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Abstract: - This is particularly important in logistics, where path planning is critical for adequate transport and 
distribution processes. That is why classical approaches like Dijkstra’s algorithm have been essential, though 
they are too weak to handle the complications typical of actual logistics networks. To this end, this paper 
proposes a new framework called DeepShortest, which improves the path optimization process of logistics 
using deep learning methods. DeepShortest uses the deep learning neural network for training and flexibility in 
the complexity of various logistical contexts. Thus, DeepShortest successfully implements deep learning within 
the base of Dijkstra’s algorithm to deliver a high result in finding the shortest and most effective paths for 
transporting goods through global logistics chains. In this paper, the DEEP Define strategy describes how deep 
learning methodologies are cast into the path optimization component of the DeepShortest approach. In 
addition, real-world logistics case studies substantiate the effectiveness and advantage of DeepShortest 
compared with previous methods, generally providing stepped-up route performance and resource 
management.  DeepShortest is an innovative approach to solving logistics path optimization problems and is a 
creative and effective solution for issues in today’s supply chain. With their capacity to work in areas where 
conditions change often and to suggest optimal paths for delivery vehicles, DeepShortest presents itself as an 
invaluable resource that could drastically transform logistics worldwide.  
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1  Introduction 
This study presents the difficulties in logistics path 
planning, the disadvantages of existing methods, 
and the advantages obtained if deep learning can be 
applied. We then describe the goals of the 
DeepShortest approach and briefly present the 
organization of the paper, which comprises the 
description of the DeepShortest framework, 
empirical findings, and insights on the consequences 
and further work of the study. 

Moreover, this work integrates deep learning 
approaches into path-finding algorithms. It 
overcomes the shortcomings discussed above while 
adapting to new challenges for modern logistics, 
making the process of path planning more 
enjoyable. 

Path planning is essential for efficiency, cost, 
and overall supply chain performance in the 
logistics domain. Problems such as determining the 
shortest path to move goods from one node to 
another in an extensive network have been solved 
using methods such as Dijkstra's Algorithm. 

However, these may be impracticable because of the 
size of integrated logistics networks. 

In this paper, we present a new algorithm called 
DeepShortest, which deploys the concept of Deep 
Learning along with the basic framework of 
Dijkstra’s algorithm and can enhance the path 
optimization feature in logistics domains. Therefore, 
DeepShortest attempts to reduce real-world logistics 
networks' interdependency complexity and 
inefficiency by leveraging deep aggregate neural 
networks to offer better path-finding and route 
optimization results. In conclusion, this paper tries 
to contribute to improving logistics path 
optimization through a new approach by applying 
deep learning to solve the problem encountered in 
today’s supply chain.  

The rest of this article is structured as follows. 
Section 2 presents a literature review of intermodal 
path optimization and logistics. Section 3 outlines 
the theoretical framework of the concept. Section 4 
represents the application of the theoretical aspect. 
Last, in section 5, we conclude this paper and 
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determine whether the syllabus analysis has 
provided sufficient evidence to support the outlined 
hypotheses. 

 
 

2   Literature Survey 
This literature survey brings new insights into 
selected research and developments on deep 
learning approaches, path optimization, and 
intermodal transportation systems. Attention is paid 
to identifying how the methods related to deep 
learning have been used to improve the route 
optimization and management of logistics networks, 
mainly when goods are in transit that involve 
several means of transport.  

Dijkstra’s Algorithm was proposed in 1968, and 
these two are some of the algorithms for shortest 
path in graphs, [1]. They have been successfully 
implemented, especially in logistics, to choose the 
best path in transport systems. However, these 
methods fail to deal with the high complexity and 
continuing change of actual logistics networks, let 
alone the multimodal ones. Algorithms such as the 
Bellman-Ford Algorithm and its improved version 
are employed, especially with networks containing 
negative weights assigned to their edges. Still, these 
algorithms may entail excessive computation for 
large networks or real-time applications. Intermodal 
transport means using several transport modes to 
ship goods, such as road, rail, and sea. These 
systems have many transfer points and conditions 
varying from time to time, such as traffic or weather 
conditions, and hence, traditional path optimization 
techniques cannot be applied here.  

Deep learning is a subfield of Machine learning 
wherein the algorithm is built with multiple layers 
of neurons that can analyze abstract features of 
given data, [2]. Deep learning is an interesting up-
and-coming branch of machine learning that has 
found its applications in many fields, such as 
computer vision, natural language processing, and 
logistics, [3], [4], [5], [6], [7], [8], [9]. CNN and 
RNN proved effective in predicting demand, 
managing the supply chain, and defining the proper 
way to manage warehouses. However, these 
algorithms have yet to be implemented in path 
optimization for logistics; they are a field under 
development, [10], [11], [12], [13]. Deep 
Reinforcement Learning (Deep RL) is used in 
decision-making, like pathfinding. An agent learns 
between the optimal path and a suboptimal path 
based on the rewards or penalties. Some researchers 
examined the application of deep learning for 
vehicle routing in logistics and established that 
neural networks can offer better solutions than 

conventional algorithm-based approaches in 
intricate contexts. The authors used data from prior 
performances to train the neural network, [14], [15], 
[16], [17], [18].  

Intermodal systems are distinguished due to 
increased complexity, explained by the connection 
between different transport modes and transfer 
junctions, [19], [20], [21], [22]. Considerations such 
as transit time, cost, handling, and environmental 
conditions are added. Some scientists gave a general 
overview of intermodal transport and discussed 
problems of such systems, mainly in route choice 
and mode decision-making. In classical optimization 
techniques, mathematical methods applied for 
optimization are linear programming and heuristic 
and meta-heuristic algorithms are some of them 
which include GA & ACO, etc., [23], [24], [25], 
[26]. However, they may be less effective in 
capturing the freshness of intermodal transport 
systems. According to recent studies, deep learning 
is a new perspective gradually integrated into such 
systems, [27], [28], [29], [30]. Intermodal 
transportation is an intricate process that requires 
the coordination of several transportation modes 
such as trucks, trains, and ships); some studies 
contributed a deep learning base that optimizes the 
routes for intermodal transportation in real-time, 
considering factors like traffic data and weather 
conditions, [31], [32], [33], [34].  

The DeepShortest approach combines deep 
learning and basic path optimization algorithms to 
address the shortcomings of the mentioned 
approaches. DeepShortest is based on deep 
understanding; it can select the appropriate route 
based on the current conditions of intermodal 
transportation systems. Deep learning models can 
acquire training from many past data sets and make 
changes according to the real-time changes, making 
it suitable to achieve better results in route 
optimization, [35], [36], [37]. It is, therefore, 
possible to apply the strategy in entire chains of 
logistics networks and is feasible in every 
intermodal system worldwide. By optimizing routes 
more effectively than conventional approaches, 
DeepShortest can significantly reduce logistic costs.  

