
Abstract: This paper presents a carpool matching framework designed to optimize the formation of efficient
and feasible carpool groups. The framework incorporates various factors, including schedule compatibility,
geographic proximity and user preferences such as cost savings, safety, and eco-friendliness, along with telematics
data. Our approach dynamically forms carpool groups while allowing users to assign weights to specific criteria,
ensuring that individual preferences are reflected in the final groupings. The experiments evaluate the framework’s
performance across multiple dimensions: computational efficiency, scalability, and group quality. A synthetic
dataset was generated to simulate urban commuting scenarios, incorporating employee home and work locations,
work schedules, preferences, vehicle capacities, and driving behaviors. Execution time analysis demonstrates
that the framework scales well, with acceptable computation times even for large datasets. We also assess
the framework’s ability to form feasible carpool groups that meet logistical constraints and align with user
preferences. Results indicate that the proposed framework significantly outperforms baseline methods, such as
random matching and geographic proximity-based matching, in terms of feasibility rate, matching rate, and user
satisfaction. This study demonstrates the potential of the carpool matching framework to support user-satisfying
and sustainable carpooling solutions in large urban environments, while also providing insights into optimization
areas for future work.
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1 Introduction
Increasing urbanization and rising environmental
concerns have amplified the demand for sustainable
transportation solutions. Carpooling offers
a promising approach by mitigating traffic
congestion, lowering commuting costs, and reducing
environmental impacts. Shared rides decrease the
number of vehicles on the road, cut greenhouse gas
emissions, and alleviate pressure on infrastructure,
[1]. Moreover, studies indicate that carpooling
helps conserve natural resources by minimizing the
environmental footprint of individual travel, [2].

Despite these benefits, carpooling adoption
remains limited due to challenges in effectively
matching participants. Traditional carpooling
systems often rely heavily on geographic proximity,
neglecting critical factors such as individual
preferences, real-time traffic data, and dynamic
user availability. This approach frequently results
in inefficient matches, extended travel times,
diminished user satisfaction, and ultimately, reduced
participation rates.

In response to these challenges, this study
introduces a dynamic carpool matching framework

that leverages real-time telematics, user preferences,
and group formation algorithms. The framework
considers logistical factors such as schedule
alignment, geographic proximity, and vehicle
capacity, while enabling users to prioritize factors
like cost savings, safety, and eco-friendliness. This
integration optimizes carpool formation, offering
more efficient, tailored, and sustainable commuting
solutions. The proposed system is especially
advantageous for large organizations with diverse
employee schedules and locations, requiring a
more adaptable approach. By utilizing real-time
data and customizable preferences, the framework
enhances carpool efficiency, reduces environmental
impact, and improves user satisfaction. This
paper assesses the framework through a series of
experiments, measuring performance in terms of
matching success, travel time, cost-effectiveness, and
user satisfaction. Results are benchmarked against
traditional carpooling methods, demonstrating
significant improvements in large-scale, real-world
applications.

The remainder of this paper is organized as
follows: Section 2 provides a review of related
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literature on carpooling systems. Section 3 details
the proposed matching framework, and Section 4
presents the experimental results. Finally, Section 5
concludes the paper and outlines potential directions
for future research.

2 Literature Review
Carpooling, a shared transportation model, has
gained traction as a sustainable solution to solo
driving. This concept involves multiple individuals
sharing a ride in a single vehicle, thereby optimizing
vehicle occupancy, alleviating traffic congestion,
reducing travel costs, and mitigating environmental
impact. Numerous studies have explored the
complexities surrounding the adoption of carpooling,
coordination, negotiation processes, and carpool
matching frameworks. This review consolidates
key insights across these topics, providing a
comprehensive overview of carpooling systems and
highlighting areas requiring further investigation.

The factors influencing carpooling adoption are
varied, encompassing cost and time savings as well
as concerns regarding safety and convenience. Some
studies emphasize that time cost and accessibility are
the two most significant factors affecting carpooling
decisions, [3], [4]. Additionally, participants often
express concerns over personal comfort, safety, and
the gender composition of fellow passengers, which
can discourage participation, [4]. According to a
recetn study, flexibility in daily schedules and trust
issues among strangers are key barriers to widespread
carpooling, [5]. Furthermore, some studies suggest
that incentives such as access to High Occupancy
Vehicle (HOV) lanes, reduced driving stress, and
the availability of emergency vehicles can encourage
individuals to consider carpooling, [6], [7].

