\mathrm{x}) ; \operatorname{Ei}(\mathrm{x}) ; \operatorname{li}(\mathrm{x})$.

REFERENCES

[1] Legendre, A. M., Tables of the complete and incomplete elliptic integrals. Reissued (from tome II of Legendre's Traité des fonctions elliptiques, Paris, 1825) by K. Pearson, London, 1934. [2] Heuman, C. A., Tables of complete elliptic integrals, J. Math. Physics, 20, pp. 127-206, 336, 1941; https:// onlinelibrary.wiley.com/doi/epdf/10.1002/sapm1941201127. [3] Hayashi, K., Tafeln der Besselschen, Theta-, Kugelund anderen Funktionen, Berlin, 1930; Table errata no. 518 (pp. 670 - 672) by: O. Skovgaard and M. Helmer Petersen; (A. Fletcher, J. C. P. Miller, L. Rosenhead \& L. J. Comrie), Math. Comp., Vol. 29, No. 130 (Apr. 1975). [4] Hayashi, K., Tafeln für die Differenzenrechnung sowie für die Hyperbel-, Besselschen, elliptischen und anderen Funktionen, Berlin, 1933; Table errata no. 517 (p. 670) by: O. Skovgaard and M. Helmer Petersen; (A. Fletcher), Math. Comp., Vol. 29, No. 130 (Apr. 1975). [5] Jahnke, E., Emde, F., Tables of Functions with Formulae and Curves, Dover Publications, New York, 1943; Fourth Edition, 1945; (translated into Russian: Е. Янке и Ф. Эмде, Таблиць функии с формулами и кривымми, Физматгиз, Москва - Ленинград, 1959;) [6] Jahnke, E., Emde, F., Lösch, F., Tafeln höherer Funktionen, sechste Auflage. Neubearbeitet von F. Lösch, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960, 1961; https://doi.org/10.1002/zamm.19610410619; (translated into Russian: Е. Янке, Ф. Эмде, Ф. Лёш, Специальные функиии - формульь, графики, таблицы, ред.: Л. И. Седов, Наука, Москва, 1964; https://ikfia.ysn.ru/ wp-content/uploads/2018/01/JankeEmdeLyosh1964ru.pdf). [7] Gradshteyn, I. S., Ryzhik, I. M., Table of Integrals, Series, and Products. Fourth Edition Prepared by Yu. V. Geronimus / M. Yu. Tseytlin, Academic Press, New York, London, 1965; Translated from Russian by Scripta Technica, Inc.; Seventh Edition, 2007; Eds.: A. Jeffrey, D. Zwillinger; (Russian, German, Polish, English, Japanese \& Chinese eds.;) http://fisica.ciens.ucv.ve/~svincenz/TISPISGIMR.pdf.

APPENDIX - A FAST CONVERGING RECURRENTITERATIVE

SCHEME TO GET A 3RD (AND HIGHER) SET OF ANALYTIC FORMULAS WITH DESIRED ACCURACY

The formulas for transforming the modulus (Landen, [16]-[18]) are: $\mathrm{K}(k)=\frac{2}{1+\sqrt{1-k^{2}}} \mathrm{~K}\left(\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)=\frac{2}{1+k^{\prime}} \mathrm{K}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)$, or : $\mathrm{K}(\theta)=\mathrm{K}\left[\tan ^{2}(\theta / 2)\right] / \cos ^{2}(\theta / 2)$, and, respectively : $\mathrm{E}(k)=\left(1+\sqrt{1-k^{2}}\right) \mathrm{E}\left(\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)-\sqrt{1-k^{2}} \mathrm{~K}(k)=$ $\left(1+k^{\prime}\right) \mathrm{E}\left[\left(1-k^{\prime}\right) /\left(1+k^{\prime}\right)\right]-k^{\prime} \mathrm{K}(k)$, with $k^{\prime}=\left(1-k^{2}\right)^{1 / 2}$, or : $\mathrm{E}(\theta)=2 \cos ^{2}(\theta / 2) \cdot \mathrm{E}\left[\tan ^{2}(\theta / 2)\right]-\cos \theta \cdot \mathrm{K}(\theta)$,
(passing from k to $k_{1}=\left(1-k^{\chi}\right) /\left(1+k^{\top}\right) \leq k$ and from θ to $\theta_{1}=$ $\sin ^{-1}\left[\tan ^{2}(\theta / 2)\right] \leq \theta ; k_{1}=k\left(\theta_{1}=\theta\right)$, for: $\left.k=0 ; 1(\theta=0 ; \pi / 2)\right)$, which can be transcribed in recurrent form, as follows:
[8] Selescu, R., Formule analitice închise pentru aproximarea integralelor eliptice complete de speța întâia şi a doua ale lui Legendre, Buletinul Ştiințific al Sesiunii Naționale de Comunicări Ştiințifice, Academia Forțelor Aeriene "Henri Coandă" \& Centrul Regional pentru Managementul Resurselor de Apărare, Editura Academiei Forțelor Aeriene "Henri Coandă", Braşov, 1 - 2 Noiembrie 2002; Vol. MATEMATICA - INFORMATICA, Anul III, Nr. 2 (14), (ISSN 1453-0139), pp. 37 - 44; (in Romanian). [9] Selescu, R., Closed Analytic Formulas for the Approximation of the Legendre Complete Elliptic Integrals of the First and Second Kinds, International Journal of Pure Mathematics -NAUN, Vol. 8, pp. 23 -28, DOI: 10.46300/91019.2021.8.2, 29 April 2021; https://www.naun.org/cms.action?id=23293. [10] Selescu, R., Closed Analytic Formulas for the Approximation of the Legendre Complete Elliptic Integrals of the First and Second Kinds, International Journal of Mathematical and Computational Methods, Vol. 21, pp. 49 - 55, 21 May 2021; http://www.iaras.org/iaras/journals/ijmcm. [11] Luke, Y. L., Simple formulas for the evaluation of some higher transcendental functions, J. Math. Physics, v. 34, pp. 298 - 307, 1956, MR 17, \# 1138. [12] Luke, Y. L., Approximations for Elliptic Integrals, Math. Comp., Vol. 22, No. 103 (Jul. 1968), pp. 627-634,MR17, \#2412; AMS; https://ams.org/journals/mcom/1968-22-103/S0225-5718-1968-0226825-3/S0025-5718-1968-0226825-3.pdf. [13] Luke, Y. L., Further Approximation for Elliptic Integrals, Math. Comp., Vol. 24, No. 109 (Jan. 1970), pp. 191-198, AMS; htpps:// ams.org/journals/mcom/1970-24-109/S0025-5719-1970-0258243-5/S0025-5719-1970-0258243-5.pdf.
[14] Bagis, N., Formulas for the approximation of the complete Elliptic Integrals, https://arxiv.org/abs/1104.4798v1 [math.GM], 6 pages (pp. 1 -6), 25 April 2011, Cornell University, preprint. [15] Bagis, N., Formulas for the Approximation of the Complete Elliptic Integrals, International Mathematical Forum, Vol. 7, no. 55, pp. 2719-2725, 2012; http://www.m-hikari.com/imf/imf-2012/53-56-2012/bagisIMF53-56-2012.pdf; (supersedes [14]).
$\mathrm{K}_{2}(k)=\frac{2}{1+\sqrt{1-k^{2}}} \mathrm{~K}_{1}\left(\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)=\frac{2}{1+k^{\prime}} \mathrm{K}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)$, or : $\mathrm{K}_{2}(\theta)=\mathrm{K}_{1}\left[\tan ^{2}(\theta / 2)\right] / \cos ^{2}(\theta / 2)$, and, respectively : $\mathrm{E}_{2}(k)=\left(1+\sqrt{1-k^{2}}\right) \mathrm{E}_{1}\left(\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)-\sqrt{1-k^{2}} \mathrm{~K}_{2}(k)=$ $=\left(1+k^{\prime}\right) \mathrm{E}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)-\frac{2 k^{\prime}}{1+k^{\prime}} \mathrm{K}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right), \quad$ or : $\quad \mathrm{E}_{2}(\theta)=$ $2 \cos ^{2}(\theta 2) \mathrm{E}_{1}\left[\tan ^{2}(\theta 2)\right]-\left[\cos \theta / \cos ^{2}(\theta 2)\right] \mathrm{K}_{1}\left[\tan ^{2}(\theta 2)\right]$, expressing the $3^{\text {rd }} \operatorname{set}\left(\mathrm{K}_{2}, \mathrm{E}_{2}\right)$ in function of the $2^{\text {nd }}$ one $\left(\mathrm{K}_{1}\right.$, E_{1}), so starting a recurrent-iterative scheme; it allows writing for the $(\mathrm{n}+1)^{\text {th }}$ set : $\quad \mathrm{K}_{\mathrm{n}}(k)=\frac{2}{1+k^{\prime}} \mathrm{K}_{\mathrm{n}-1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)$, and $\mathrm{E}_{\mathrm{n}}(k)=\left(1+k^{\prime}\right) \mathrm{E}_{\mathrm{n}-1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)-\frac{2 k^{\prime}}{1+k^{\prime}} \mathrm{K}_{\mathrm{n}-1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)$,resp.