Thus, the application of deep learning in path 
optimization of intermodal transportation systems is 
an innovation in the field of logistics. As with most 
recent developments, plenty of evidence suggests 
that the approach is efficient, scalable, and flexible. 
For future research, integrating deep learning with 
other state-of-the-art technologies like blockchain 
for increased transparency and self-driving cars for 
the last mile delivery can augment the 
functionalities of the intermodal logistics systems.  
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3   Methodology 
The specific method followed in the DeepShortest 
approach aims explicitly to solve path-finding 
challenges in intermodal transport systems using 
deep learning. This approach combines the 
conventional turning point optimization 
methodologies with the deep learning models to 
develop a uniform and real-time solution that 
accommodates the dynamicity of the logistics 
networks.  

We can blend and time transport modes in 
intermodal systems while considering traffic, 
weather conditions, and time taken at interchanges. 
Some of the constraints the methodology addresses 
include transport type (road, rail, marine), capacity 
restraints, legislation, and environmental effects. 
The suggested model contains historical data on 
transport duration, cost, weather conditions, traffic 
frequency, and transfer between the major hubs. It 
includes the data collected through sensors, GPS, 
and IoT devices, which gives real-time updated 
information on traffic, weather, and operational 
logistics. Also, it generates information from outside 
environmental factors such as weather conditions, 
current prices of fuel, and geopolitical factors 
influencing the transportation channels. It omits 
unnecessary data and information from the data set. 
It focuses on treating missing values in the data and 
covers data integration of multiple data sources. 
Identifies subordinate characteristics from primary 
data, which can change path optimization to a great 
extent, including distance, expected delays, 
congestion, and fuel consumption. Data inputs given 
to the deep learning model are normalized to 
enhance the model’s performance. The shortest and 
most mixed algorithms are combined with deep 
learning models. Prim’s Algorithm, or Dijkstra, is 
employed as a reference to provide one set of 
possible path solutions based on static values like 
distance and cost. A neural network, usually an 
RNN or LSTM network, is trained to estimate the 
effects of dynamic factors such as traffic or weather 
on the proposed routes.  

Received data include inputs such as origin, 
destination, mode of transportation, real-time traffic 
information, and weather conditions. Several layers 
are performed to model the input features' 
interdependencies. LSTM layers are specifically 
used to manage time series in that they provide a 
forecast from previous results. Creates the best paths 
towards the targets, satisfying constraints such as 
time and cost of traveling without incurring more 
time than necessary.  

The model promoted integration to enable 
continuous learning and changes to be made when 

the need arises. The RL component, which may 
depend on Deep Q-Learning, allows the given 
system to make best time decisions, using feedback 
from the environment (actual vs. predicted). They 
were created to penalize time delays, cost increases, 
and other routes while enhancing time-sensitive, 
cost-efficient deliveries.  

The efficacy of the DeepShortest approach is 
evaluated in the context of path optimization, and its 
savings and flexibility compared to conventional 
solutions are described. Some measures that assess 
the model include the percentage of decrease in the 
time spent in transit, the cost cut, and how the model 
addresses disruption. More importantly, constant 
feedback is received from logistics operators to 
review the system and improve it on operations’ 
specifications and emerging issues.  

 
3.1  Dijkstra Algorithm 
Dijkstra’s algorithm is a path-finding algorithm with 
a significant place in graph theory. This algorithm 
applies to seeking one and the shortest path on 
weighted directed graph structures. The shortest 
path means that all the weight between nodes of the 
graph is less than the other path. A weighted graph 
is one of the graph types in which every edge has 
some weight quantity attached to it.  

The procedure of Dijkstra’s algorithm is based 
upon a step-by-step calculation of optimum path 
stretching from the start node to other nodes. In this 
procedure, the node with the minimum path length 
is chosen among those not processed at all, and this 
node is marked as processed. It goes on like this 
until it has been reached on the target node. 
However, what has been described above about 
Dijkstra’s algorithm is that, despite its ability to 
compute the shortest path efficiently, the application 
has disadvantages in producing accurate results in 
graph structures that include negatively weighted 
edges.  

As Dijkstra’s algorithm works based on Graph 
theory, it only considers the shortest path. It also 
gives solutions to problems and ways to find 
solutions in various application fields. It can show 
an optimal balance between efficacy and efficiency.  

 
3.2  Mathematical Modeling 
Shaped by principles from graph theory, deep 
learning, and reinforcement learning, the 
mathematical model of the approach named 
DeepShortest is used to manage paths in intermodal 
transportation systems. The route optimization 
problem aims towards defining the solution path 
that requires the minimum total cost in traveling 
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time and expense and also considers dynamic 
factors such as traffic and weather conditions.  
 
3.2.1 Graph Representation of Intermodal 

Transportation Network  

- Network Graph G(V,E): Intermodal 
transportation networks shall be represented as G(V, 
E) where V is the set of vertices (nodes), meaning 
locations such as cities or intermodal terminals, and 
E is the set of edges, meaning possible transport 
paths between nodes.  
- Every edge eij   E joins nodes vi and vj and 
exhibits a transportation connection from location i 
to location j.  
- Edge Weights: The attribute 𝑤𝑖𝑗 (t) of an edge eij 
at time t, represents the cost incurred while 
travelling from node vi to node vj. This cost is a 
function of several dynamic factors: This cost is a 
function of several dynamic factors:  
𝑤𝑖𝑗(𝑡) = 𝑓 (𝑑𝑖𝑗, 𝑐𝑖𝑗(𝑡), 𝑇𝑖𝑗(𝑡), ∆𝑖𝑗(𝑡))  (1) 

 
 where:  
 - 𝑑𝑖𝑗  means the ‘distance’ between two vertices vi  
and vj..  
 - 𝑐𝑖𝑗 (t)  stands for the cost of travel, including fuel, 
toll, etc, at time t.  
 -  𝑇𝑖𝑗 (t)is the actual transit time that occurs at the 
time t, influenced by traffic and weather conditions.  
 - ∆𝑖𝑗 (t)  is a delay factor that considers possible 
delays that could be occasioned by transfer between 
modes in the hub or any other form of disruption.  
 
3.2.2  Objective Function 

The objective is to find an optimum solution that 
will reduce the overall cost of operation denoted by 
C in a given network subject to several dynamic 
factors.  
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶 = ∑ 𝑐𝑖𝑗 . 𝑥𝑖𝑗 + ∑ 𝛾𝑘 . 𝑇𝑘𝑘∈𝐾(𝑖,𝑗)∈𝐸       (2) 

 
where 
 -  E: The set of edges that define possible 
connections between nodes (intermodal hubs or 
transportation points).  
 - 𝑐𝑖𝑗: Other cost or spending that occurs during 
traveling from node i to j, such as fuel, tolls, etc. 
 - 𝑥𝑖𝑗: Binary decision variable: xij = 1 if the path 
will include the edge from I to j; otherwise, xij = 0. 
 - K: A set of variables, including time-varying 
factors. For example, it may include information 
about traffic flow, weather conditions, or transfers. 
 - 𝛾𝑘: This is a fixed penalty coefficient for each k 
dynamic factor. 