Environmental consciousness and limited public
transport options have also been recognized as
critical motivators for carpooling, [8, 9]. One study
points out that demographic characteristics such as
gender, income, and education level can further
influence the likelihood of carpooling adoption, [10].
Organizational factors also play an important role, as
large companies may offer incentives such as parking
privileges, financial rewards, or flexible working
hours to promote carpooling, [9]. Carpooling is more
likely to succeedwhen participants belong to the same
organization or community, as trust levels are higher
among colleagues, [11].

From a behavioral perspective, psychological
comfort when sharing a ride with strangers is
significant. Another report that individuals are more
inclined to carpool when they share a destination,
such as a workplace, and have predictable work
schedules, [11]. This preference for stability suggests
that carpool matching services should focus on

creating closed groups of trusted individuals rather
than open, public systems, [9].

The perception of carpooling as an
environmentally friendly option also plays a role in
its adoption. Some work stresses the importance
of environmental awareness and its influence on
carpooling decisions, [8], [9]. This emphasizes the
need for awareness campaigns that highlight the
environmental benefits of carpooling to encourage
greater participation.

Intelligent Transportation Systems (ITSs) are
garnering significant attention in both research
and industry due to their ability to enhance
decision-making and ensure safer, more enjoyable
driving experiences. Leveraging various sensing
and communication technologies, ITSs rely heavily
on effective data collection and dissemination.
To support these systems, numerous standards,
architectures, and communication protocols have
been developed. Recently, crowdsourcing has
emerged as a valuable method for ITSs, enabling
users to act as mobile sensors that provide real-time
information and respond to traffic conditions.
For example, one study introduced an innovative
lane change evaluation scheme utilizing reliable
crowd-ratings, which effectively reduces data
bias and mitigates malicious behavior without
needing individual-level auxiliary information, [12].
Their validation with a large crowdsourced dataset
underscores the importance of robust data handling
in enhancing driver assistance applications and
advancing crowdsourced ITS solutions. Building
on ITS and crowdsourcing, another approach
developed was the Quality of Experience-Oriented,
Eco-Friendly Taxi-Ride Recommendation System
(QE-Ride), [13]. QE-Ride optimizes taxi selection by
assessing factors such as time delay tolerance, vehicle
capacity preferences, fare reductions, additional
driving distance tolerance, and preferences for driver
safety and eco-friendliness. For drivers, it considers
vehicle capacity preferences, profit maximization
interests, and passenger ratings. Validated with
GPS data from over 10,000 taxicabs, QE-Ride
demonstrated superior performance in reducing
mileage, lowering fares, and increasing driver
profits compared to existing systems. By balancing
eco-friendliness, safety, and other critical factors,
QE-Ride significantly enhances the carpooling
experience, positioning it as a leading tool in
ride-sharing services.

Effective carpooling relies on the seamless
coordination and negotiation among its members,
presenting significant hurdles for carpool matching
platforms. To tackle these challenges, various models
and frameworks have been introduced. For example,
one approach combines network exploration with
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negotiation strategies, allowing users to discuss and
agree on departure times, pick-up and drop-off points,
and the selection of drivers. This approach provides
greater flexibility in scheduling, [14]. Integrating
negotiation elements into carpool matching platforms
is crucial to meet the varying requirements of
commuters.

Numerous research efforts have concentrated on
agent-based and simulation-driven models to enhance
negotiation and coordination. An organizational
model was introduced that employs agent-based
simulations to represent cooperation among agents
and evaluate the feasibility of carpooling, [5]. Their
model incorporates a negotiation mechanism utilizing
constant preference functions, which enable users to
specify their preferences and limitations, leading to
more satisfactory carpool solutions. Additionally,
an automated advisory system was suggested that
uses graph-theoretical methods to match commuting
journeys for carpooling. This system predicts the
success rate of negotiations by analyzing previous
feedback, [15].