Starting from the newly found closed analytic formulas, which connect the $3^{\text {rd }}$ set $\left(\mathrm{K}_{2}, \mathrm{E}_{2}\right)$ with the $2^{\text {nd }}$ one ($\mathrm{K}_{1}, \mathrm{E}_{1}$), by applying the new recurrent-iterative scheme previously presented, the comparative tables 1 and 2 from chapter 2 were remade, suppressing the column " $k=\sin \theta$ ", and inserting the new columns " $\mathrm{K}_{2}(k)$ " and " $\mathrm{E}_{2}(k)$ " with $4 D$ approximate values, resp., so getting the new tables 4 and 5 , given below, resp., keeping for comparison the columns " $\theta\left({ }^{\circ}\right)$ ", " $\mathrm{K}(k)$ ", " $\mathrm{K}_{0}(k)$ " and " $\mathrm{K}_{1}(k)$ " (in table 4$)$, and " $\theta\left({ }^{\circ}\right)$ ", " $\mathrm{E}(k)$ ", " $\mathrm{E}_{0}(k)$ " and " $\mathrm{E}_{1}(k)$ " (in table 5), resp.

Table 4. Values of the functions K (part one) (this table completes and replaces table 1)

$\theta\left({ }^{\circ}\right)$	$\mathrm{K}(k)$	$\mathrm{K}_{0}(k)$	$\mathrm{K}_{1}(k)$	$\mathrm{K}_{2}(k)$
0	1.5708	1.5708	1.5708	1.5708
1	1.5709	1.5709	1.5709	1.5709
2	1.5713	1.5713	1.5713	1.5713
3	1.5719	1.5719	1.5719	1.5719
4	1.5727	1.5727	1.5727	1.5727
5	1.5738	1.5738	1.5738	1.5738
6	1.5751	1.5751	1.5751	1.5751
7	1.5767	1.5767	1.5767	1.5767
8	1.5785	1.5785	1.5785	1.5785
9	1.5805	1.5805	1.5805	1.5805
10	1.5828	1.5828	1.5828	1.5828
11	1.5854	1.5854	1.5854	1.5854
12	1.5882	1.5882	1.5882	1.5882
13	1.5913	1.5913	1.5913	1.5913
14	1.5946	1.5946	1.5946	1.5946
15	1.5981	1.5981	1.5981	1.5981
16	1.6020	1.6020	1.6020	1.6020
17	1.6061	1.6061	1.6061	1.6061
18	1.6105	1.6105	1.6105	1.6105
19	1.6151	1.6151	1.6151	1.6151
20	1.6200	1.6200	1.6200	1.6200
21	1.6252	1.6252	1.6252	1.6252
22	1.6307	1.6307	1.6307	1.6307
23	1.6365	1.6365	1.6365	1.6365
24	1.6426	1.6426	1.6426	1.6426
25	1.6490	1.6490	1.6490	1.6490
26	1.6557	1.6557	1.6557	1.6557
27	1.6627	1.6627	1.6627	1.6627
28	1.6701	1.6701	1.6701	1.6701
29	1.6777	1.6777	1.6777	1.6777
30	1.6858	1.6857	1.6858	1.6858
31	1.6941	1.6941	1.6941	1.6941
32	1.7028	1.7028	1.7028	1.7028
33	1.7119	1.7119	1.7119	1.7119
34	1.7214	1.7214	1.7214	1.7214
35	1.7312	1.7312	1.7312	1.7312
36	1.7415	1.7415	1.7415	1.7415
37	1.7522	1.7522	1.7522	1.7522
38	1.7633	1.7632	1.7633	1.7633
39	1.7748	1.7748	1.7748	1.7748
40	1.7868	1.7867	1.7868	1.7868