-  𝑇𝑘: Costs caused by variations in the value of the 
dynamic factor k, for example, delay time or 
increased fuel consumption, among others. 
 
- Path Representation: A path P in the network can 
be defined as a stream of edges (e12 , e23 ,…, en-1 )  
from the origin to the destination node denoted as.  
- Initial Path Calculation: The first path identified, 
P0, is from the origin O to the destination D and is 
computed with an ordinary shortest route algorithm 
such as Dijkstra’s or A*. The goal is to find the path 
with the minimum cumulative weight  W(P): The 
goal is to find the path with the minimum 
cumulative weight  W(P):  
𝑃0 = arg 𝑚𝑖𝑛

𝑃
∑ 𝑤𝑖𝑗(𝑖,𝑗)∈𝑃                (3) 

 
This being the case, a baseline path is therefore 
derived from the static or initial conditions.  
 
3.2.3  Combined Optimization Strategy  

 
The objective is to identify a path P from the 

source node s to the destination node d subject to 
dynamic factors of the network while 
simultaneously optimizing the total cost. The 
objective function can be defined as:  
𝑃∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛

𝑃 𝐴𝑙𝑙 𝑃𝑎𝑡ℎ𝑠
𝐶𝑑𝑦𝑛𝑎𝑚𝑖𝑐(𝑃)                (4) 

 where:  
-  α, , ,  form weight factors that reflect the 
difference between distance, cost, time and transfer 
time respectively.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍 = ∑ [𝛼. 𝑑(𝑒) + 𝛽. 𝑐(𝑒) + 𝛾. 𝑡(𝑒) +𝑒∈𝑃

𝛿. 𝜏(𝑒)] + 𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑓(𝑃))   (5) 
 

- Penalty, f(P): It is a function that measures the 
volatility of the path P due to dynamic factors f(e), 
such as increased interval of time over the estimated 
time of arrival or traffic jams. 
 
3.2.4  Constraints and Considerations  

- Capacity Constraint: Only a limited number of 
trucks, trains, or ships can carry goods across every 
edge. 
∑ 𝑑𝑖𝑘 ≤ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦(𝑀𝑘)𝑛

𝑘=1 ,     ∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝑀 (6) 
 
where: 
- 𝑑𝑖𝑘   (demand on the segment i using mode k)  
- 𝑀𝑘 is the maximum capacity of a mode of 
transport. The variable ‘Capacity (𝑀𝑘) is the 
model’s dependent variable.  
 
- Transfer Time Constraint: Closely related to 
that, the transfers between modes within inter-modal 
hubs should take less time.  
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𝑡𝑖𝑗 + 𝜏𝑖𝑗 ≤ 𝑇𝑚𝑎𝑥,        ∀(𝑖, 𝑗) ∈ 𝑃               (7) 
 
where:  
-   𝑡𝑖𝑗 is the time spent traveling through the link 
from node I to node j.  
- 𝜏𝑖𝑗   is the transfer time at the intermodal hub 
between the mode at node  j.  
-  𝑇𝑚𝑎𝑥 – The maximum allowable time.  
 
- Flow Conservation: Flowing of the product 
should also be balanced at every node, i.e.. , in and 
out, the product flow at the particular node should 
be identical.  
∑ 𝑓𝑖𝑗𝑖∈𝑉 = ∑ 𝑓𝑗𝑘𝑘∈𝑉         ∀𝑗 ∈ 𝑉                (8) 
 
where 𝑓𝑖𝑗 staggering the flow from node i to node j.  
 
- Time Windows: Delivery schedules must be in 
pre-scheduled time slots in the intermodal terminals.  

𝑇𝑗
𝑎𝑟𝑟𝑖𝑣𝑎𝑙 ≤ 𝑇𝑗

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒     ∀ 𝑗 ∈ 𝑉              (9) 
 

- Regulatory Constraints: Adherence to 
constraints like the maximum permitted road time or 
prohibited road segments.  
- Environmental Impact: Extra green variables 
could also be incorporated in the cost function to 
find minimum cost solutions from the 
environmental point of view.    
 𝐶𝑒𝑛𝑣(𝑃) = 𝛼. 𝐶(𝑃) + 𝛽. 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠(𝑃)             (10) 
 
where α and    are coefficients related to cost and 
emission, respectively. 
 
Flow Conservation Constraint: This will check for 
continuity of the flow through sources and the sinks, 
excluding the other nodes. 
∑ 𝑥𝑖𝑗 − ∑ 𝑥𝑗𝑖𝑗:(𝑗,𝑖)∈𝐸𝑗:(𝑖,𝑗)∈𝐸 =

{
1                         𝑖𝑓 𝑖 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑛𝑜𝑑𝑒

−1                 𝑖𝑓 𝑖 = 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑛𝑜𝑑𝑒
0                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

            (11) 

 

Capacity Constraint: This constrains the ability of 
the mode of transport HO displacement.  
𝑥𝑖𝑗 ≤ 𝑢𝑖𝑗                            (12) 
 
𝑢𝑖𝑗: The maximum capacity of the transportation 
mode on edge (i, j).  
 

Dynamic Factor Constraints: It contains various 
real-time conditions that involve the path.  
𝑇𝑘 = 𝑓(𝑧𝑘)        ∀ 𝑘 ∈ 𝐾                                        (13)  
 
where 

- 𝑧𝑘:Vector that holds the real-time data about the 
value of Factor k, which is dynamic.  
- 𝑓(𝑧𝑘): Mapping real-time data to an active plan of 
how the overall cost will be affected.  
 
3.2.5  Cost Function for Path Optimization 

- Objective Function: The main concern is to find 
the least total transportation cost or time in the 
intermodal network.  

𝑚𝑖𝑛
𝑃

(𝐶(𝑃) + 𝛼𝑇(𝑃))                 (14) 
 
where:  
-  P is the path that is followed within the network.  
-  C(P) represents the overall cost of traveling 
through path P.  
-  T(P) represents the signal's total transit time in 
path P.  
-  𝛼 is a factor that decides a tradeoff between the 
cost and time incurred while accomplishing a 
particular objective.  
 
3.2.6  Traditional Path Optimization  
 

3.2.6.1  Dijkstra’s Algorithm A*  
These algorithms form a foundation for establishing 
the shortest path under certain static conditions, 
particularly considering the fixed costs and 
distances.  
 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐶𝑠𝑡𝑎𝑡𝑖𝑐 = ∑ 𝑐𝑒𝑒∈𝐸 + 𝛼. 𝑑𝑒            (15) 

 
 where de is the distance associated with edge e.  
 
3.2.6.2  Neural Network Structure 

- It assigns a dynamic cost wij(t) to each edge eij in 
the graph, which is done using the deep learning 
model M. The model is structured as follows: 
 𝑤𝑖𝑗(𝑡) = 𝑀(𝑑𝑖𝑗, 𝑐𝑖𝑗, 𝑇𝑖𝑗(𝑡), ∆𝑖𝑗(𝑡); 𝜃)         (16) 

 
where  contains the weights and the biases of the 
neural network.  
 