Carpool matching services are typically
designed to maximize efficiency, minimize
travel times, and reduce costs. These services
can be categorized into optimization-based and
heuristic approaches. A simulation-based study
examined dynamic ride-sharing scenarios and
concluded that optimization methods significantly
improve the efficiency of ride-sharing schemes
compared to heuristic techniques like the greedy
matching algorithm, [16]. Other studies have
explored ant-based algorithms and multi-objective
optimization techniques for carpool matching. An
ant-based, path-oriented carpooling approach was
developed to maximize the number of matched
passengers while minimizing travel distances, [17].
The method was compared using assignment-based
ant colony optimization, genetic algorithms, and
simulated annealing, demonstrating its efficacy in
optimizing carpool routes and assignments.

Similarly, another study introduced an
evolutionary multi-objective carpool algorithm
that employs set-based operators based on
simulated binary crossover, [18]. This algorithm
outperformed traditional binary-coded and set-based
non-dominated sorting genetic algorithms in terms
of driver-passenger matching results, offering
superior carpool solutions with higher satisfaction
rates. These innovative approaches underscore the
potential of optimization techniques in enhancing
the effectiveness and efficiency of carpool matching
services.

Despite the numerous models and frameworks
proposed, challenges remain in implementing
efficient carpooling systems. A primary issue is the

requirement for a critical mass of participants to
ensure the viability of the matching service. Some
findings notes that most existing carpool matching
services depend on a large pool of candidates for
effective functioning, [19]. This limitation can be
mitigated by focusing on closed groups, such as
employees of a single company, who are more likely
to have similar schedules and travel requirements.

Moreover, the ever-changing schedules and
preferences of carpool participants introduce
considerable difficulties for traditional carpool
matching systems. To address these issues,
existing research recommends integrating dynamic
components such as real-time traffic updates, user
feedback mechanisms, and adaptive algorithms.
These enhancements aim to create carpooling
solutions that are more responsive and adaptable
to users’ needs, [20]. Additionally, leveraging
machine learning approaches can further improve
these systems by forecasting user preferences and
adjusting matching algorithms on the fly.

Looking ahead, future developments in
carpooling systems should encompass behavioral,
technological, and environmental factors within
unified frameworks to deliver solutions that are
robust, intuitive, and efficient. Pioneering models
like the Negotiation Model for Matching Individuals
(NMMI) demonstrate the effectiveness of combining
agent-based simulations with organizational models
to craft dynamic carpooling solutions tailored to
individual requirements, [20]. These models utilize
feedback loops that allow for ongoing optimization
based on user interactions and preferences, thereby
increasing overall user satisfaction.

Moreover, future research should explore the
integration of real-time traffic data and machine
learning algorithms to optimize route planning and
matching processes. As technology advances,
there is a significant opportunity to develop more
sophisticated carpooling platforms that leverage big
data analytics, artificial intelligence, and the Internet
of Things (IoT) to deliver personalized and efficient
carpooling experiences.

The study, [5], presents a carpooling framework
aimed at matching employees within large
organizations. The system effectively pairs users
based on static criteria such as home and work
locations, time windows, and acceptable detour
durations, streamlining the carpooling process
for fixed groups. Although the use of static data
simplifies matching, it limits the framework’s
adaptability to real-time changes and user-specific
preferences. Our approach builds on these
foundations by introducing dynamic group formation,
where carpool groups are periodically recalculated
based on updated user data and preferences, ensuring
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greater flexibility and responsiveness. Additionally,
telematics data is used to evaluate driving safety
and eco-friendliness in real-time, enhancing the
alignment between users’ environmental and
safety priorities. While one framework includes
a personalized negotiation phase within small
groups, our system extends personalization through
a customizable scoring mechanism, allowing users
to prioritize factors such as cost savings, time
efficiency, safety, and eco-friendliness, which are
integrated into the matching process. We also
incorporate user ratings for drivers and passengers
to foster trust and accountability. In summary,
that framework is effective for static, closed-group
carpooling scenarios, whereas our approach offers
greater flexibility, scalability, and user customization
by incorporating real-time data, telematics, and a
personalized scoring system.

