
 

 

This paper updates the cognitive model, firstly by 

creating two systems and then unifying them over the 

same structure. It represents information at the 

semantic level only, where labelled patterns are 

aggregated into a ‘type-set-match’ form. It is 

described that the aggregations can be used to match 

across regions with potentially different functionality 

and therefore give the structure a required amount of 

flexibility. The theory is that if the model stores 

information which can be transposed in consistent 

ways, then that will result in knowledge and some 

level of intelligence. As part of the design, patterns 

have to become distinct and that is realised by unique 

paths through shared aggregated structures. An 

ensemble-hierarchy relation also helps to define 

uniqueness through local feedback that may even be 

an action potential. The earlier models are still 

consistent in terms of their proposed functionality, 

but some of the architecture boundaries have been 

moved to match them up more closely. After pattern 

optimisation and tree-like aggregations, the two main 

models differ only in their upper, more intelligent 

level. 

 

The behaviour model [7] gives a geometric 

progression, with memory structures at the base 

moving from nested ensembles to unique tree sets. 

There is then an interface with the upper experience-

based level that models the behaviours, with a 

scheduling layer at the very top. The original 

cognitive model can use a similar memory structure, 

but its upper level has been changed to a 

propositional logic of mutually inclusive or exclusive 

pattern groups and sequences. The logic can 

complement the behaviour actions, to provide some 

level of control over their execution and it in fact 

makes use of the layers and structures of the original 

model, only with slightly different architectural 

boundaries. This paper proposes that the memory 

I. INTRODUCTION 

Abstract: - This paper updates the cognitive 

model, firstly by creating two systems and then 

unifying them over the same structure. It 

represents information at the semantic level 

only, where labelled patterns are aggregated into 

a ‘type-set-match’ form. It is described that the 

aggregations can be used to match across regions 

with potentially different functionality and 

therefore give the structure a required amount 

of flexibility. The theory is that if the model 

stores information which can be transposed in 

consistent ways, then that will result in 

knowledge and some level of intelligence. As part 

of the design, patterns have to become distinct 

and that is realised by unique paths through 

shared aggregated structures. An ensemble-

hierarchy relation also helps to define 

uniqueness through local feedback that may 

even be an action potential. The earlier models 

are still consistent in terms of their proposed 

functionality, but some of the architecture 

boundaries have been moved to match them up 

more closely. After pattern optimisation and 

tree-like aggregations, the two main models 

differ only in their upper, more intelligent level. 

One provides a propositional logic for mutually 

inclusive or exclusive pattern groups and 

sequences, while the other provides a behaviour 

script that is constructed from node types. It can 

be seen that these two views are complimentary 

and would allow some control over behaviours, 

as well as memories, that might get selected. 

Key-Words: - cognitive model, neural, pattern, 

hierarchy, knowledge transposition. 

 

New Ideas for Brain Modelling 7 
Kieran Greer, 

Distributed Computing Systems, Belfast, UK. 

http://distributedcomputingsystems.co.uk 

 

Volume 1, 2021 ISSN 2769-2477

34

IARAS
Typewritten Text



structures can be formed in a largely unsupervised 

manner, where they represent and organise data using 

limited sensory processes. The patterns can then be 

corrected through interactions with the experience-

based levels [4]. Key to this is a short feedback and 

reinforcement loop between the ensemble and the 

hierarchy. Rote learning is therefore still part of the 

system, but ‘units of work’ are created first through 

self-organisation, before they can be further clustered 

into knowledge trees, for example, using more direct 

approaches. The design also recognises that 

transitions from one type of information to the next 

are required and different types of transposition are 

described. As such, knowledge and experience can be 

merged and interact between brain regions. 

 

The rest of the paper is organised as follows: 

section 2 lists some related work. Section 3 then 

describes a ‘unit of work’ structure, which is more 

complex than a single neuron and can help to 

aggregate ensemble patterns. Section 4 gives details 

about the different types of knowledge and 

information transpositions that would make the 

network sufficiently flexible. Section 5 then re-visits 

the 3-level architecture and compares the two 

detailed cognitive models, to show that they are 

essentially the same. Finally, section 6 gives some 

conclusions on the work. 