- Prediction Model: The model predicts the time 
and cost incurred depending on dynamic 
parameters. This is represented as:  
 𝑌̂ = 𝑓𝜃(𝑋)                                                 (17) 

 
where:  
-  𝑌̂   represents the predicted time and cost of path  
P denoted as 𝑇̂(𝑃) and 𝐶̂(𝑃 respectively).  
- 𝑓𝜃 is a deep learning model with unspecified 
parameters known by the symbol θ.  
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- Loss Function: The deep learning model is 
trained to minimize the difference between the 
predicted and actual time and cost values using a 
particular loss function.  

𝐿(𝜃) = ∑ (𝑇̂(𝑃𝑖) − 𝑇(𝑃𝑖))
2

+𝑁
𝑖=1  (𝐶̂(𝑃𝑖) − 𝐶(𝑃𝑖))

2
    (18) 

 
where:  
-   is an actual parameter used to tune the model to 
give equal weight to time and cost predictions.  
- N is several training examples where y is given.  
 
- Model Training: The learning process is done 
through supervised learning, for which the training 
data contains the costs incurred under different 
conditions. The loss function L)is typically the 
mean squared error (MSE) between the predicted 
costs 𝑤̂𝑖𝑗

(𝑘)
(𝑡) and the actual costs 𝑤𝑖𝑗

𝑡𝑟𝑢𝑒,(𝑘)
(𝑡):  

 𝐿(𝜃) =
1

𝑁
∑ (𝑤̂𝑖𝑗

(𝑘)(𝑡) − 𝑤𝑖𝑗
𝑡𝑟𝑢𝑒,(𝑘)(𝑡))

2
𝑁
𝑘=1            (19) 

 
where N is the number of training samples.  
 
3.2.6.3  Training 
The neural network is trained using historical data 
on path performance, where the loss function is 
defined as:  
 𝐿𝑜𝑠𝑠 = ∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐶𝑜𝑠𝑡𝑖 − 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡𝑖)

2
𝑖     (20) 

 
The proposed network optimizes backward 

weights to minimize this loss function and thus 
enhance the predictive accuracy of path cost.  

 
- Cost Adjustment: The path selection is dynamic 
by integrating the predicted impact 𝑇̂𝑘  into the cost 
function.  
𝐶 = ∑ 𝑐𝑖𝑗𝑥𝑖𝑗 + ∑ 𝛾𝑘𝑇̂𝑘𝑘∈𝐾(𝑖,𝑗)𝐸            (21) 

 
3.2.6.4 Deep Learning Model for Dynamic Cost 

Prediction 
- Input Features: It includes the following static 
features: distance dij, base cost cij, current traffic 
Tij(t), and weather data delay factors ij (t). Let Xt 
be the set of input features for time t comprising, for 
example, traffic situation, Traffic (e, t), weather 
situation, Weather (v, t), and hub delays Delay (vh, 

t). Historical data H(v, e) contains parameters such 
as previous traffic data, time taken for products to 
transit from one depot to another, and the associated 
charges. 
 
 
  

3.2.6.5   Incorporation of Deep Learning for 

Dynamic Optimization 

- Deep Neural Network (DNN) Model: The DNN 
is trained to predict the dynamic cost 𝐶̂(𝑒, 𝑡)  for 
each edge e at time t: 
  𝐶̂(𝑒, 𝑡) = 𝑓𝐷𝑁𝑁(𝑋𝑡, 𝐻(𝑣, 𝑒);  𝜃)             (22) 
 
where,   is the set of parameters for the considered 
neural network.  
 
- The DNN’s output is used to update the edge 
weights in the graph: 

𝑤′(𝑒, 𝑡) = 𝐶(𝑒) + 𝐶̂(𝑒, 𝑡)              (23) 
 

- Path Optimization with Updated Weights: 
The shortest path algorithm is then recalculated with 
the new weights w'(e,t) to determine the dynamic, 
optimized path 𝑃𝑡

∗. 
 
3.2.6.6  RL for Real-Time Path Modification 

State-Space Representation: 

- 𝑠𝑡 at time t means the current status of the logistics 
network, such as the location of the goods, road 
traffic conditions, and weather conditions. 

𝑠𝑡 = {𝑣𝑡 , 𝑡, 𝑇𝑟𝑎𝑓𝑓𝑖𝑐, 𝑊𝑒𝑎𝑡ℎ𝑒𝑟}       (24) 
 

- Action Space: The action At corresponds to the 
decision of which node vj to go from the current 
node vi, which chooses the next path segment. 
- Reward Function: The reward  𝑅𝑡 is designed 
to minimize cost and time while penalizing delays 
and suboptimal decisions: 
𝑅𝑡 = −𝐶(𝑃𝑡) − . 𝐷𝑒𝑙𝑎𝑦(𝑣𝑡+1, 𝑡) + 𝜇. 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦(𝑃𝑡)   (25) 

 
where is a penalty factor for delays and  is a tuning 
parameter. 
 
- Reward Rt: The reward function is established to 
adjust for an increase in the transit mentioned above 
time or costs and is designed to incentivize its 
decrease: 

𝑅𝑡 = −(𝐶′(𝑃𝑡 , 𝑡) − 𝐶′(𝑃𝑡−1, 𝑡 − 1))           (26) 
 
The RL model learns the optimal policy  to 
maximize the cumulative reward: 
𝜋∗ = arg max

𝜋
[∑ 𝛾𝑡𝑅𝑡

𝑇
𝑡=0 ]            (27) 

 
where,  is the discount factor. 
 
3.2.7  Dynamic Path Adjustment 

The total cost function is adjusted dynamically 
based on the DNN predictions: 

𝐶′(𝑃, 𝑡) = ∑ (𝑑𝑖𝑗 + 𝑡̂𝑖𝑗(𝑡) + ℎ𝑖𝑗 + 𝑟𝑖𝑗)(𝑖,𝑗)∈𝑃            (28) 
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The path is re-optimized in real time as conditions 
change: 
𝑃𝑡 = arg 𝑚𝑖𝑛

𝑃
𝐶′(𝑃, 𝑡)             (29) 

 
- Reward Function: The reward function 
𝑅(𝑠𝑡, 𝑎𝑡) takes into account the chosen action and 
measures its contribution during the improvement of 
the objective function. 
𝑅(𝑠𝑡, 𝑎𝑡) = −(𝐶(𝑃𝑡) + 𝛼𝑇(𝑃𝑡))            (30) 

 
- Policy and Q-Learning: The policy 
(𝑆𝑡) determines the optimal action 𝐴𝑡 given the 
state 𝑆𝑡. This is learned using Q-learning: 

𝑄(𝑆𝑡 , 𝐴𝑡) = 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼 [𝑅𝑡 + 𝛾 𝑚𝑎𝑥
𝐴𝑡+1

𝑄(𝑆𝑡+1, 𝐴𝑡+1) −

𝑄(𝑆𝑡 , 𝐴𝑡)]             (31) 
 
where  α is the learning rate and  is the discount 
factor. 
 