3 Matching Framework Setup
The carpool matching framework is designed
to optimize the formation of effective carpool
groups, ensuring that employees are matched
based on practical considerations (e.g., location,
schedule compatibility, detour limits) as well as
personal preferences (e.g., cost savings, safety, and
eco-friendliness). By incorporating a dynamic group
formation process and integrating telematics data
and user-defined scoring preferences, this framework
enhances the overall carpool experience. In this
section, we provide a detailed overview of the
framework’s setup, including new clarifications
on data collection, parameters, and how initial
configurations are established for subsequent
matching.

The flowchart in Figure 7 (Appendix) illustrates
the entire carpool matching process, from gathering
initial data to finalizing carpool groups and updating
the system. This visual representation provides an
overview of the sequential stages involved in the
framework.

E
Enhanced Carpool Matching Framework Algorithm:
The carpool matching framework involves several
steps. As shown in Table 1, Algorithm 1 outlines
the proposed methodology, which includes data
collection, preselection, matching stages, scoring,
ranking, notification, and final updates.

This algorithm provides a systematic approach
to organizing carpool groups by integrating both
objective factors, such as journey time and detour
feasibility, and subjective preferences, including
safety and environmental sustainability. The process
begins with the collection and analysis of key

Table 1. Algorithm 1. Carpool Matching Framework
with Dynamic Group Formation, Telematics, and
                        Customizable Scoring

Algorithm 1 Carpool Matching Framework with
Dynamic Group Formation, Telematics, and
Customizable Scoring
1: Step 1: Start
2: Gather initial data: He, We, Se, Pe, De, T , Re,

Ttele.

3: Step 2: Preselection Stage
4: for each pair (ei, ej) ∈ E do
5: Filter pairs by time interval compatibility and

maximum detour duration.
6: Identify drivers and vehicle capacity.
7: Filter out passengers without available

drivers and form initial groups.
8: Output feasible groups.
9: end for

10: Step 3: Matching Stage
11: for each driver d with feasible group G do
12: Form groups dynamically, adding passengers

based on proximity and schedule compatibility.
13: Ensure the driver’s vehicle can accommodate

the group.
14: end for
15: for each feasible group G do
16: Determine departure and arrival times and

evaluate detour limits.
17: end for

18: Step 4: Scoring Mechanism
19: for each group Gk do
20: Calculate: Scost(Gk), Stime(Gk), dsvalue(d),

devalue(d), Srating(Gk).
21: Users assign weights to each score.
22: Compute final weighted score:
23: FinalGroupScore(Gk) = w1 × Scost(Gk) +

w2 × Stime(Gk) + w3 × dsvalue(d) + w4 ×
devalue(d) + w5 × Srating(Gk)

24: end for

25: Step 5: Rank and Propose Best Carpools
26: Rank all groups by final score and propose

top-ranked groups.

27: Step 6: Notify and Negotiate
28: for each employee e ∈ E do
29: Notify employees and allow negotiation or

group finalization.
30: end for

31: Step 7: End
32: Update the database with confirmed groups.
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employee data, followed by the application of filters
to identify and preselect viable group configurations
based on travel constraints. Subsequently, dynamic
carpool groups are formed, leveraging a customizable
scoring mechanism that accounts for individual
employee preferences. These groups are then ranked,
enabling participants to review and negotiate their
options. The final phase involves updating the
system with the confirmed carpool groups, ensuring
comprehensive inclusion of all participants.

In the forthcoming sections, we detail each aspect
of the framework, including the specific parameter
assignments employed during our simulation
exercises to corroborate the approach.

3.1 Data Collection and Initialization
(Start)

The earliest phase of this carpool matching method
entails gathering core data on all employees. This
information serves to discover likely matches, discard
infeasible options, and also acknowledge recurring
work patterns to foster stable, long-term groupings.
Below, we outline each principal data component and
clarify how different parameters are established and
applied during later matching steps.

Every employee e ∈ E has a recorded home
location, typically as a coordinate or address. We
define the complete set of employee home locations
as:

HomeLocations = {h1, h2, . . . , hN−1, hN} (1)

where hi indicates the home location for employee ei,
and N is the total number of employees.

Similarly, the collection of work locations is given
by:

WorkLocations = {w1, w2, . . . , wN−1, wN} (2)

where wi corresponds to the work location of
employee ei. These points are typically translated
into latitude and longitude for processing, and any
system-generated distances or travel times depend on
these geocoordinates.