 

 

Because this paper is a consolidation of earlier 

work, any of the author’s papers [4]-[16] are of 

interest. Other research is also mentioned, to show 

that a lot of the established theories are involved. As 

the network is being described as semantic, Semantic 

Networks [24] are obviously of interest and there is a 

return of Stigmergy [5][3] as a fundamental part of 

the organisation. The models in this paper are more 

for the computer program and so the supporting 

biology theory is not as important, but global 

properties from statistical physics [26], for example, 

is still very important. Oe other biological aspect is 

the Neural Binding Problem [4] that asks how distinct 

concepts can be understood, still as distinct concepts, 

when they are combined. For example, ‘why don’t 

we confuse a red circle and a blue square with a blue 

circle and a red square’. This problem is well-known 

but poses problems when trying to understand it in 

terms of the human brain. For a semantic computer 

model however, it is relatively easy to find a solution, 

as described in section 4 and later. That paper also 

quotes research in [2], which shows that coupling 

between activity in distant brain areas may be 

mediated by local field potentials (LFP) and phase 

coupling.  This is interesting as part of the ensemble-

hierarchy structure [10][11], discussed in section 3 

and later. With regard to a broad framework, and-or 

graphs, along with theorem-proving are written about 

in [20]. Consistent with the earlier papers, the and-or 

graphs would still be constructed between more 

vertical tree structures (And) and the more horizontal 

symbolic neural network (Or) [16]. The clustering in 

this paper would be part of the ‘upwards’ memory 

formation. The theorem-proving trees of axioms to 

goals can be placed in the top ‘intelligent’ level and 

also be part of the ‘downwards’ search, matching 

with the memory structures. The paper [25] also 

models behaviours and it is interesting that they 

consider the behaviours to be unique (time or 

sequence-based) sets of event patterns that are then 

clustered, rather than existing as each individual 

event. The idea is to mix and match over unique 

pattern sets. 

 

Because the architecture is neural, quite a lot of 

the neural network theory could become relevant and 

replace any of the author’s own clustering 

algorithms. One of the earliest papers [21] modelled 

the neural linking very closely and even suggested 

logic rules. They argued that if there is a definite set 

of rules or theorems under which the neurons behave, 

this can then be described by propositional logic. 

They then focused more on behaviour and states, 

rather than precise mathematical values, but this is 

also the case for the author’s model and one of the 

detailed designs [12] has been converted to represent 

some level of propositional logic instead. Stability in 

the model is important, where the real brain has 

developed mechanisms to correct itself and realise 

stable states. For example, there is evidence that brain 

activity during sleep employs a Boltzmann-like (or 

Hopfield) [23] learning algorithm, in order to 

integrate new information and memories into its 

structure [27]. The middle layer of the cognitive 

model might benefit from a Boltzmann-like machine, 
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although a different self-organising unit is currently 

suggested. The idea of a unit would give the patterns 

some shape to achieve a stable state with, and 

stability also means a lower-energy state, which is 

always important. 

 

 

It has been useful to look at a neural assembly as 

a ‘unit of work’ instead of single neurons. This was 

suggested at the beginning with the ReN (refined 

neuron) [12] and then later with a subsequent 

ensemble-hierarchy structure [10][11]. The intention 

of the ReN was to make the neural signals more 

analogue by aggregating a set of input neurons 

through a single output neuron, where each input 

neuron then contributes only a fraction of the output 

signal. The intention of the ensemble-hierarchy 

structure was to make the signal it produces more 

distinct, where the hierarchy provides structure and 

would fire with the ensemble, giving it that extra 

definition, rather like an action potential. The 

argument being that a fully-connected ensemble 

pattern is easier to find and activate in the first place. 

It may be too fanciful to imagine that there is an 

ensemble-hierarchy structure that will produce these 

unique ‘notes’ to define a pattern, but the fact that 

structure is added to the unit gives it merit and a 

difference in action potential has been shown to 

influence activity in a real brain [2]. 

 

The ensemble-hierarchy was originally designed 

with a diverging Concept Tree [14][9] hierarchy part. 

In fact, the second Concept Tree paper [9] was 

changed over some versions, where there was 

confusion as to whether the structure would diverge 

from the top to the bottom or the bottom to the top. 

The search process can also be in either direction and 

so it may be preferable to give priority to finding the 

concept as part of the search. It is possible to make 

the argument very organic and write about signal 

strengths and wiring lengths, but organising neurons 

considers signal types and chemical compounds as 

well and so the argument for this paper is purely 

functional. It shall be kept as to what each layer 

should do and not exactly how it may be formed. The 

self-organising unit is shown in Figure 1 and 

described in the next sections. 

 

 

 
 

Figure 1. Self-organising ‘Unit of Work’. 