- Q-Learning: The Q-value 𝑄(𝑠𝑡, 𝑎𝑡) is then 
modified using the Bellman equation; 

𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) + [𝑅(𝑠𝑡 , 𝑎𝑡) +

𝛾 𝑚𝑎𝑥
𝑎′

𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)]                         (32) 
where: 
-   is the learning rate. 
-  is The discount factor. 
 
- Real-Time Path Adjustment: The model's 
outcome consists of the first path calculated using 
the conventional algorithm and the dynamic 
predictions calculated by the DNN and RL 
segments. The overall cost function is thus adjusted 
in real-time: 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = ∑ (𝑐𝑒 + 𝛼. 𝑡̂𝑒 +𝑒∈𝐸

β. 𝑟̂𝑒 + 𝛾. 𝑤̂𝑒)                                           (33) 
 
- Final Path Selection: To find the optimal path, all 
possible routes are searched, and the path with a 
minimum value of the dynamic cost of 𝐶𝑑𝑦𝑛𝑎𝑚𝑖𝑐. Is 
chosen. 
- Policy Learning: The RL agent learns a policy 
𝜋(𝑎𝑡⌊𝑠𝑡,) which maximizes the expected cumulative 
reward Expected Total Reward  [∑ 𝛾𝑡𝑅𝑡

𝑇
𝑡=0 ]where 

 is the discount factor.  
 
3.2.8  Reinforcement Learning (RL) Component  
The RL component acts as a filter to the RL 
component and applies a degree of learning about 
the environment. A reward function R(s, a) is 
defined to evaluate the performance of the selected 
path based on real-time outcomes:  

𝑅(𝑠, 𝑎) = −(𝐶(𝑠, 𝑎) − 𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝑠, 𝑎))          (34) 
 
where s is the state of the transportation network, 
and a is the action of choosing a specific path for 
transit.  
 
Model Output:  The DNN returns predicted values 
𝑡̂𝑒, 𝑟̂𝑒 , 𝑤̂𝑒  for each edge e and uses it in the SDP to 
deviate from the traditional path optimization.  

 𝑦̂𝑒 = 𝐷𝑁𝑁(𝑋𝑒)             (35) 
 

- Loss Function: The loss function used for training 
the neural network is designed to minimize the 
prediction error of transit times, risks, and 
environmental impacts:- The loss function used for 
training the neural network is designed to reduce the 
prediction error of transit times, risks, and 
environmental impacts:  
L=∑ ((𝑡̂𝑒 − 𝑡𝑒)2 + (𝑟̂𝑒 − 𝑟𝑒)2 + (𝑤̂𝑒 − 𝑤𝑒)2)𝑒∈𝐸       (36) 

 
- Reinforcement Learning (RL) Component: The 
model employs a reinforcement learning agent to 
introduce the improvement to the path selection 
process, which can be changed at runtime.  
 - State: The current state st includes networking 
details of the st, the current node, and the actual 
conditions at a given time.  
 - Action: The action corresponds to selecting the 
next node or mode of transport.  
 - Reward Function: The reward 𝑅𝑡 focuses on 
reducing total cost and successful delivery and, 
therefore, is consistent in its approach.  
𝑅𝑡 = −(∑ 𝑐𝑖𝑗 .(𝑖,𝑗)∈ 𝑥𝑖𝑗 + ∑ 𝛾𝑘.𝑘∈𝐾 𝑇̂𝑘)         (37) 

 

- Policy Update: The information that shapes the 
agent’s decisions is called policy and is revised to 
attain the overall reward.  

𝜋(𝑎𝑡⌊𝑠𝑡) = arg max
𝜋

[∑ 𝑅𝑡
𝑇
𝑡=0 ]           (38) 

 
3.2.9  Reinforcement Learning Integration  
- State Space: Symbolizes current node, mode of 
transport, and dynamic parameters of the different 
states present in the transportation network.  
- Action Space: This is a spectrum of routes or 
paths from one state to another.  
- Reward Function: This means encouraging the 
best decisions (e.g., faster ways, less expensive) and 
discouraging the poor ones (e.g., slow paths, high 
costs). The Q-function in reinforcement learning is 
defined as:  
𝑄(𝑠, 𝑎) = [𝑅𝑒𝑤𝑎𝑟𝑑(𝑠, 𝑎) + . 𝑀𝑎𝑥𝑎𝑄(𝑠′, 𝑎′)]      (39) 
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where referring to the discount factor, ‘s’ is the 
current state, ‘a' is the action taken, s’ is the next 
state, and ‘a' is future actions.  
 
3.2.10  Algorithmic Integration 

-  Initial Path Calculation: Using static costs, 
employ a familiar shortest path algorithm such as 
Dijkstra’s or A* to compute an initial path. 
- Dynamic Path Adjustment: The proposed deep 
learning model then refines the cost estimates for 
each edge as newly acquired real-time data streams. 
The RL component then modifies the path in the 
next step; it chooses the next best node by 
considering the new cost and the current 
environment. 
- Final Path Selection: The process continues 
until the destination node vd is encountered and the 
near-optimum solution path P* is provided, which 
provides the best combination of transit time, cost, 
and reliability. 
Final Path: The optimal path, labeled P*, is 
identified after minimizing the dynamic cost 
function. The model P* is defined as the solution to 
the following minimization problem;  
𝑃∗ = arg 𝑚𝑖𝑛

𝑃
∑ (𝑑𝑖𝑗 + 𝑡̂𝑖𝑗(𝑡) + ℎ𝑖𝑗 + 𝑟𝑖𝑗)(𝑖,𝑗)∈𝑃              (40) 

 
- Optimal Path: The last action is chosen by 
blending the deep learning component’s predicted 
values with the refreshed Q-values coming from the 
Q-learning: 
𝑃∗ = arg 𝑚𝑖𝑛

𝑃
(𝐶(𝑃) + 𝛼𝑇(𝑃) + 𝑄(𝑠𝑡, 𝑎𝑡))    (41) 

 
3.2.11  Overall Optimization Framework 

- Iterative Optimization: The DeepShortest model 
modifies the path by repeatedly adjusting the 
weights w (e, t) where the deep learning model and 
the reinforcement learning feedback information. 
The final optimized path 𝑃𝑓𝑖𝑛𝑎𝑙

∗  is selected based on 
the cumulative learned costs: 

𝑃𝑓𝑖𝑛𝑎𝑙
∗ = arg 𝑚𝑖𝑛

𝑃𝑡
∑ 𝐶̂𝑇

𝑡−1 (𝑃𝑡 , 𝑡) + ∑ 𝑅𝑡
𝑇
𝑡=1       (42) 

 
3.2.12  Model Validation and Evaluation 

- Validation: The model is therefore evaluated 
using historical data and simulation environments, 
comparing the DeepShortest approach to traditional 
optimization heuristics. 
- Evaluation Metrics: Some of the metrics of the 
performance of the delivery system include the 
overall costs that have been cut and the time that has 
been taken to implement the change, the flexibility 
of the system in response to real-time challenges, 
and the resilience of the delivery system to shocks 

and intervening factors. All of the suggested model 
steps are shown in Figure 1.  
 