For the experiments presented here, pairs (hi, wj)
are associated with pre-computed distance and travel
time estimates obtained from an external routing
service, under typical traffic conditions. Adaptations
based on regional or historical traffic patterns can be
applied to enhance accuracy.

3.1.1 Work Schedules and Recurring Pattern
Model

Each employee’s schedule, including start and end
times, is retained within:

Schedules = {s1, s2, . . . , sN−1, sN} (3)

where si denotes the specific start and end times for
employee ei.

To encourage consistent, long-lasting matches, the
framework also accounts for recurring work patterns
over a defined cycle, frequently set to one week. Let
P be the length of the recurrence period (e.g., P =
7 for weekly cycles). The schedule for employee ei
during this period is captured as:

Si = {(si(1), si(2), . . . , si(P ))} (4)

where si(p) designates the start and end times of
employee ei on day p within the recurring cycle.

By capturing and interpreting employees’
repeating work patterns, the system can maintain
stable carpool groups for multiple days, reducing
how often new matches need to be formed.

3.1.2 Employee Preferences
Each employee defines their preference strengths for
the various factors used in the carpool matching
framework. These preference strengths, denoted as
ST , represent the weight an employee assigns to the
different factors in the scoring mechanism. The set of
preference strengths for an employee is represented
as:

ST = {st1, st2, . . . , stY−1, stY }, where Y = 5
(5)

Here, each sti corresponds to the strength of
preference for a particular factor, and Y = 5
represents the five main factors: Cost, Time Loss,
Safety, Eco-friendliness, and Ratings.

These preference strengths indicate the weight
each employee places on the factors when computing
the overall group score. For instance, an employee
with a preference for safety may have a higher
weight assigned to the Safety Score, whereas another
employee prioritizing cost savings may assign a
greater weight to the Cost Score.

3.1.3 Driver Status and Vehicle Capacity
Employees who are eligible to drive are flagged
as potential drivers, and their vehicle capacities are
recorded. The set of drivers is denoted as:

Drivers = {d1, d2, . . . , dM−1, dM} (6)

where M is the total number of employees who can
drive, and di represents the driver status and vehicle
capacity of employee ei.

For each potential driver, we store a daily capacity
(e.g., ci(p)) if availability fluctuates. This allows the
framework to handle employees who can only drive
on certain days (e.g., Monday, Wednesday).
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3.1.4 Travel Data
A pre-computed matrix of travel times and distances
between employees’ home and work locations is
stored. Let the travel time between home hi and work
location wj be represented as:

T (hi, wj) for i, j = 1, 2, . . . , N (7)

Here, T (hi, wj) represents the travel time from the
home of employee ei to thework location of employee
ej .

3.1.5 User Ratings
We employ a comprehensive multi-aspect 5-star
rating system to capture feedback from previous
carpool experiences. After each trip, employees rate
their fellow passengers and drivers. Let the past
ratings for each employee ei be represented as:

Ratings(ei) = {r1, r2, . . . , r5} (8)

where each rk represents the rating in a specific
aspect, with 1 being the lowest and 5 the highest.

3.1.6 Telematics Data: Safety and Eco Scores
For drivers, we assign both a safety score dsvalue(d)
and an eco score devalue(d), based on telematics data
that evaluates their driving behavior. The safety
score dsvalue(d) measures adherence to safe driving
practices such as smooth braking, steady acceleration,
and compliance with speed limits. The eco score
devalue(d) reflects the driver’s fuel efficiency and
environmentally friendly driving habits, such as
minimizing idling time and optimal throttle usage.

Let us define the telematics scores for all drivers
as:

Telematics =


(dsvalue(d1), devalue(d1)),

(dsvalue(d2), devalue(d2)),

...
(dsvalue(dM ), devalue(dM ))

 (9)

where dsvalue(di) is the safety score and devalue(di) is
the eco score for driver di.

In many implementations, dsvalue and devalue are
normalized to a consistent scale, such as [0, 1]
or [1, 5], to align with rating systems or machine
learning inputs. Simulation studies may randomly
generate telematics values to mirror a realistic
distribution (e.g., a normal distribution with mean
0.8 and standard deviation 0.1 if most drivers exhibit
relatively safe driving).

