[66] Clarkson, R., & Darjee, R. (2022). White-
collar crime: a neglected area in forensic
psychiatry?. Psychiatry, Psychology and
Law, 29(6), 926-952.
[67] Newman, W., Muzvuwe, F., & Stephen, M.
(2021). The Impact of the Adoption of Data
Analytics on Gathering Audit Evidence: A
Case of Kpmg Zimbabwe. Journal of
Management Information & Decision
Sciences, 24(5).
[68] Wolfe, D. T., & Hermanson, D. R. (2004).
The fraud diamond: Considering the four
elements of fraud.
[69] Ünvan, Y. A. (2020). Financial Crime: A
Review of Literature. Contemporary Issues
in Audit Management and Forensic
Accounting, 102, 265- 272.
[70] Ren, L., Zhong, X., & Wan, L. (2021).
Missing analyst forecasts and corporate
fraud: Evidence from China. Journal of
Business Ethics, 1-24.
[71] Donelson, D. C., Ege, M. S., & McInnis, J.
M. (2017). Internal control weaknesses and
financial reporting fraud. Auditing: A
Journal of Practice & Theory, 36(3), 45-69.
[72] Occhino, F. (2017). Debt-overhang banking
crises: Detecting and preventing systemic
risk. Journal of Financial Stability, 30, 192-
208.
[73] Solomon, A. N., Emmanuel, O. O., Ajibade,
D. S., & Emmanuel, D. M. (2023). Assessing
the effectiveness of internal control systems
on fraud prevention and detection of selected
public institutions of Ekiti State, Nigeria.
Asian Journal of Economics, Finance and
Management, 231-244.
[74] Wong, S., & Venkatraman, S. (2015).
Financial accounting fraud detection using
business intelligence. Asian Economic and
Financial Review, 5(11), 1187-1207.
[75] Galetsi, P., Katsaliaki, K., & Kumar, S.
(2023). Exploring benefits and ethical
challenges in the rise of mHealth (mobile
healthcare) technology for the common
good: An analysis of mobile applications for
health specialists. Technovation, 121,
102598.
[76] Yeoh, P. (2017). Regulatory issues in
blockchain technology. Journal of Financial
Regulation and Compliance.
[77] Gasser, U., Ienca, M., Scheibner, J., Sleigh,
J., & Vayena, E. (2020). Digital tools against
COVID-19: taxonomy, ethical challenges,
and navigation aid. The Lancet Digital
Health, 2(8), e425-e434.
[78] Char, D. S., Abràmoff, M. D., & Feudtner,
C. (2020). Identifying ethical considerations
for machine learning healthcare applications.
The American Journal of Bioethics, 20(11),
7-17.
[79] Zhang, L., Xie, Y., Zheng, Y., Xue, W.,
Zheng, X., & Xu, X. (2020). The challenges
and countermeasures of Blockchain in
finance and economics. Systems Research
and Behavioral Science, 37(4), 691-698.
[80] Zou, J., He, D., Zeadally, S., Kumar, N.,
Wang, H., & Choo, K. R. (2021). Integrated
blockchain and cloud computing systems: A
systematic survey, solutions, and challenges.
ACM Computing Surveys (CSUR), 54(8), 1-
36.
[81] Diamant, A. (2024). Introducing prescriptive
and predictive analytics to MBA students
with Microsoft Excel. INFORMS
Transactions on Education, 24(2), 152-174.
[82] Davenport, T. H. (2006). Competing on
analytics. Harvard business review, 84(1),
98.
[83] Chen, C. P., & Zhang, C. Y. (2014). Data-
intensive applications, challenges, techniques
and technologies: A survey on Big Data.
Information sciences, 275, 314-347,
https://doi.org/10.1016/j.ins.2014.01.015.
[84] John Wiley & Sons. Galetsi, P., Katsaliaki,
K., & Kumar, S. (2019). Values, challenges
and future directions of big data analytics in
healthcare: A systematic review. Social
science & medicine, 241, 112533.
[85] Mashoufi, M., Ayatollahi, H., Khorasani-
Zavareh, D., & Boni, T. T. A. (2023). Data
quality in health care: main concepts and
assessment methodologies. Methods of
Information in Medicine, 62(01/02), 005-
018.
[86] John Wiley & Sons. Sivarajah, U., Kamal,
M. M., Irani, Z., & Weerakkody, V. (2017).
Critical analysis of Big Data challenges and
analytical methods. Journal of business
research, 70, 263-286.
[87] Moid, S. (2018). Fighting Cyber Crimes
Using Forensic Accounting: A Tool to
WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2024.21.93
Hossam Haddad, Esraa Esam Alharasis,
Jihad Fraij, Nidal Mahmoud Al-Ramahi