 
Fig. 1: Suggested Model Steps  
 

 

4   Case Study 
Distribution of the produced vehicles to alternative 
countries because the cars produced by company X 
in country Y in Europe cannot be sold to the Z 
market due to the war situation. We consider a 
simplified scenario where a shipment must be 
transported from City A to City D using trucking 
and rail services. The route options include: 
- Route 1: City A → City B by truck → City D by rail 
- Route 2: City A → City C by truck → City D by rail 
- Route 3: City A → City D by direct rail service 
 

Each route segment has an associated cost, time, 
and environmental impact. The goal is to determine 
the shortest path considering these multiple factors 
using deep learning (Figure 2). 

 
Fig. 2: Data import source code 
 
4.1  Data Collection 
The distance between cities and the time required 
for each leg of the journey. The cost associated with 
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each transportation mode. CO2 emissions and other 
environmental factors (Figure 3). 
 

Fig. 3: Routes and Factors  
 
4.2  Data Preprocessing 
Normalize the data to ensure comparable cost, time, 
and environmental impact. Create a feature matrix 
representing each possible route (Figure 4 and 
Figure 5). 
 

 
Fig. 4: Shortest Path algorithm source code 
 
4.3  Modeling 
Develop a neural network that inputs the feature 
matrix and predicts the optimal route based on the 
shortest path criteria. Train the model on historical 
data to learn the relationship between features and 
the optimal route. 
 

 
Fig. 5: Normalization and features source code 
 
4.4  Prediction 
Input the current shipment data into the trained 
model to predict the best route. The model will 
output the route with the minimum combined cost, 
time, and environmental impact (Figure 6). 

 
Fig. 6: Prediction results 
 
4.5  Validation and Evaluation 
Compare the model's predictions with historical 
optimal routes to assess accuracy. Evaluate the 
model using metrics such as mean squared error 
(MSE) for cost, time, and other relevant 
performance indicators. 
 
4.6  Analysis Results 
DeepShortest approach performs well compared to 
traditional methods regarding routes, as seen in 
Table 1. Through the self-supervised mechanism of 
modifying path choices by embedded deep learning 
and learned feature representations, DeepShortest 
offers better routes relative to transportation costs 
and delivery times. DispersedShortest is essential in 
organizing strategies in a way that reduces logistics 
costs by not only satisfying resource demands but 
also reducing additional travel or time wastage              
(Figure 7).  

 

 

 
Fig. 7: Total Cost and Total Time Prediction results 
 

The possibility of using path planning 
algorithms combined with profound learning results 
in improving the actual supply chain’s routes for 
honest case companies, consequently leading to 
minimizing fuel consumption and vehicle service 
frequency and optimizing the transportation cost. 
The case of DeepShortest shows that it can be 
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implemented across different logistic networks and 
geographical areas of the world. 

 
Table 1. Scenarios data 

 
 

That is why it is appropriate for large-scale 
logistics operations with changing operational 
conditions and network densities. Thus, 
DeepShortest optimizes logistics conditions, 
facilitating route changes in traffic jams, road 
closures, or other relevant mishaps. This capability 
helps maintain the functioning and adaptability of 
the company in conditions that have become 
increasingly complex in logistics (Figure 8). 

The model might predict that Route 2 is the 
optimal path due to its lower combined cost and 
environmental impact despite taking slightly longer 
in terms of time. Thus, by increasing the efficiency 
of supply chain routes and minimizing delivery 
time, DeepShortest increases customer satisfaction 
and service levels. Companies can gain a 
competitive advantage in delivery since they will be 
in a better position to deliver customer orders faster 
and more efficiently, thus helping achieve customer 
loyalty and a better brand image. 

 

 
Fig. 8: Traffic Level and CO2 emission relation for 
scenarios 
 

The DeepShortest, therefore, provides an 
avenue for quantifying the effectiveness or 
otherwise of the proposed algorithms that establish 
real-time standards of route efficiency, cost of the 
entire process, delivery time, and other precise 
resource implications. These adopted metrics also 
offer direction or help further improve the logistics 
operation.  

The DeepShortest intermodal transportation 
approach allows companies to optimize logistics by 
finding the most cost-effective, timely, and 
environmentally friendly routes. Applying deep 

learning techniques helps dynamically adjust to 
changing conditions and improve overall efficiency 
in the supply chain. 

 

 
Fig. 9: Percentage of total time of Routes 
 

With the help of DeepShortest, the company can 
provide a competitive advantage in the logistics 
industry by providing fast and cheap delivery and a 
high level of reliability compared to competitors 
who use conventional techniques of determining 
routes. This places the Company at a vantage of 
inefficient and innovative supply chain management 
(Figure 10).  

 

 
Fig. 10: Effect of Delay Factor on Costs 
 

The analysis results reaffirm the ability and 
utility of the DeepShortest approach to enhance 
path-planning decisions for logistics networks. 
Specifically, deep learning would enable the 
Company to obtain the optimal route, further reduce 
costs, and improve customer satisfaction to achieve 
success and develop its logistics business.  

 
 

5  Conclusion 
The deep learning empowered path optimization in 
logistics through the DeepShortest Approach, a 
groundbreaking innovation in logistics optimization. 
This technique’s enhancement of unification of the 
elements of deep learning with the well-established 
structure of Dijkstra’s Algorithm represents a solid 
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solution to the problems involved with logistics path 
planning. In all these analyses, case studies, and the 
validation processes presented in this research work, 
we have shown that the DeepShortest Approach 
brings efficiency and positive outcomes in multi-
objective short-term hydrothermal scheduling.  

The presented DeepShortest algorithm is more 
effective than traditional approaches in terms of 
routes and positively impacts transport costs and 
delivery times. Compared with baselines derived 
from generic shortest-path heuristics, DeepShortest 
generates selective solutions considering the 
Logistics Networks. When applied to path 
optimization algorithms, DeepShortest incorporates 
deeper learning and makes operations efficient by 
applying compatibility and cutting off extra detours 
or waiting time, hence practical expenses for 
logistics. This cost reduction is vital in enhancing 
the logistics companies’ profitability and 
competition. In some other way, DeepShortest has 
shown the ability to operate and learn across 
different logistics networks and conditions. Real-
time decision-making capability under changing 
logistics conditions guarantees flexibility in 
supporting operations, which qualifies them as 
large-scale logistics operations with complex 
routing needs. By providing an efficient delivery 
system and better reliability, DeepShortest increases 
the levels of satisfaction among the customers as 
well as their satisfaction with the service provided. 
By adopting DeepShortest, logistics companies can 
effectively meet customer orders and boost 
customer satisfaction and brand image. For the cases 
where DeepShortest is applied, logistics companies 
could create routes allowing them to deliver goods 
faster and cheaper than regular routing and with 
much higher reliability. This places the companies 
using DeepShortest ahead in supply chain 
organization efficiency and inventions.  