3.1.7 Extended Parameter Considerations for
Simulation

To further enhance the realism and flexibility of
our simulations, we incorporate additional parameter

considerations. These extended parameters allow for
a more nuanced modeling of carpool dynamics and
user behaviors:
1) Cost Model Parameters: To simulate the Cost
Score Scost(Gk), each ride may include per-mile or
per-minute costs (fuel, toll, depreciation). One can
define:

TotalCost(Gk) = βf×Distance(Gk)+βt×Time(Gk),

where βf and βt represent cost rates per distance and
time, respectively.
2) Detour Threshold ∆max: Users can specify the
maximum allowable daily detour in minutes or as a
percentage over direct travel. If the added detour
to pick up a passenger exceeds this threshold, the
framework discards that pairing.
3) Work Schedule Tolerance: A small grace period
γ can be introduced around start/end times (e.g.,
±10 minutes) to capture minor schedule variations.
This tolerance influences Overlap(si(p), sj(p)) by
allowing minor differences in arrival or departure
times to be considered “compatible.”

3.1.8 Summary
The data collected during this initialization phase
forms the foundation for all subsequent stages
in the carpool matching process. By utilizing
comprehensive data on each employee’s location,
recurring work schedule, preferences, ratings, and
telematics, the system ensures that matches are
efficient, reliable, and aligned with both short-term
and long-term user needs.

3.2 Preselection Stage
The Preselection Stage is crucial in reducing the
computational complexity of the carpool matching
framework by eliminating infeasible pairs and
identifying potential carpool groups early in
the process. During this stage, several filtering
mechanisms are applied to ensure that only viable
matches proceed to the next stage. Additionally,
the framework considers employees’ recurring work
schedules, ensuring that groups remain stable over
multiple days. The following steps outline the key
processes involved in the Preselection Stage:

3.2.1 Filtering by Time Interval Compatibility
The framework evaluates the compatibility of
employee schedules over a defined period, such as
a week. For each pair of employees, (ei, ej), the
system checks whether their work schedules overlap
consistently throughout the period. Let si(p) and
sj(p) represent the schedules (start and end times) of
employees ei and ej on day p of the period P .
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The system calculates the time interval overlap
between these schedules for each day p ∈ P :

Overlap(si(p), sj(p)) = max(0,min(EndTime(si(p)),
EndTime(sj(p)))−max(StartTime(si(p)),

StartTime(sj(p)))) (10)

The total overlap for the period is calculated by
summing the overlaps for all days p:

TotalOverlap(si, sj , P ) =
P∑

p=1

Overlap(si(p), sj(p))

(11)

If the total overlap is below a predefined threshold
(e.g., sufficient overlap on at least 4 out of 7 days), the
pair is discarded. This ensures that employees whose
schedules do not align consistently are not considered
for carpooling.

3.2.2 Filtering by Maximum Detour Duration
(Over Multiple Days)

Once time compatibility is established, the framework
evaluates the feasibility of adding detours for each
potential carpool pair over the recurring period. For
each pair (ei, ej), the system computes the detour
time using the pre-computed travel timematrix, T , for
each day p ∈ P . The detour time for picking up ej
while traveling from hi towi (where hi andwi are the
home and work locations of ei) on day p is calculated
as:

Detour(hi, hj , wi, p) =T (hi, hj , p)

+ T (hj , wi, p)

− T (hi, wi, p)

(12)

The total detour across the period is:

TotalDetour(hi, hj , wi, P ) =
P∑

p=1

Detour(hi, hj , wi, p)

(13)

If the total detour exceeds the maximum allowable
threshold ∆max over multiple days, the pair is
discarded. This filtering ensures that employees are
not inconvenienced by excessively long detours over
the duration of their recurring schedule.

3.2.3 Identification of Drivers and Vehicle
Capacity

After filtering for time and detour compatibility,
the system identifies potential drivers among the
remaining pairs for the entire period. Each employee

ei has a driver status di, where di = 1 indicates that
the employee is willing to drive, and di = 0 indicates
a preference to ride as a passenger. Only pairs where
at least one employee is consistently available to drive
are considered.

In addition to identifying drivers, the system
records the vehicle capacity of each driver for each
day in the period. Let ci(p) denote the vehicle
capacity of driver ei on day p. For a pair to proceed,
the total number of passengers in the group on any
given day must not exceed the driver’s capacity for
that day.