 

The paper [4] has suggested a self-organising 

algorithm that uses brain-inspired full-linking [1][18] 

plus a new Frequency Grid [10] count, which 

produces an ensemble at the base and a hierarchy 

above that, where the hierarchy is for agglomerative 

clustering. The frequency grid may also be 

compatible with a brain architecture. Considering 

doctrines similar to Hebb’s rule [19] ‘neurons that 

fire together wire together’, or ‘equal distanced 

neurons fire together’, then this is approximately 

what the frequency grid does. It produces an 

association count for every node with every other 

node and the largest count with some other node 

defines that node’s relation. The node clusters are 

created from events. Consider therefore, that the self-

organised units form fully-connected patterns that 

then fire together, more often than with other nodes. 

It is also interesting that adding more frequency grid 

levels produces a much more regular frequency count 

inside of each unit. The counts in the first level are 

A. Self-organising Unit
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much more variable and so this could suggest that the 

nodes become more synchronized with the unit 

cluster they belong to, in further levels. That would 

probably encourage Hebbian growth in the mini-

cluster only. These units that aggregate individual 

nodes can then be aggregated themselves in a third 

level, when we get the self-organising algorithm 

described in [4]. The algorithm produces something 

that is thus also like a unit of work.  

 

It might be easier to invert the tree structure in the 

ensemble-hierarchy, where the aggregated base node 

is still added first, but also at the furthest distance and 

then the sub-concept nodes are added as branches 

towards the ensemble itself. When the ensemble first 

fires, an aggregated node is realised some distance 

away. Possibly a slower firing rate can give more 

distance. Then if ensemble parts fire, they realise 

other aggregated nodes in-between. Possibly a faster 

firing rate encourages the node to form more quickly 

and therefore also form closer. The Concept Tree 

counting rule is therefore maintained, but inverted, 

because the root node, representing the whole 

ensemble, fires the least and each individual part fires 

more often, as a single unit. If that is the case, then 

both more object neurons and also descriptor ones 

can be closer to the sensorised ensemble. Also for 

economy of energy, it might be the case that the tree 

structure should converge and grow backwards, as 

shown in Figure 1. Each aggregated tree node can 

still fire somewhere else and represent that part of the 

ensemble. The structure can probably be looked at as 

a bit columnar, with a partially-defined outside edge 

and it is limited by the ensemble base. The design 

would still like to have secondary links between each 

neuron and its sibling pattern in the ensemble.  

 

Consider that the ensemble input would be 

general sensory input from the human body. The tree 

may also receive input from other regions, which 

could be the more intelligent cortex areas, for 

example. If the tree does not receive input from 

anywhere else, there is no reason for it not to fire in 

the same way as the ensemble and so the aggregated 

tree nodes can be a type of matching between 

different regions, maybe a transposition area. The 

same process for ensemble-to-ensemble does not ring 

quite as true. For one thing, aggregated nodes cannot 

be nested and so they would have to be linked trees 

and that may force some level of order. Then what is 

the interface between the two ensembles, it must 

simply be synchronized firing, but the nesting would 

cause confusion. 

 

The network is made up of knowledge-based and 

experience-based layers that transpose. Experience is 

more unstructured and requires time-based events to 

give it meaning. It transposes into knowledge and 

uses the time-based events to create the structure. 

Time will simply allow more unrelated structure 

through the firing sequences. It may be helpful to 

think that knowledge-based patterns fire inwards and 

experience-based patterns fire outwards. This also 

means that knowledge patterns can be fully-

connected and would make suitable terminal states. 

Knowledge-to-knowledge is also possible and can be 

a change in object associations, also influenced by 

time. Because knowledge has structure, it will fire 

more concepts vertically when active, which gives 

rise to a type of ensemble in the next layer and so the 

next layer should probably be shallower, or more 

horizontal. It is also proposed that transitions from 

one type of knowledge to the next is what makes the 

network flexible.  

 

To start with, the problem of shallow or deep 

hierarchies can be re-visited, with the idea of trying 

to define when the system might use either in terms 

of the functionality. There are probably 3 types of 

information transition:  

 

1. Experience-to-Knowledge. 

2. Knowledge-to-Knowledge. 

3. Knowledge-to-Experience. 

 