41	1.7992	1.7992	1.7992	1.7992
42	1.8122	1.8121	1.8122	1.8122
43	1.8256	1.8256	1.8256	1.8256
44	1.8396	1.8395	1.8396	1.8396
45	1.8541	1.8540	1.8541	1.8541
46	1.8691	1.8691	1.8691	1.8691
47	1.8848	1.8847	1.8848	1.8848
48	1.9011	1.9009	1.9011	1.9011
49	1.9180	1.9178	1.9180	1.9180
50	1.9356	1.9354	1.9356	1.9356
51	1.9539	1.9536	1.9539	1.9539
52	1.9729	1.9726	1.9729	1.9729
53	1.9927	1.9923	1.9927	1.9927
54	2.0133	2.0128	2.0133	2.0133
55	2.0347	2.0341	2.0347	2.0347
56	2.0571	2.0564	2.0571	2.0571
57	2.0804	2.0795	2.0804	2.0804
58	2.1047	2.1037	2.1047	2.1047
59	2.1300	2.1288	2.1300	2.1300
60	2.1565	2.1551	2.1565	2.1565
61	2.1842	2.1825	2.1842	2.1842
62	2.2132	2.2111	2.2132	2.2132
63	2.2435	2.2410	2.2435	2.2435
64	2.2754	2.2723	2.2754	2.2754
65	2.3088	2.3051	2.3088	2.3088
66	2.3439	2.3394	2.3439	2.3439
67	2.3809	2.3754	2.3809	2.3809
68	2.4198	2.4132	2.4198	2.4198
69	2.4610	2.4530	2.4610	2.4610
70	2.5046	2.4948	2.5045	2.5046
70.5	2.5273	2.5165	2.5273	2.5273
71	2.5507	2.5389	2.5507	2.5507
71.5	2.5749		2.5749	2.5749
72	2.5998		2.5998	2.5998
72.5	2.6256		2.6255	2.6256
73	2.6521		2.6521	2.6521
73.5	2.6796		2.6796	2.6796
74	2.7081		2.7081	2.7081
74.5	2.7375		2.7375	2.7375
75	2.7681		2.7680	2.7681
75.5	2.7998		2.7997	2.7998
76	2.8327		2.8326	2.8327
76.5	2.8669		2.8669	2.8669
77	2.9026		2.9025	2.9026
77.5	2.9397		2.9397	2.9397
78	2.9786		2.9785	2.9786
78.5	3.0192		3.0191	3.0192
79	3.0617		3.0616	3.0617
79.5	3.1064		3.1063	3.1064
80	3.1534		3.1533	3.1534
80.2	3.1729		3.1727	3.1729
80.4	3.1928		3.1927	3.1928
80.6	3.2132		3.2130	3.2132
80.8	3.2340		3.2338	3.2340
81	3.2553		3.2551	3.2553

Table 4. Values of the functions K (part two)

The values string in the last column is given by:
$\mathrm{K}_{2}(k)=\frac{2}{1+\sqrt{1-k^{2}}} \mathrm{~K}_{1}\left(\frac{1-\sqrt{1-k^{2}}}{1+\sqrt{1-k^{2}}}\right)=\frac{2}{1+k^{\prime}} \mathrm{K}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)$,
with: $\quad \mathrm{K}_{1}\left(k_{1}\right)=\frac{\pi \sqrt{2}}{\sqrt{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}}\left(1-\frac{\sqrt[4]{2}}{4} \frac{1+\sqrt{k_{1}^{\prime}}}{\sqrt[4]{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}}\right)=$

$$
=\frac{\pi \sqrt{2}}{\sqrt{\left(1+\frac{2 \sqrt{k^{\prime}}}{1+k^{\prime}}\right) \frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}}}\left(1-\frac{\sqrt[4]{2}}{4} \frac{1+\frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}}{\sqrt[4]{\left(1+\frac{2 \sqrt{k^{\prime}}}{1+k^{\prime}}\right) \frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}}}\right),
$$

and finally the algebraic formula: $\mathrm{K}_{2}(k)=2 \mathrm{~K}_{1}\left(k_{1}\right) /(1+k)$.
Table 5. Values of the functions E (part one) (this table completes and replaces table 2)

$\theta\left({ }^{\circ}\right)$	$\mathrm{E}(k)$	$\mathrm{E}_{0}(k)$	$\mathrm{E}_{1}(k)$	$\mathrm{E}_{2}(k)$
0	1.5708	1.5708	1.5708	1.5708
1	1.5707	1.5707	1.5707	1.5707
2	1.5703	1.5703	1.5703	1.5703
3	1.5697	1.5697	1.5697	1.5697
4	1.5689	1.5689	1.5689	1.5689
5	1.5678	1.5678	1.5678	1.5678
6	1.5665	1.5665	1.5665	1.5665
7	1.5649	1.5649	1.5649	1.5649
8	1.5632	1.5632	1.5632	1.5632
9	1.5611	1.5611	1.5611	1.5611
10	1.5589	1.5589	1.5589	1.5589
11	1.5564	1.5564	1.5564	1.5564
12	1.5537	1.5537	1.5537	1.5537
13	1.5507	1.5507	1.5507	1.5507
14	1.5476	1.5476	1.5476	1.5476
15	1.5442	1.5442	1.5442	1.5442
16	1.5405	1.5405	1.5405	1.5405
17	1.5367	1.5367	1.5367	1.5367
18	1.5326	1.5326	1.5326	1.5326
19	1.5283	1.5283	1.5283	1.5283
20	1.5238	1.5238	1.5238	1.5238
21	1.5191	1.5191	1.5191	1.5191
22	1.5141	1.5141	1.5141	1.5141
23	1.5090	1.5090	1.5090	1.5090
24	1.5037	1.5037	1.5037	1.5037
25	1.4981	1.4981	1.4981	1.4981
26	1.4924	1.4924	1.4924	1.4924
27	1.4864	1.4864	1.4864	1.4864
28	1.4803	1.4803	1.4803	1.4803
29	1.4740	1.4740	1.4740	1.4740
30	1.4675	1.4675	1.4675	1.4675
31	1.4608	1.4608	1.4608	1.4608
32	1.4539	1.4539	1.4539	1.4539
33	1.4469	1.4469	1.4469	1.4469
34	1.4397	1.4397	1.4397	1.4397
35	1.4323	1.4323	1.4323	1.4323
36	1.4248	1.4248	1.4248	1.4248
37	1.4171	1.4171	1.4171	1.4171
38	1.4092	1.4093	1.4092	1.4092
39	1.4013	1.4013	1.4013	1.4013
40	1.3931	1.3932	1.3931	1.3931