3.2.4 Initial Group Formation
Once the filtering steps are completed, the framework
begins forming initial carpool groups based on the
available drivers, recurring schedules, and detour
tolerances. These groups are structured to ensure
logistical feasibility over the entire period. The aim
is to form groups that maintain compatibility not just
for a single day but for a recurring set of days, such
as a week.

The initial groups are represented as:

Groups = {G1, G2, . . . , Gk} (14)

where each group Gk consists of a driver and one
or more passengers. Each group must satisfy the
following conditions for every day in the period:

• The schedules of all group members must
consistently overlap based on the total overlap
calculation.

• The detour time for picking up each passenger
must not exceed the allowable detour for each
day.

• The number of passengers on any day must be
within the driver’s vehicle capacity.

Example Scenario: Suppose we have a recurring
period P = 5 working days, and we focus on a
particular set of four employees: e1, e2, e3, and e4.
Assume:

• Employee e1 is a driver with vehicle capacity of
3 passengers.

• Employee e2 is a driver with vehicle capacity of
2 passengers, but prefers to ride if another driver
is available.

• Employees e3 and e4 can only ride as passengers.

• Based on prior steps, the work schedules of
(e1, e3) overlap on all 5 days, while (e1, e4)
overlap on only 3 days.
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• The detour time for e1 to pick up e3 remains
within the detour threshold (e.g., 10% over 5
days), but picking up e4 pushes the detour above
the threshold on 2 of the 5 days.

• Employee e2’s overlap with both e3 and e4 meets
the time compatibility threshold, but e2 has a
higher cost-sensitivity (meaning e2 would prefer
a carpool with minimal extra travel).

Given this scenario, the framework could form the
following initial group (among others):

G1 = {Driver e1, Passenger e3}.

Here, e1 offers sufficient capacity for all 5 days,
and the total detour for including e3 does not exceed
the allowable threshold. Since picking up e4 would
violate daily detour constraints, e4 cannot join G1.
Meanwhile, e2 (an alternative driver) could be placed
in another group or remain a passenger if a suitable
driver match is found in subsequent steps.

In practice, this formation process is repeated for
all viable drivers and riders who pass the filtering
phases. By consolidating employees into provisional
groups that satisfy the schedule overlap, detour limit,
and capacity constraints, the framework outputs a set
of initial feasible groups:

Groups = {G1, G2, . . . }.

These initial groups then proceed to the Matching
Stage for more detailed checks and dynamic
adjustments, if necessary.

3.2.5 Output of Feasible Groups
At the conclusion of the Preselection Stage, the
system outputs a set of feasible carpool groups that
are valid for the entire recurring period. These groups
have passed the filters of time compatibility, detour
limits, driver availability, and vehicle capacity for
each day in the period. The output of this stage
serves as the input for the subsequentMatching Stage,
where more detailed evaluations and optimizations
are performed.

In summary, the Preselection Stage reduces the
complexity of the matching process by eliminating
infeasible pairs and forming viable initial groups that
are compatible over multiple days. By considering
recurring work patterns and long-term feasibility,
the framework ensures the formation of stable and
sustainable carpool groups.

3.3 Scoring Mechanism
The scoring mechanism is designed to evaluate and
rank each potential carpool group based on several
critical factors. These factors ensure that the selected

groups align with user preferences while maximizing
efficiency and safety. The following subsections
detail how each score is calculated and how users can
assign weights to prioritize specific aspects.

Calculate Scores for Each Carpool Group
For each carpool group, the following scores are
calculated:

Cost Score: The cost score reflects the monetary
cost of the carpooling option, which includes fuel,
tolls, and other expenses. These costs are shared
among the participants. The cost score for a group
Gk can be calculated as follows:

Scost(Gk) =
1

TotalCost(Gk)
(15)

where: TotalCost(Gk) represents the total cost
incurred by group Gk for the carpool, including fuel,
tolls, and other related expenses.

A lower total cost results in a higher score, as this
promotes more cost-efficient carpool options.