It is proposed that the first transition type 

produces deeper network structures and probably 

produces ‘a-priori’ knowledge. Experience-based 

information is about the use of objects and so it is 

more concerned with interactions between them and 

would thus probably be represented by shallow 

IV. KNOWLEDGE TRANSITIONS 
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hierarchies with a lot of lateral links. This can be seen 

in the top ‘intelligent’ level of any of the previous the 

cognitive models [15][12][7]. If the experience is 

being transitioned into knowledge, then the chances 

are that it is being converted into a more static and 

permanent form. The links would be more through 

the separate parts of each individual object, than 

across the objects. This is also generally accepted 

when learning something. It requires the practical 

experience to learn the tacit knowledge that is not 

easily defined for the individual person. These extra 

bits of information that are not obvious would make 

the network structure deeper and the experience 

would want to make a permanent representation of it 

- not of more experience, but of the results of it in the 

real world. The second type would probably be a 

transition from a deeper network to a shallower one 

and is again explicit and a-priori. The static objects in 

the first knowledge level would be aggregated or 

compared in the second level, also with the idea of 

cross-referencing them. It would not make sense to 

try to add deeper knowledge again - that would 

happen in the first layer and so the second layer 

would be about the object interactions instead. The 

third type of transition is maybe slightly different in 

that the links produced might be peculiar to the 

experience type itself. This probably produces 

implicit and ‘a-posteriori’ knowledge. For example, 

induction reasoning would be used to gain new 

insights from what is already known about. 

Experience-to-Experience looks unlikely. Why 

would this occur without some permanent learning 

first? 

 

The two hierarchy types can also retain their 

original functionality. The deeper hierarchy would be 

explicit, but also where the tacit knowledge is kept 

and understood. The shallow hierarchies would like 

to deal with whole concepts, such as ‘square’ or 

‘circle’ and solve the neural binding problem [4], for 

example. For a computer model, a shallow hierarchy 

of only two levels or so can solve it through links 

from leaf nodes in one tree to a similar base node in 

another tree, as shown in Figure 2. This knowledge 

problem may be declarative in nature (knowledge of 

something), but it is not yet events or actions, which 

is procedural knowledge (how to do something). 

Procedural knowledge can be stored as pattern sets 

that represent actions instead of images, for example. 

To solve the neural binding problem requires distinct 

representations for each concept. Then simply 

through the associations that occur, paths of links will 

form that can define each concept set uniquely. A 

problem with the tree structure may be that the 

number of nodes required, makes this impractical. 

Everything needs to be repeated for everything else, 

and so a better solution, suggested in section 5.1, is 

to repeat the list of nodes in two separate layers 

instead. 

 

 

 

 

 

 
 

Figure 2. One level of linking in a tree-like temporal model defines a particular ensemble mix [11], figure 2. 
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The neural units described in section 3 are 

converging. It would also be helpful if these units can 

be made unique in their concept representation and 

that could be quite straightforward through a mix and 

match approach. If you always walk down the same 

street, for example, then you will tend to see the same 

shops and people, but maybe there are different 

combinations of these each time. At the end of the 

day, this might be thought over and different 

scenarios that are related, sorted as clusters. It may be 

like having a large dataset of values stored in memory 

and learning different subsets of it each time. The 

architecture for these unique sets can be seen in the 

bottom half of Figure 6 or Figure 3, for example. 

Each ensemble cluster has converged into a much 

smaller set of aggregated category nodes, possibly 

using the self-organising units to create the structure. 

Because the base ensemble does not have the same 

structure, the input stimulus can activate shared 

ensemble pattern sets and so there is overlap in the 

ensemble space. 

 

This is a key requirement for making the network 

flexible and to give it the ability to discriminate over 

the pattern structures. In fact, it turns out that we 

already have the solution to this problem and it is 

simply properly constructed semantic networks [24], 

although they cannot solve everything, such as 

understanding text or mathematics, for example.  

Consider a nested ensemble of patterns that form 

essentially as an imprint of the input senses. While 

the sense might still be used during recall, how is the 

pattern processed when the input sense is removed? 

This is also a question about optimisation and what 

the optimisation is for. The optimisation is to isolate 

one pattern from other ones, so that its firing event is 

clearly defined, leading to two choices: 

 

1. Each input pattern is separate from every 

other one and it fires inwards, to recognise its 

own structure and no other structure. 

2. Each pattern is reinforced from some other 

level, to boost the features in it and therefore 

help them to be recognised. 

 

If option 1 is correct, then there is a greater limit 

on how many patterns and therefore memory images 

can be stored. Option 2 looks more likely and it can 

make use of information transitions. And when we 

use existing knowledge to solve a new problem, we 

must surely be using option 2. To make a complete 

process, at least 3 levels of recognition are required. 