Table 5. Values of the functions E (part two)				
41	1.3849	1.3849	1.3849	1.3849
42	1.3765	1.3765	1.3765	1.3765
43	1.3680	1.3680	1.3680	1.3680
44	1.3594	1.3594	1.3594	1.3594
45	1.3506	1.3507	1.3506	1.3506
46	1.3418	1.3419	1.3418	1.3418
47	1.3329	1.3330	1.3329	1.3329
48	1.3238	1.3239	1.3238	1.3238
49	1.3147	1.3148	1.3147	1.3147
50	1.3055	1.3057	1.3055	1.3055
51	1.2963	1.2964	1.2963	1.2963
52	1.2870	1.2872	1.2870	1.2870
53	1.2776	1.2778	1.2776	1.2776
54	1.2681	1.2684	1.2681	1.2681
55	1.2587	1.2590	1.2587	1.2587
56	1.2492	1.2496	1.2492	1.2492
57	1.2397	1.2401	1.2397	1.2397
58	1.2301	1.2307	1.2301	1.2301
59	1.2206	1.2212	1.2206	1.2206
60	1.2111	1.2118	1.2111	1.2111
61	1.2015	1.2024	1.2015	1.2015
62	1.1920	1.1930	1.1920	1.1920
63	1.1826	1.1838	1.1826	1.1826
64	1.1732	1.1745	1.1732	1.1732
65	1.1638	1.1654	1.1638	1.1638
66	1.1545	1.1564	1.1545	1.1545
67	1.1453	1.1475	1.1453	1.1453
68	1.1362	1.1387	1.1362	1.1362
69	1.1272	1.1301	1.1273	1.1272
70	1.1184	1.1217	1.1184	1.1184
70.5	1.1140	1.1176	1.1140	1.1140
71	1.1096	1.1135	1.1096	1.1096
71.5	1.1053		1.1053	1.1053
72	1.1011		1.1011	1.1011
72.5	1.0968		1.0968	1.0968
73	1.0927		1.0927	1.0927
73.5	1.0885		1.0885	1.0885
74	1.0844		1.0844	1.0844
74.5	1.0804		1.0804	1.0804
75	1.0764		1.0764	1.0764
75.5	1.0725		1.0725	1.0725
76	1.0686		1.0686	1.0686
76.5	1.0648		1.0648	1.0648
77	1.0611		1.0611	1.0611
77.5	1.0574		1.0574	1.0574
78	1.0538		1.0538	1.0538
78.5	1.0502		1.0503	1.0502
79	1.0468		1.0468	1.0468
79.5	1.0434		1.0435	1.0434
80	1.0401		1.0402	1.0401
80.2	1.0388		1.0389	1.0388
80.4	1.0375		1.0376	1.0375
80.6	1.0363		1.0364	1.0363
80.8	1.0350		1.0351	1.0350

$=\left(1+k^{\prime}\right) \mathrm{E}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)-k^{\prime} \mathrm{K}_{2}(k)=$
$=\left(1+k^{\prime}\right) \mathrm{E}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)-\frac{2 k^{\prime}}{1+k^{\prime}} \mathrm{K}_{1}\left(\frac{1-k^{\prime}}{1+k^{\prime}}\right)$, with :
$\frac{1-k^{\prime}}{1+k^{\prime}}=k_{1}$ (descendingLanden transformation), getting
$\mathrm{E}_{1}\left(k_{1}\right)=\frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k_{1}^{\prime}}\right)^{2}-\sqrt{2} \sqrt{1+k_{1}^{\prime}} \sqrt[4]{k_{1}^{\prime}}\right]-k_{1}^{\prime} \cdot \mathrm{K}_{1}\left(k_{1}\right)$,
and: $\mathrm{K}_{1}\left(k_{1}\right)=\frac{\pi \sqrt{2}}{\sqrt{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}}\left(1-\frac{\sqrt[4]{2}}{4} \frac{1+\sqrt{k_{1}^{\prime}}}{\sqrt[4]{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}}\right)$,
previously given, thus getting:

$$
\begin{aligned}
\mathrm{E}_{1}\left(k_{1}\right)= & \frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k_{1}^{\prime}}\right)^{2}-\sqrt{2} \sqrt{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}\right]- \\
& -\frac{\pi k_{1}^{\prime} \sqrt{2}}{\sqrt{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}}\left(1-\frac{\sqrt[4]{2}}{4} \frac{1+\sqrt{k_{1}^{\prime}}}{\left.\sqrt[4]{\left(1+k_{1}^{\prime}\right.}\right) \sqrt{k_{1}^{\prime}}}\right)= \\
= & \frac{\pi}{4}\left[\frac{3}{2}\left(1+\sqrt{k_{1}^{\prime}}\right)^{2}-\sqrt{2\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}-\right. \\
& -\frac{k_{1}^{\prime} \sqrt{2}}{\sqrt{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}}\left(4-\frac{\sqrt[4]{2}\left(1+\sqrt{k_{1}^{\prime}}\right)}{\left.\left.\sqrt[4]{\left(1+k_{1}^{\prime}\right) \sqrt{k_{1}^{\prime}}}\right)\right]} .\right.
\end{aligned}
$$

Expressing $k_{1}^{\prime}(k)$: $\quad k_{1}^{\prime}=\left(1-k_{1}^{2}\right)^{1 / 2}=2(k)^{1 / 2} /\left(1+k^{\prime}\right)$, (ascending Landen transformation), and replacing it:

$$
\begin{aligned}
& \mathrm{E}_{1}\left(k_{1}\right)=\frac{\pi}{4}\left[\frac{3}{2}\left(1+\frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}\right)^{2}-\sqrt{2\left(1+\frac{2 \sqrt{k^{\prime}}}{1+k^{\prime}}\right) \frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}}\right. \\
& \left.-\frac{\sqrt{2} \cdot \frac{2 \sqrt{k^{\prime}}}{1+k^{\prime}}}{\sqrt{\left(1+\frac{2 \sqrt{k^{\prime}}}{1+k^{\prime}}\right) \frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}}} 4-\frac{\sqrt[4]{2}\left(1+\frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}\right)}{\left.\sqrt[4]{\left(1+\frac{2 \sqrt{k^{\prime}}}{1+k^{\prime}}\right) \frac{\sqrt{2} \sqrt[4]{k^{\prime}}}{\sqrt{1+k^{\prime}}}}\right)}\right],
\end{aligned}
$$