Therefore, the DeepShortest Approach is highly 
efficient and optimal in providing a solution for the 
tasks of logistics path optimization in the context of 
the current SC management system. Thus, when 
deep learning is adopted correctly, logistics 
companies can achieve the best route optimization, 
cost-cutting, and satisfied customers, leading to the 
company's success and growth. Thus, the 
DeepShortest Approach remains a foundation for 
further developing innovative systems in the 
logistics industry. 

 
 
 
 
 

References: 

[1] Bellman, R. On a routing problem, Quarterly 

of Applied Mathematics, 16 (1), (1958) 87-90. 
[2] Pan, W., Liu, S.Q., Deep reinforcement 

learning for the dynamic and uncertain vehicle 
routing problem, Applied Intelligence, Vol. 
53, Is.1, (2022) 405-422, doi: 
doi.org/10.1007/s10489-022-03456-w. 

[3] Boopathy, P., Liyanage, M., Deepa, N., 
Velavali,M., Reddy, S., Maddikunta, P.K.R., 
Khare, N., Gadekallu, T.R., Hwang, W.J., 
Pham, Q.V., Deep learning for intelligent 
demand response and smart grids: A 
comprehensive survey, Computer Science 

Review, Vol. 51, 2024, 100617, doi: 
doi.org/10.1016/j.cosrev.2024.100617. 

[4] Al-Selwi, S.M., Hassan, M.F., Abdulkadir, 
S.J., Muneer, A., Sumiea, E.H., Alqushaibi, 
A., Ragab, M.G., RNN-LSTM: From 
applications to modeling techniques and 
beyond—Systematic review, Journal of King 
Saud University - Computer and Information 

Sciences, Vol. 36, Issue 5, 2024, 102068, doi: 
doi.org/10.1016/j.jksuci.2024.102068. 

[5] Soori, M., Arezoo, B., Dastres, R., Artificial 
intelligence, machine learning and deep 
learning in advanced robotics, a review, 
Cognitive Robotics, Vol. 3, 2023, pp.54-70, 
doi:doi.org/10.1016/j.cogr.2023.04.001. 

[6] Pineda-Jaramillo, J., Viti, F., Identifying the 
rail operating features associated to 
intermodal freight rail operation delays, 
Transportation Research Part C: Emerging 
Technologies, Vol. 147 (2023)103993, doi: 
doi.org/10.1016/j.trc.2022.103993. 

[7] Bingmei Gu, Jiaguo Liu, Xiaoheng Ye, Yu 
Gong, Jihong Chen, Data-driven approach for 
port resilience evaluation, Transportation 

Research Part E: Logistics and 

Transportation Review, Vol. 186, (2024) 
103570, doi: 
doi.org/10.1016/j.tre.2024.103570. 

[8] Xu, K., Zhen, H., Li, Y., Yue, L., 
Comprehensive Monitoring System for 
Multiple Vehicles and Its Modelling Study, 
Transportation Research Procedia, Vol. 25, 
(2017) pp.1824-1833, 
doi.org/10.1016/j.trpro.2017.05.160. 

[9] Jovanovic, N., Zolfagharinia, H., Peszynski, 
K., To Green or Not to Green Trucking? 
Exploring the Canadian Case, Transportation 

Research Part D: Transport and 

Environment, Vol. 88, (2020) 102591, doi: 
doi.org/10.1016/j.trd.2020.102591. 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2025.22.73 Safiye Turgay, Mert Kadem Omeroglu, Serkan Erdogan

E-ISSN: 2224-2899 842 Volume 22, 2025



[10] Basso, F.,nCox, T., Pezoa, R., Maldonado, T., 
Varas, M.,  Characterizing last-mile freight 
transportation using mobile phone data: The 
case of Santiago, Chile, Transportation 

Research Part A: Policy and Practice, Vol. 
186, (2024) 104149, doi: 
doi.org/10.1016/j.tra.2024.104149. 

[11] Joseph, R.V., Mohanty, A., Tyagi, S., Mishra, 
S., Satapathy, S.K., Mohanty, S.N., A hybrid 
deep learning framework with CNN and Bi-
directional LSTM for store item demand 
forecasting, Computers and Electrical 

Engineering, Vol. 103, 2022, 108358, doi: 
doi.org/10.1016/j.compeleceng.2022.108358. 

[12] Halim, R., A., Kwakkel, J.H.,  Tavasszy, L.A., 
A scenario discovery study of the impact of 
uncertainties in the global container transport 
system on European ports, Futures, Vol. 81 
(2016) pp.148-160, doi: 
doi.org/10.1016/j.futures.2015.09.004. 

[13] Turgay, S., Gujrati, R., Analyzing of B2B and 
B2C in Buying Centers using Rough Sets and 
MCDM Respect of Sustainable Supply 
Chain Management, 
http://dx.doi.org/10.2139/ssrn.4295742. 

[14] Zhang, P., Lei, D., Liu, S., Jiang, H., 
Recursive logit-based meta-inverse 
reinforcement learning for driver-preferred 
route planning, Transportation Research Part 

E: Logistics and Transportation Review, Vol. 
185, (2024) 103485, doi: 
doi.org/10.1016/j.tre.2024.103485. 

[15] Chen, R., Meng, Q., Jia, P., Container port 
drayage operations and management: Past and 
future, Transportation Research Part E: 

Logistics and Transportation Review, Vol. 
159 (2022) 102633, doi: 
doi.org/10.1016/j.tre.2022.102633. 

[16] Tsolaki, K., Vafeiadis, T., Nizamis, A., 
Ioannidis, D., Tzovaras, D., Utilizing machine 
learning on freight transportation and logistics 
applications: A review, ICT Express, Vol. 9, 
Issue 3, (2023) pp.284-295, doi: 
doi.org/10.1016/j.icte.2022.02.001. 

[17] Abideen, A.Z.,  Sorooshian, S., Sundaram, 
V.P.K., Mohammed, A., Collaborative 
insights on horizontal logistics to integrate 
supply chain planning and transportation 
logistics planning – A systematic review and 
thematic mapping, Journal of Open 

Innovation: Technology, Market, and 

Complexity, Vol. 9, Issue 2 (2023) 100066, 
doi: doi.org/10.1016/j.joitmc.2023.100066. 

[18] Yang, Z., Tan, Z., Zhen, L., Zhang, N., Liu, 
L.,  Fan, T., Column generation for service 

assignment in cloud-based manufacturing, 
Computers & Operations Research, Vol. 
161(2024) 106436,  doi: 
doi.org/10.1016/j.cor.2023.106436. 

[19] Turgay, S., Yaşar, O., Aydin, A., A Multi-
objective Framework for Dairy Products 
Supply Chain Network with Benders 
Decomposition, Industrial Engineering and 

Innovation Management (2023), Vol. 6 Num. 
5, doi:10.23977/ieim.2023.060509. 