We have the nested ensemble at the base that might 

be an imprint of the input senses. A level above this 

is a set of features, represented by smaller aggregated 

node sets. The aggregated sets might even be single 

nodes for each feature pattern and can therefore be 

stored separately more easily, while the nested 

ensembles share. Each feature set also represents an 

object in the real world and so it has a further link to 

another single neuron, for example, that is the label 

of that object type. Therefore, from a type, we go to 

feature sets of the type and then to matching patterns 

at the base. This looks a bit like Figure 1, but each 

unit would then also link to a type node, not shown.  

 

There is also the possibility of a local feedback 

between the ensemble and the feature set, where if 

one fires, it reinforces the other and encourages that 

region to fire over other regions. Consider for 

example, a boat or a house. Both have windows and 

doors, but a house also has walls and a roof, while a 

boat has a hull and a deck, for example. The window 

feature is recognised as a window type in the third 

level and that level links down to both the boat and 

house ensembles but not their types. The house 

feature set also has wall and roof features that would 

have to be active for the type to fire, while the boat 

set with the hull and sail would not fire as strongly 

for that set of features. Therefore, the house ensemble 

is reinforced more and the window gets associated 

with the house and not the boat. With this network, 

we get a ‘type-set-match’ structure, illustrated in 

Figure 3. 
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Figure 3. Semantic network with a ‘type-set-match’ structure. Types of Window, Door, House and Boat are 

shown. 

 

It might be interesting to think that if two input 

ensembles had some similarity, then they might 

naturally form closer to each other. With the boat and 

the house, for example, the doors are essentially the 

same and so if the memory for a house door already 

existed, along with maybe other elements, then if the 

boat stimulus is input, it might match with some of 

the existing house pattern and be encouraged to form 

in that region. This would also be a natural order and 

indexing system, because when the human goes to 

think about houses, he/she may think next about 

boats and not about something that is completely 

unrelated. Stigmergy [5][3] may play a part here, 

because the imprint of the shared features in the 

region encourages the rest of the pattern to form 

there. It would also be the most economic in terms of 

energy [13]. 

 

Details of two cognitive models have been 

described in [12] and [7] and are listed in Appendix 

A. The cognitive model has evolved since the first 

version [15], which was a lower optimising layer, 

followed by a middle aggregating layer and then an 

upper cognitive layer. While the model has been 

refined in places, it retains the idea of memory 

patterns followed by aggregated patterns, followed 

by more intelligent structures and that will have to be 

the template that is used. The difference in the models 

is in fact the upper cognitive layer. The first detailed 

model, described originally in [12] is shown in Figure 

5. It used simply single links between sets of complex 

concepts, but it was decided that these single links did 

not provide enough information to allow the concepts 

to trigger each other usefully. It has since been 

decided that the more intelligent layer could provide 

some form of controlling logic instead, inspired by 

the original McCulloch and Pitts paper [21]. A 

second model was then developed [8][7] with a novel 

upper layer, shown in Figure 6, that would control 

behaviours instead. The two detailed designs should 

also carry equal importance. While the figures look 

just like sets of concepts with links, it is important to 

remember that there is an underlying mathematical 

formula that can construct this in a consistent 

manner. The transposition from ensemble domains 

(deep trees) to chunks of knowledge (shallow trees) 

looks to be consistent. The chunks can be 

hierarchical, where some tree parts are shared, but the 

full path through them is unique. The chunking 

therefore creates sets of knowledge that have unique 

consequences/actions/results. Sharing the 

information is not just about economy, but also about 

search, where if one sub-part is found, it can link back 

to all of the different possibilities that make use of it. 
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Figure 4 illustrates the new upper layer for the 

procedural logic model and it can be compared with 

the square types-level and upwards in Figure 6. In 

Figure 4, the oval nodes are the aggregated sets and 

paths through them should be unique. They might 

initially link with every concept in the bottom logic 

layer, which is a different type of knowledge and 

therefore an interface, represented by the square 

nodes and similar to Figure 2. In this figure however, 

the tree structure with repeated node sets as branches 

has been replaced simply with two levels of the same 

nodes.  This is much more economic and may make 

the structure practical. Each node then links to itself 

between the layers and also to the other concepts it is 

related with. Having so many potential links between 

the two levels can lead to many circuits firing at the 

same time. Inhibitors would therefore be the main 

mechanism to control the firing sequences. For 

example, both avoiding or speaking to a person is 

possible and they can both fire at the same time as 

part of the person circuit. There would therefore be 

an inhibitor between the two sets, so that one of them 

would switch off.  

 

 

 

 
 

Figure 4. Procedural Logic, based on 2 similar layers that join. 