and finally: $\mathrm{E}_{2}(k)=\left(1+k^{\prime}\right) \mathrm{E}_{1}\left(k_{1}\right)-k^{\prime} \mathrm{K}_{2}(k)$, where $\mathrm{K}_{2}(k)$ was given just before table 5 , so getting another purely algebraic formula (the most accurate, just seemingly intricate), the $3{ }^{\text {rd }}$ set of closed analytic formulas being given by the recurrences: $\mathrm{K}_{2}(k)=2 \mathrm{~K}_{1}\left(k_{1}\right) /\left(1+k^{\prime}\right) ; \mathrm{E}_{2}(k)=\left(1+k^{\prime}\right) \mathrm{E}_{1}\left(k_{1}\right)-k^{\prime} \mathrm{K}_{2}(k)$. Noting: $k_{1}^{\prime}=x$ and $\left[(1+x) \cdot x^{1 / 2}\right]^{1 / 2}=y$, one can write:

$$
\mathrm{K}_{2}(k)=\pi\left(2 / k^{\prime}\right)^{1 / 2} \cdot(x / y)\left[1-\left(2^{1 / 4} / 4\right)\left(1+x^{1 / 2}\right) / y^{1 / 2}\right]
$$

$$
\mathrm{E}_{2}(k)=\pi\left(k^{\prime}\right)^{1 / 2} /(2 x) \cdot\left\{(3 / 2)\left(1+x^{1 / 2}\right)^{2}-2^{1 / 2} y-\right.
$$

$$
\left.-2^{1 / 2}(x / y)\left[4-2^{1 / 4}\left(1+x^{1 / 2}\right) / y^{1 / 2}\right]\right\}-k^{\prime} \mathrm{K}_{2}(k), \text { resp. }
$$

much simpler than previous ones (for calculation only).
The validity of all approximate sets is limited to $k \in\left[0, k_{\text {ext }}\right) ; k_{\text {ext }}$ ≤ 1, "extr" \equiv extremum (max. for K , and min. for E ; $k_{\text {max }} \neq k_{\text {min }}$) (see figs. $1 \& 2$ - the dashed black lines, and the solid red ones, resp.). The higher the " n " index (of the $\left(\mathrm{K}_{\mathrm{n}-1}, \mathrm{E}_{\mathrm{n}-1}\right)$ approximation set) value is, the better this approximation is and the closer to the right domain's end $(k=1)$ the extremum is located. We will cancel the recurrent-iterative scheme (stopping it to a specific " n " index value) when the maximum relative
error (over the whole valid domain of variation $k \in[0$, $\left.k_{\text {extr }}\right)$) becomes lesser than the desired (required) accuracy. The first important application of the results obtained in chapter 4 consists in determining the locations of the extrema values $k_{\text {ext }}\left(k_{\text {max }}\right.$ for $\mathrm{K}_{\mathrm{n}-1}(k)$ and $k_{\text {min }}$ for $\mathrm{E}_{\mathrm{n}-1}(k)$), corresponding to the annulment of their first derivatives with respect to k, using the relations: $\mathrm{K}_{\mathrm{n}-1}^{\prime}(k)=d \mathrm{~K}_{\mathrm{n}-1}(k) / d k=0 ; \mathrm{E}_{\mathrm{n}-1}^{\prime}(k)=d \mathrm{E}_{\mathrm{n}-1}(k) / d k=0$, and adding the recurrent definitions for $\mathrm{K}_{\mathrm{n}-1}(k)$ and $\mathrm{E}_{\mathrm{n}-1}(k)$. The $1^{\text {st }}$ ODE above gives the value $k_{\max }$ and the $2^{\text {nd }}$ one gives the value $k_{\text {min }}$. Each of these ODEs has really two solutions. Besides the searched for one, both ODEs admit the solution $k=0$, corresponding to a minimum for $\mathrm{K}_{\mathrm{n}-1}(k)$ and to a maximum for $\mathrm{E}_{\mathrm{n}-1}(k)$, both with the value $\pi / 2$ (for both approximate and exact functions: $\mathrm{K}_{\mathrm{n}-1}(0)=\mathrm{E}_{\mathrm{n}-1}(0)=\mathrm{K}(0)=\mathrm{E}(0)=\pi / 2$, with: $\left.\mathrm{K}_{n-1}^{\prime}(0)=\mathrm{E}_{\mathrm{n}-1}^{\prime}(0)=\mathrm{K}^{\prime}(0)=\mathrm{E}^{\prime}(0)=0\right)$, but with : $\mathrm{K}_{n-1}^{n-1}(0)>0$ and $\mathrm{K}^{\prime \prime}(0)>0-$ a minimum, while : $\mathrm{E}_{\mathrm{n}-1}^{\prime \prime}(0)<0$ and $\mathrm{E}^{\prime \prime}(0)<0$ - a maximum).
Thus one knows now the values $k_{\text {max }}$ and $k_{\text {min }}$ (the right ends of the validity domains of the approximate functions). In order to evaluate the accuracy of the $3^{\text {rd }} \operatorname{set}\left(K_{2}, E_{2}\right)$, similarly as for the previous two sets, $\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$ and $\left(\mathrm{K}_{1}, \mathrm{E}_{1}\right)$, we will define the following relative error functions: $\varepsilon_{\mathrm{K}_{2}}(k)=\mathrm{K}_{2}(k) / \mathrm{K}(k)-1$, and: $\varepsilon_{\mathrm{E}_{2}}(k)=\mathrm{E}_{2}(k) / \mathrm{E}(k)-1$, for the approximate formulas of $1^{\text {st }} \& 2^{\text {nd }}$ kind integrals. Their values are given in table 6, expressed in thousandths $(\%)$. These errors were calculated for the $3^{\text {rd }} \operatorname{set}\left(\mathrm{K}_{2}, \mathrm{E}_{2}\right)$ only, with an increment of $0^{\circ} .2$ in the field $\theta \in\left[84^{\circ}, 89^{\circ}\right]$ of the domain, and of $0^{\circ} .1$ beyond 89°. To get table 6 , in table 3 were suppressed the columns $\varepsilon_{\mathrm{K}_{0}}(\%), \varepsilon_{\mathrm{E}_{0}}\left(\%{ }_{0}\right)$ (the most inaccurate) and were inserted the columns $\varepsilon_{\mathrm{K}_{2}}(\%)$, $\varepsilon_{\mathrm{E}_{2}}(\%)$, keeping for comparison the columns " $\theta\left({ }^{\circ}\right)$ ", " $k=\sin \theta$ ", " $\varepsilon_{\mathrm{K}_{1}}\left(\% \mathbf{)}\right.$ " and " $\varepsilon_{\mathrm{E}_{1}}(\%)$)" (from table 3), only.