[20] Giusti, R., Manerba, D., Bruno, G., Tadei, R., 
Synchromodal logistics: An overview of 
critical success factors, enabling technologies, 
and open research issues, Transportation 

Research Part E: Logistics and 

Transportation Review, Vol. 129 (2019), pp. 
92-110, doi: 
doi.org/10.1016/j.tre.2019.07.009. 

[21] Chiara Cimini, C., Lagorio, A., Pirola, F., 
Pinto, R., Exploring human factors in 
Logistics 4.0: empirical evidence from a case 
study, IFAC-PapersOnLine, Vol.52, Issue 13 
(2019), pp.2183-2188, doi: 
doi.org/10.1016/j.ifacol.2019.11.529. 

[22] Monios, J., Bergqvist, R., Logistics and the 
networked society: A conceptual framework 
for smart network business models using 
electric autonomous vehicles (EAVs), 
Technological Forecasting and Social 

Change, Vol. 151 (2020), 119824, doi: 
doi.org/10.1016/j.techfore.2019.119824. 

[23] Turgay, S., Streamlined Supply Chain 
Operations: Leveraging Permutation-Based 
Genetic Algorithms for Production and 
Distribution, WSEAS Transactions on 

Information Science and Applications, Vol. 21 
(2024), pp.23-32. 
https://doi.org/10.37394/23209.2024.21.3. 

[24] López, J.J.U., Qassim, R.Y., A novel 
modeling approach for the redesign of supply 
chains: An application to soybean grain 
supply chains, Research in Transportation 

Business & Management, Vol.51, (2023), 
101037, doi: 
doi.org/10.1016/j.rtbm.2023.101037. 

[25] Wiederer, C., Straube, F., A decision tool for 
policymakers to foster higher-value perishable 
agricultural exports, Transportation Research 

Interdisciplinary Perspectives, Vol. 2, (2019), 
100035, doi: 
doi.org/10.1016/j.trip.2019.100035. 

[26] Fan, Q., Jin, Y., Wang, W., Yan, X., A 
performance-driven multi-algorithm selection 
strategy for energy consumption optimization 
of sea-rail intermodal transportation, Swarm 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2025.22.73 Safiye Turgay, Mert Kadem Omeroglu, Serkan Erdogan

E-ISSN: 2224-2899 843 Volume 22, 2025

http://dx.doi.org/10.2139/ssrn.4295742
https://doi.org/10.37394/23209.2024.21.3


and Evolutionary Computation, Vol.44 
(2019), pp.1-17. 

[27] Filom, S., Amiri, A.M., Razavi, S., 
Applications of machine learning methods in 
port operations – A systematic literature 
review, Transportation Research Part E: 

Logistics and Transportation Review, Vol. 
161, (2022), 102722, doi: 
doi.org/10.1016/j.tre.2022.102722. 

[28] Baykasoğlu, A., Subulan, K., Taşan, A.S., 
Dudaklı, N., A review of fleet planning 
problems in single and multimodal 
transportation systems, Transportmetrica A 

Transport Science, Vol.15, Issue 2, (2019), 
pp.631-697, doi: 
doi.org/10.1080/23249935.2018.1523249. 

[29] Chen, Z., Hu, W., Xu, Y., Dong, J., Yang, K., 
Ren, R., Exploring decision-making 
mechanisms for the metro-based underground 
logistics system network expansion: An 
example of Beijing, Tunnelling and 

Underground Space Technology, Vol.139 
(2023), 105240, doi: 
doi.org/10.1016/j.tust.2023.105240. 

[30] Samadhiya, A., Agrawal, R., Kumar, A., 
Garza-Reyes, J.A., Regenerating the logistics 
industry through the Physical Internet 
Paradigm: A systematic literature review and 
future research orchestration, Computers & 

Industrial Engineering, Vol.178, (2023), 
109150, doi: 
doi.org/10.1016/j.cie.2023.109150. 

[31] Yang, Y., Jia, B., Yan, X.Y., Chen, Y., Song, 
D., Zhi, D., Wang, Y., Gao, Z., Estimating 
intercity heavy truck mobility flows using the 
deep gravity framework, Transportation 

Research Part E: Logistics and 

Transportation Review, Vol.179, (2023), 
103320, doi: 
doi.org/10.1016/j.tre.2023.103320. 

[32] Caliskan, F., Idug, Y., Gligor, D., Hong, S.J., 
Blockchain technology for building buyer-
supplier trust and transparency in supply 
chains: An experimental study on P2P online 
marketplace vendors, Industrial Marketing 

Management, Vol.124, (2025), pp.239-253. 
doi: 10.1016/j.indmarman. 2024.12.004. 

[33] Temizceri, F.T., Kara, S.S., Towards 
sustainable logistics in Turkey: A bi-objective 
approach to green intermodal freight 
transportation enhanced by machine learning, 
Research in Transportation Business & 

Management, Vol.55 (2024), 101145, doi: 
doi.org/10.1016/j.rtbm.2024.101145. 

[34] Maiyar, L.M., Thakkar, J.J., Environmentally 
conscious logistics planning for food grain 
industry considering wastages employing 
multi-objective hybrid particle swarm 
optimization, Transportation Research Part 

E: Logistics and Transportation Review, 
Vol.127, (2019), pp.220-248, doi: 
doi.org/10.1016/j.tre.2019.05.006. 

[35] Yu, Z., Wang, H., Liu, X., Mobility 
heterogeneity of urban freight areas: 
Geospatial evidence from shared logistics 
dynamics, Transportation Research Part E: 

Logistics and Transportation Review, 
Vol.188, (2024), 103657, doi: 
doi.org/10.1016/j.tre.2024.103657. 

[36] Fahim, P.B.M., Rezaei, J., Montreuil, B., 
Tavasszy, L., Port performance evaluation and 
selection in the Physical Internet, Transport 

Policy, Vol.124, (2022), pp.83-94. 
https://doi.org/10.1016/j.tranpol.2021.07.013. 

[37] Fareed, A.G., Felice, F.D., Forcina, A., 
Petrillo, A., Role and applications of 
advanced digital technologies in achieving 
sustainability in multimodal logistics 
operations: A systematic literature review, 
Sustainable Futures, Vol.8, (2024), 100278. 
https://doi.org/10.1016/j.sftr.2024.100278. 

 

 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

- S.Turgay, S.Erdoğan – investigation,  
- M.K.Omeroglu, S.Turgay-validation and  
- S.Turgay, S.Erdoğan, M.K.Omeroglu-writing & 

editing. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received to conduct this study. 
 
Conflict of Interest 

The authors have no conflicts of interest to declare. 
 

Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 
 
 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2025.22.73 Safiye Turgay, Mert Kadem Omeroglu, Serkan Erdogan

E-ISSN: 2224-2899 844 Volume 22, 2025

https://doi.org/10.1016/j.tranpol.2021.07.013
https://doi.org/10.1016/j.sftr.2024.100278
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