 

 

The 2 layers would match with the bottom layer 

of the symbolic neural network in the original design 

(Figure 5) and also time-based events. Forming 

constructive sequences looks to be a more difficult 

problem and may require another scheduling layer 

above this, which would be analogous to the 

cognitive linking in the first model. The procedural 

logic requires verbs for understanding it, but that is a 

labelling problem. If the label is removed, we still 

have the relations between the node paths and so if at 

some level, the brain knows what each type is, it can 

relate that to the path through this architecture. 

Comparing the two models shows that the 

knowledge-to-experience link sets can match nodes 

at boundaries and also help to transition from 

ensemble to type. The logic level now looks 

relatively primitive, almost like a bee dance. 

 

To be consistent with the unit structure, patterns 

need to be realised as linked sets of them. There are 

probably many different ways to represent patterns 

and it would be analogous to the columnar structure 

B. Realising Patterns as Self-organising Units 

A. The Procedural Logic Model 
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that makes up the cortex region [22][17], for 

example. While in the neocortex, the columnar 

structure is a physical entity, maybe in other brain 

regions, the same type of functionality can be 

realised, even if the physical space is slightly 

different. Therefore, to realise the self-organising 

units, it is necessary to provide limiting constraints 

on the firing patterns. If an ensemble feeds a 

converging tree or hierarchy, which then feeds back 

into the ensemble, that loop is then a limiting 

constraint. The unit would also be more akin with the 

knowledge-based patterns and then expanding 

experience-based sets would be able to link these 

units together. 

 

If the structures prefer to converge for economy 

of energy [13], it then remains to make clear why they 

would diverge as well and the reason for this is to add 

new knowledge to the network. It has been shown in 

statistical physics [26], for example, that global 

properties in a network can be orderly, even if there 

is randomness at the local level. Even if individual 

units can behave slightly stochastically, there may 

still be global trends that would allow the larger 

network to behave in a more uniform manner. There 

is therefore also coherence in the network at the 

global level, above what each individual unit 

produces, allowing statistics to take over from 

intelligence. If brain regions started to fire at the same 

time for example, that would encourage growth in 

pattern sets at a global level and would encourage 

those sets to merge into a larger ensemble. So that 

would help to expand the network, again simply 

through Hebbian linking. 

 

 

This paper has integrated the cognitive model 

further and shown it to be mathematically consistent. 

The reason for the ensembles and different types of 

hierarchy is clear and also the reason for transposing 

between them, where some hierarchies are the 

interface between different regions. Self-organising 

units of work can help with aggregation and both 

knowledge-based converging and experience-based 

diverging structures have a specific purpose. In fact, 

it is proposed that knowledge transpositions are what 

make the network flexible. This paper is different to 

the earlier research with the geometrically 

progressive design. Units of work converge from the 

ensemble to sets of abstract concepts and from them 

to types. Concept Trees may then not be about linking 

individual nodes, but about linking the self-

organising units. They would grow by linking 

knowledge constructs together and through global 

network properties. A process analogous to 

stigmergy can be re-introduced and would take place 

in the memory region, where in a real brain it would 

be between the base and the nervous system, for 

example. It would help with pattern organisation and 

optimise their placement, so that related patterns can 

be found more easily. This is a nice idea, because the 

role of stigmergy in insect colonies is to optimise 

paths of the preferred routes, where the actor in 

question has no influence. The human brain has then 

evolved to add more intelligent functions on-top of 

that. 

 

The two cognitive models can now be modelled 

as similar systems that differ in functionality only. 

This is particularly clear if the procedural logic model 

includes a more constructive scheduling layer on-top 

of its more primitive logical level. The lower memory 

structures can be the same and the upper ‘intelligent’ 

level can either store constraints on behaviour 

actions, or the behaviours themselves. Noted that 

spatial information should also be stored somewhere. 

The original designs are still very relevant, where 

both unique and shared pattern sets exist. The unique 

sets can be converted into representing functions that 

determine what the brain subsequently understands. 

The author posted a number of statements in an 

earlier paper [15], about requirements for building a 

brain-like model. They can probably be answered by 

using this model. 
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Appendix A 
This appendix lists the two detailed cognitive models. Figure 5 shows the original model with the more basic 

upper level, while the preferred Figure 6 shows the second model with the behaviour upper level and more 

geometric structure. 
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Figure 5. First detailed cognitive model from [12]. 

 

 

 

 
 

Figure 6. Second detailed cognitive model from [7]. 
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