Table 6. Relative errors ε distribution
(this table completes and replaces table 3)

$\theta\left({ }^{\circ}\right)$	$k=\sin \theta$	$\varepsilon_{\mathrm{K}_{1}}(\% \mathbf{0})$	$\varepsilon_{\mathrm{K}_{2}}\left(\%{ }^{(\%)}\right.$	$\varepsilon_{\mathrm{E}_{1}}(\% \mathbf{0})$	$\varepsilon_{\mathrm{E}_{2}}(\% \mathbf{}(\%)$
84.8	0.99588	-0.369	0	+0.607	0
85	0.99619	-0.396	0	+0.592	0
85.2	0.99649	-0.451	0	+0.705	0
85.4	0.99678	-0.500	0	+0.748	0
85.6	0.99705	-0.582	0	+0.823	0
85.8	0.99731	-0.652	0	+0.932	0
86	0.99756	-0.737	0	+1.076	0
86.2	0.99780	-0.832	0	+1.160	0
86.4	0.99803	-0.945	0	+1.284	0
86.6	0.99824	-1.077	0	+1.453	0
86.8	0.99844	-1.214	0	+1.571	0
87	0.99863	-1.421	0	+1.743	0
87.2	0.99881	-1.626	0	+1.976	0
87.4	0.99897	-1.894	0	+2.275	0
87.6	0.99912	-2.234	0	+2.553	0
87.8	0.99926	-2.655	0	+2.922	0
88	0.99939	-3.156	0	+3.397	0
88.2	0.99951	-3.808	0	+4.004	0

88.4	0.99961	-	0	-	0
88.6	0.99970	-	0	-	0
88.8	0.99978	-	0	-	0
89	0.99985	-	0	-	0
89.1	0.99988	-	0	-	0
89.2	0.99990	-	0	-	0
89.3	0.99993	-	0	-	0
89.4	0.99995	-	0	-	0
89.5	0.99996	-		-	
89.6	0.99998	-		-	
89.7	0.99999	-		-	
89.8	0.99999	-		-	
89.9	1.00000	-		-	
90	1.00000	-2000	-2000	178.097	178.097

The errors strings are stopped if their modulus is $\geq 4 \%$. From the tables 3 and 6 one can see that, for any $\mathrm{n}^{\text {th }}$ set of approximation and at any k value, $\varepsilon_{\mathrm{K}}<0\left(\mathrm{~K}_{\mathrm{n}}<\mathrm{K}\right)$ and $\varepsilon_{\mathrm{E}}>0$ $\left(\mathrm{E}_{\mathrm{n}}>\mathrm{E}\right)$, i.e. K is approximated by lack, while E - by excess. Similarly to the $3^{\text {rd }}$ set $\left[\mathrm{K}_{2}(k), \mathrm{E}_{2}(k)\right]$, expressed in algebraic functions, one can build the $3^{\text {rd }}$ set $\left[\mathrm{K}_{2}(\theta), \mathrm{E}_{2}(\theta)\right]$, expressed in trigonometric functions, replacing k^{\prime} in $\left[\mathrm{K}_{2}(k), \mathrm{E}_{2}(k)\right]$ set by $\cos \theta$ and applying usual trigonometric identities. The comparative series representations and the graphic comparison are superfluous, due to the great accuracy of the approximate values given by the $3^{\text {rd }}$ set (practically identical to the exact ones, which could be already noticed from the analysis of the $2^{\text {nd }}$ set, this showing the fast converging character of this recurrent-iterative scheme). Except for the right domain's end $(k=1)$, the $3^{\text {rd }}$ set of approximation $\left(\mathrm{K}_{2}, \mathrm{E}_{2}\right)$, even more accurate than the $2{ }^{\text {nd }}$ one $\left(\mathrm{K}_{1}, \mathrm{E}_{1}\right)$, may be considered and successfully used instead of the exact values of $\mathrm{K}(k)$ and $\mathrm{E}(k)$ from mathematical tables. A false minimum takes place for all $\mathrm{E}_{\mathrm{n}}(k)$: for $\mathrm{E}_{2}(k)$, at $\theta=89^{\circ} .7(k=0.99999)$; for $\mathrm{E}_{1}(k)$, at $\theta=88^{\circ}(k=0.99939)$, and for $\mathrm{E}_{0}(k)$, at $\theta=83^{\circ} .62(k=0.99381)$. The graphs of all $\mathrm{E}_{\mathrm{n}}(k)$ pass through the point $(1,3 \pi / 8=1.178097)$; for k tending to unity, the graphs of all $\mathrm{K}_{\mathrm{n}}(k)$ go toward $(-\infty)$; the higher $\mathrm{n}^{\text {th }}$ sets $(\mathrm{n} \geq 4)$ give a much better accuracy). Unlike the mathematical tables (and in addition to them), all approximation sets (the $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ and the higher $\mathrm{n}^{\text {th }}(\mathrm{n}$ ≥ 4) ones) allow performing the analytic study of variation of the functions in which $\mathrm{K}(k)$ and / or $\mathrm{E}(k)$ appear/s, using the derivatives of the $1^{s t}$ and $2^{\text {nd }} \operatorname{order}$ (with respect to k). Remarks: 1. As a first step in applying the new recurrentiterative scheme, just the obtaining of the $2^{\text {nd }} \operatorname{set}\left(\mathrm{K}_{1}, \mathrm{E}_{1}\right)$ as a function of the $1^{\text {st }}$ one $\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$ (in ch. 2) may be considered, i.e. this scheme starts really at the $2^{\text {nd }}$ set. It is to be highlighted the used method is a purely analytic one (neither numerical methods nor sophisticated software, at most using MatLab's (software package for engineers) "Symbolic Math" toolbox, for analytically solving the more intricate algebraic equations encountered). Its simplicity, accuracy and fast convergence, as well as its limitations depend exclusively on the correct choice of its starting point (approximation set) $\left(\mathrm{K}_{0}, \mathrm{E}_{0}\right)$. It must be quite precise, and especially, as simple as possible.

