
References:
[1] Taylor, S. J., & Letham, B. (2018).
Forecasting at Scale. The American
Statistician, 72(1), 37–45.
https://doi.org/10.1080/00031305.2017.13800
80.
[2] O. Triebe, H. Hewamalage, P. Pilyugina, N.
Laptev, C. Bergmeir, and R. Rajagopal,
“NeuralProphet: Explainable Forecasting at
Scale,” arXiv preprint arXiv:2111.15397,
Nov. 2021.
https://doi.org/10.48550/arXiv.2111.15397.
[3] S. Mohan, S. Mullapudi, S. Sammeta, P.
Vijayvergia and D. C. Anastasiu, "Stock Price
Prediction Using News Sentiment Analysis,"
2019 IEEE Fifth International Conference on
Big Data Computing Service and Applications
(BigDataService), Newark, CA, USA, 2019,
pp. 205-208.
https://doi.org/10.1109/BigDataService.2019.
00035.
[4] L. Shen, Y. Wei, and Y. Wang, “Respecting
Time Series Properties Makes Deep Time
Series Forecasting Perfect,” arXiv preprint
arXiv:2207.10941, Jul. 2022.
https://doi.org/10.48550/arXiv.2207.10941.
[5] R. Dash and P. K. Dash, “A hybrid stock
trading framework integrating technical
analysis with machine learning techniques,”
The Journal of Finance and Data Science,
Vol. 2, Issue 1, March 2016, Pages 42-57.
https://doi.org/10.1016/j.jfds.2016.03.002.
[6] Kramar V, Alchakov V. Time-Series
Forecasting of Seasonal Data Using Machine
Learning Methods. Algorithms. 2023;
16(5):248. https://doi.org/10.3390/a16050248.
[7] S. Vila, F. Guirado, and J. L. Lérida, “Cloud
computing virtual machine consolidation
based on stock trading forecast techniques,”
Future Generation Computer Systems, Vol.
145, August 2023, pp.321-336.
https://doi.org/10.1016/j.future.2023.03.018.
[8] A. Haghshenas, A. Hasan, O. Osen, and E. T.
Mikalsen, “Predictive digital twin for offshore
wind farms,” Energy Informatics, vol. 6, no.
1, pp. 1-26, 2023.
https://doi.org/10.1186/s42162-023-00257-4
[9] Z. H. Munim, C. S. Fiskin, B. Nepal, and M.
M. H. Chowdhury, “Forecasting container
throughput of major Asian ports using the
Prophet and hybrid time series models,” The
Asian Journal of Shipping and Logistics, Vol.
39, Issue 2, June 2023, pp.67-77.
https://doi.org/10.1016/j.ajsl.2023.02.004.
[10] Y. Huang, Y. Bai, Q. Yu, L. Ding, and Y. Ma,
“Application of a hybrid model based on the
Prophet model, ICEEMDAN and multi-model
optimization error correction in metal price
prediction,” Resources Policy, Vol. 79,
Article 102969, Dec. 2022.
https://doi.org/10.1016/j.resourpol.2022.1029
69.
[11] Durairaj, D.M., Mohan, B.H.K. A
convolutional neural network-based approach
to financial time series prediction. Neural
Computing and Applications. S.I.: Deep
Learning for Time Series Data, Published: 23
March 2022, Vol. 34, pp.13319–13337.
https://doi.org/10.1007/s00521-022-07143-2.
[12] B. H. K. Mohan and M. Durairaj, “Statistical
Evaluation and Prediction of Financial Time
Series Using Hybrid Regression Prediction
Models,” International Journal of Intelligent
Systems and Applications in Engineering
IJISAE, 2021, 9(4), 245–255.
https://doi.org/10.18201/ijisae.2021473645.
[13] Khekare, G., Turukmane, A.V., Dhule, C.,
Sharma, P., Kumar Bramhane, L. (2022).
Experimental Performance Analysis of
Machine Learning Algorithms. In: Qian, Z.,
Jabbar, M., Li, X. (eds) Proceeding of 2021
International Conference on Wireless
Communications, Networking and
Applications. WCNA 2021. Lecture Notes in
Electrical Engineering. Springer, Singapore.
https://doi.org/10.1007/978-981-19-2456-
9_104.
[14] M. I. A. Aziz, M. H. Barawi, and H. Shahiri,
“Is Facebook Prophet Superior than Hybrid
Arima Model to Forecast Crude Oil Price?,”
Sains Malaysiana 51(8)(2022): 2633-2643.
http://doi.org/10.17576/jsm-2022-5108-22.
[15] I. Ghosh and T. D. Chaudhuri, “Integrating
Navier-Stokes equation and neoteric iForest-
BorutaShap-Facebook’s prophet framework
for stock market prediction: An application in
Indian context,” Expert Systems with
Applications, Vol. 210, 30 December 2022,
118391.
https://doi.org/10.1016/j.eswa.2022.118391.
[16] Aker, Y. (2022). Analysis of Price Volatility
in BIST 100 Index with Time Series:
Comparison of Fbprophet and LSTM Model.
European Journal of Science and Technology,
Issue 35, 89-93.
https://doi.org/10.31590/ejosat.1066722.
[17] Güleryüz, D., & Özden, E. (2020). The
Prediction of Brent Crude Oil Trend Using
LSTM and Facebook Prophet. European
WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2024.21.131
Kiril Koparanov, Elena Antonova,
Daniela Minkovska, Krasin Georgiev