The starting approximate formula-definition giving $\mathrm{E}_{0}(k)$ was suggested to the author by an old approximate formula (Peano, [19], [20]) for the perimeter L of an ellipse of semiaxes a and $b(\leq a)$: $L \approx \pi\left[1.5(a+b)-(a b)^{1 / 2}\right]-\mathrm{a} \mathrm{good}$ (\& simple) approximation with the best accuracy for $b=a$ (circle): $L=2 \pi a$, and the worst one for $b=0$ (plane plate): $L=1.5 \pi a$, instead of $L=4 a$ (or optimized Peano's law: $L_{1} \approx \pi\left[1.32(a+b)-0.64(a b)^{1 / 2}\right]$, with the smallest overall error [21](about 7 times smaller than that of the original law); for $b=a$: $L_{1}=L=2 \pi a$, and for $b=0: L_{1}=1.32 \pi a$, much closer to the exact value $L=4 a$). For its behaviour at low b / a ratios, this formula is not found on the list of the very accurate (but not simple) approximations [21] (Padé, Jacobsen, Ramanujan (2 expressions), Rackauckas), all expressed in terms of the particular ratio $h=[(a-b) /(a+b)]^{2}$. Thus a reliable approximate (by excess) formula-definition was obtained (see chapter 2) for the Legendre complete elliptic integral of the $2^{\text {nd }}$ kind (in the $1^{\text {st }}$ set of approximation): $\mathrm{E}_{0}(k)=(\pi / 4)\left[1.5\left(1+k^{\prime}\right)-\left(k^{\prime}\right)^{0,5}\right]$, with $k^{\prime}=\left(1-k^{2}\right)^{0,5}$. It can be seen that the error committed if in the expansion in series of powers (of k) we stopped at the term of rank 5 (see chapter 4), is $(3 / 16384) k^{8}$ only, i.e. small enough. As for the pair approximate formula-definition giving $\mathrm{K}_{0}(k)$, this was obtained using the previous one for $\mathrm{E}_{0}(k)$ and applying the definition of the first derivative of $\mathrm{E}(k)$ with respect to k : $d \mathrm{E}(k) / d k=[\mathrm{E}(k)-\mathrm{K}(k)] / k$ (see chapter 4), thus getting: $\mathrm{K}(k)=\mathrm{E}(k)-k[\mathrm{dE}(k) / \mathrm{d} k]$; replacing $\mathrm{K}(k)$ and $\mathrm{E}(k)$ by their $1^{\text {st }}$ approximations: $K_{0}(k)$ and the previously given $\mathrm{E}_{0}(k)$, one gets: $K_{0}(k)=(\pi / 8)\left[3 / 2\left(1+1 / k^{\prime}\right)-\left(k^{\prime}\right)^{0,5}\left(1+1 /\left(k^{\prime}\right)^{2}\right]\right.$, of a lesser accuracy (esp. for $\theta>\pi / 3$) than $\mathrm{E}_{0}(k)$. To improve this, one uses a descending Landen transformation: $K(k)=\left(1+k_{1}\right) K\left(k_{1}\right)$ with $k_{1}=\left(1-k^{\prime}\right) /\left(1+k^{\prime}\right) \leq k$, and replacing in $\mathrm{K}(k)$, one gets: $\mathrm{K}_{0}(k)=\pi\left[1 /\left(k^{\prime}\right)^{0,5}-\left(1 / 2^{1,5}\right)\left(1+k^{0}\right)^{0,5} /\left(k^{\prime}\right)^{0,75}\right] \geq K_{0}(k)$ (see ch. 2), of an accuracy (in modulus) much closer to that of its pair $\mathrm{E}_{0}(k)$. Being practically generated by the same mathematical source, $K_{0}(k)$ and $\mathrm{E}_{0}(k)$ vary (ordinates, slopes, asymptote, extrema, concavities, convexities, inflections) in perfectly correlated way. So, at the value $k_{\text {ext }}$ corresponding to a false minimum for $\mathrm{E}_{0}(k)$, $K_{0}(k)$ must equate $\mathrm{E}_{0}(k)$, to satisfy the annulment of $d \mathrm{E}_{0}(k) / d k$. To prepare this, $K_{0}(k)$ must stop its vertiginous ascension to ∞, making a false inflection, followed by a false max. at $k_{\text {Extr }}<$ $k_{\text {extr }}$ and a vertiginous ($k=1-$ vertical asymptote) fall toward $(-\infty)$; so $K_{0}=\mathrm{E}_{0}$ at $k=0$ and $k=k_{\text {extr }}$. But the new more accurate K_{0} is not generated by the same mathematical source as E_{0}. To minimise the unwished events, limiting them to a very thin region in the neighbourhood of the right domain's end, one applies the descending Landen transformation, passing from k to $k_{1} \leq k$, where all goes well, maintaining all advantages of the asymptotic behaviour of the new approximate functions $\left(\mathrm{K}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}\right)$, i.e. applying a higher $\mathrm{n}^{\text {th }}(\mathrm{n} \geq 2)$ set of approximation (repeating this scheme until the desired accuracy for $\left(\mathrm{K}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}\right)$ is obtained; fortunately, this scheme is fast converging); though it keeps the limitation at $k=1$, Peano's optimized law accelerates the scheme. 2. Besides the formulas for transforming the modulus using the descending Landen transformation, there are formulas using the ascending Landen transformation (not of interest here).

Appendix' conclusions

Some authors (e.g.: Bagis [14], [15]) choose to start from more precise formulas for the perimeter of an ellipse (similar to Ramanujan's "type π formulas" (1914) - see [22]): $L_{\mathrm{I}}=\pi\left\{3(a+b)-[(a+3 b)(3 a+b)]^{1 / 2}\right\}=\pi\{3(a+b)-$ $\left.-\left[10 a b+3\left(a^{2}+b^{2}\right)\right]^{1 / 2}\right\}-$ Ramanujan $1^{\text {st }}$ approximation; $L_{\text {II }}=\pi(a+b)\left\{1+3 h /\left[10+(4-3 h)^{1 / 2}\right]\right\} ; h=[(a-b) /(a+b)]^{2}$ - the more famous Ramanujan $2^{\text {nd }}$ approximation; the errors in these empirical relations, are of order h^{3} and h^{5} (both being very accurate, but not as simple as possible), in order to obtain approximate formulas as accurate as possible for Legendre's complete elliptic integrals.
We cite from [21]: "What makes Ramanujan's first formula interesting to this Author is the fact that, like the first form of Peano's approximation, it can be interpreted as a combination of the arithmetic mean with another one, denoted as $\mathrm{R}(a, b, w)$ and defined by: $\mathrm{R}(a, b, w)=[(a+w b)(b+w a)]^{1 / 2} /(1+w)$. In Ramanujan's formula we have $w=3$ and the two means are combined linearly with the relative weights +3 and -2 , resp." Noteworthy are the fast converging power (of h) series [23], [24]. This appendix demonstrates that even choosing as a starting point a "not so precise" (with big problems at the right domain's end $k=1$), but especially simple formula (like Peano's, or better, optimized Peano's one), and applying the newly found original fast converging recurrent-iterative scheme (also including Landen's descending transformation, to solve the unwished behaviour of $\mathrm{E}_{\mathrm{n}}(k)$ appeared in the neighbourhood of the value $k=1$ of the modulus (the right domain's end), due to any of both Peano's approximate laws), this being a major method's limitation (see the $2^{\text {nd }}$ part of remark 1), similar results (from the viewpoint of their accuracy) for the values of Legendre's complete elliptic integrals $\mathrm{K}(k)$ and $\mathrm{E}(k)$ (with very small values of the relative errors ε_{K} and ε_{E} - practically zero) can be obtained. As regards the relations describing the recurrence (for the $(\mathrm{n}+1)^{\text {th }}$ set of approximation $\left.\left[\mathrm{K}_{\mathrm{n}}(k), \mathrm{E}_{\mathrm{n}}(k)\right]\right)$, they are: $\mathrm{K}_{\mathrm{n}}(k)=\left[2 /\left(1+k^{\prime}\right)\right] \mathrm{K}_{\mathrm{n}-1}\left(k_{1}\right)$, and:
$\mathrm{E}_{\mathrm{n}}(k)=\left(1+k^{\prime}\right) \mathrm{E}_{\mathrm{n}-1}\left(k_{1}\right)-\left[2 k^{\prime} /\left(1+k^{\prime}\right)\right] \mathrm{K}_{\mathrm{n}-1}\left(k_{1}\right)$, resp., where: $k^{\prime}=\left(1-k^{2}\right)^{1 / 2}$ is the complementary modulus, and: $k_{1}=\left(1-k^{\prime}\right) /\left(1+k^{\prime}\right) \leq k$, this representing just the source of the descending Landen transformation; they express the values of the $(\mathrm{n}+1)^{\text {th }} \operatorname{set}\left[\mathrm{K}_{\mathrm{n}}(k), \mathrm{E}_{\mathrm{n}}(k)\right]$ in function of those of the $\mathrm{n}^{\text {th }}$ one $\left[\mathrm{K}_{\mathrm{n}-1}\left(k_{1}\right), \mathrm{E}_{\mathrm{n}-1}\left(k_{1}\right)\right]$. The iterative scheme can continue until the desired (required) accuracy for the approximate $\operatorname{set}\left(\mathrm{K}_{\mathrm{n}}, \mathrm{E}_{\mathrm{n}}\right)$ at a considered value of modulus $k=\sin \theta$ is obtained. As a rule, in the practical applications, the $3^{\text {rd }}$ set of approximation $\left(\mathrm{K}_{2}, \mathrm{E}_{2}\right)$ is sufficiently accurate. It can be used until $\theta=89^{\circ} .7$ ($k=0.99999$) - also see tables $4-6$. Though it keeps the limitation at $k=1$, Peano's optimized law is better to use; perhaps an example of calculation would have been useful, but we took as "overwhelming" its quality stated in [21]. Without these "appendix' conclusions", this work was published previously in a unitary form (main article + appendix), in English, as a scientific paper [25].

Appendix' references:
[16] Landen, J., XXXVI. A Disquisition Concerning Certain Fluents, which are Assignable by the Arcs of the Conic Sections; Wherein are Investigated Some New and Useful Theorems for Computing Such Fluents, Philosophical Transactions of the Royal Society of London, vol. 61 (1771), pp. 298 - 309;
https://doi.org/doi:10.1098/rstl.1771.0037
[17] Landen, J., XXVI. An Investigation of a General Theorem for Finding the Length of Any Arc of Any Conic Hyperbola, by means of Two Elliptic Arcs, with Some Other New and Useful Theorems Deduced Therefrom, Philosophical Transactions of the Royal Society of London, vol. 65 (1775), pp. 283 - 289;
https://doi.org/doi:10.1098/rstl.1775.0028
[18] Gröbner, W. und Hofreiter, N., Integraltafel I, II, 2. Auflage, Wien und Innsbruck, 1957 - 1958; (§ 241.24 - Landensche (Gaußsche) Transformation). [19] Peano, G., Applicazioni geometriche del calcolo infinitesimale, Fratelli Bocca Editori, Torino, 1887; (in Italian), p. 233; the approximate formula for the ellipse perimeter was: $L \approx \pi(a+b)+(\pi / 2)\left(a^{1 / 2}-b^{1 / 2}\right)^{2}$. [20] Peano, G., VIII An approximation formula for the perimeter of the ellipse, 1889, pp. 135-136 in Selected Works of Giuseppe Peano, Translated and edited, with a biographical sketch and bibliography, by Hubert C. Kennedy; Series: Heritage; Copyright Date: 1973; Published by: University of Toronto Press; Pages: 262; the approximate formula for ellipse perimeter (due to J. Boussinesq in the Comptes rendus, Académie des Sciences, Paris, 1889, p. 695) was given in the well-known equivalent form: $L \approx \pi\left[3(a+b) / 2-(a b)^{1 / 2}\right]$; https://www.jstor.org/stable/10.3138/j.ctt1vxmd8x
[21] Sýkora, St., Approximations of Ellipse Perimeters and of the Complete Elliptic Integral $\mathrm{E}(\mathrm{x})$. Review of known formulae, Review by Stanislav Sýkora, Extra Byte, Ed. S. Sýkora, Vol.I; First release: December 27, 2005. Permalink via DOI: 10.3247/SL1Math05.004; http://www.ebyte.it/ library/docs/math05a/EllipsePerimeterApprox05.html [22] Ramanujan, S., Modular Equations and Approximations to π, § 16, Quart. J. Pure App. Math., vol. 45, pp. 350-372, 1914, ISBN 9780821820766.
[23] Ivory, J., A new series for the rectification of an ellipsis, Transactions of the Royal Society of Edinburgh, 4 (2), 1798, pp. 177-190; doi: 10.1017/s0080456800030817. [24] Bessel, F. W., The calculation of longitude and latitude from geodesic measurements, Astron. Nachr., 331 (8), 1825, pp. 852 - 861; arXiv: 0908.1824; (in German); English translation 2010; doi: 10.1002/asna. 201011352. [25] Selescu, R., Simple Closed Analytic Formulas to approximate the First Two Legendre's Complete Elliptic Integrals by a Fast Converging Recurrent-Iterative Scheme,
WSEAS Transactions on Computer Research, Vol. 9, pp. $55-67,6$ July 2021, DOI: 10.37394/232018.2021.9.7; https://wseas.com/journals/cr/2021.php