Time Loss Score: The time loss metric quantifies
the extra time experienced by group members due to
deviations and waiting periods for other participants.
Groups that incur less time loss receive higher scores.
For a group Gk, the time loss metric is defined as:

Stime(Gk) =
1

TotalTimeLoss(Gk)
(16)

Here, TotalTimeLoss(Gk) represents the
cumulative additional time all members of group Gk

have accumulated, encompassing detours, waiting
times, and any delays resulting from the carpool
setup.

A reduced time loss leads to an increased score,
thereby incentivizing groups to minimize the time
spent on detours or waiting for pickups.

Safety Score: The safety rating (dsvalue) is
generated automatically through telematics systems
that evaluate real-time driving behavior using data
from GPS, vehicle sensors, and other sources. These
systems monitor essential driving parameters such
as speed, braking habits, and steering patterns,
which are then analyzed using sophisticated machine
learning algorithms. The resulting score indicates
the driver’s commitment to safe driving practices,
including smooth braking, consistent acceleration,
and adherence to speed limits. This methodology
ensures a precise and unbiased evaluation of each
driver’s safety performance, with the score accessible
via a mobile application or dashboard for ongoing
feedback and enhancement.
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For a specific carpool group Gk, the safety rating
is calculated as:

SafetyScore(Gk) = dsvalue(d) (17)
Where: dsvalue(d) is the telematics-generated

safety score for driver d in group Gk.

Eco Score: In a similar manner, the eco rating
(devalue) is computed automatically using telematics
data that tracks fuel efficiency and environmentally
responsible driving behaviors. Factors such as idling
duration, throttle application, and emission levels
are examined to assess the ecological impact of
the driver’s habits. Like the safety rating, the eco
rating is derived using machine learning methods that
analyze driving patterns, offering real-time feedback
to promote more fuel-efficient and eco-friendly
driving practices. This information is made available
to fleet managers and drivers through applications and
dashboards, aiding in the reduction of the vehicle’s
environmental footprint.

For a particular carpool group Gk, the eco rating
is given by:

EcoScore(Gk) = devalue(d) (18)
Where: devalue(d) is the telematics-generated eco

score for driver d in group Gk.

Driver and Passenger Ratings: Ratings from
previous carpool experiences are incorporated to
account for passenger-driver interactions:

RatingScore(Gk) =
∑
ei∈Gk

Rp(ei) +Rd(ei)

2
(19)

where Rp(ei) is the passenger rating for member ei
and Rd(ei) is the driver rating. Higher ratings reflect
more positive experiences, leading to a higher score
for the group.

User-Assigned Weights for Each Scoring Factor
The final group score for each carpool group Gk is
calculated as a weighted sum of the individual scores.
With the inclusion of the telematics-generated safety
and eco scores, the formula becomes:

FinalGroupScore(Gk) =w1 · Scost(Gk)

+ w2 · Stime(Gk)

+ w3 · dsvalue(d)
+ w4 · devalue(d)
+ w5 · Srating(Gk) (20)

Where: Scost(Gk) is the cost score for group
Gk, Stime(Gk) is the time loss score for group Gk,

dsvalue(d) is the telematics-generated safety score for
the driver d, devalue(d) is the telematics-generated
eco score for the driver d, Srating(Gk) is the
rating score for group Gk, w1, w2, w3, w4, w5 are
user-assigned weights for cost, time loss, safety,
eco-friendliness, and rating scores, respectively. The
sum of all weights is constrained to equal 1:

5∑
i=1

wi = 1 (21)

Rank and Propose Best Carpools
Once the final group scores are calculated for all
potential groups, the system ranks the groups based
on their total weighted score. The top-ranked carpool
groups are then proposed to the users for negotiation
and final selection. The highest-scoring groups best
align with user preferences across all scoring factors.

3.4 Final Steps: Notify, Negotiate, and
Update System

After the scoring mechanism has been applied and the
carpool groups have been ranked, the system moves
into the final phase where candidates are notified,
negotiations take place, and the system is updated
accordingly. These steps ensure that all carpool
groups are confirmed and any remaining candidates
are given new advice.

The first step in this phase involves sending out
carpool proposals to the candidates. Each candidate
receives a list of proposed carpool groups, ranked
based on their preferences and the overall group
score. This ensures that the candidates are informed
of their potential matches and can begin reviewing
their options.

Once the proposals are received, candidates are
given the opportunity to review the proposed groups
and provide feedback. They may either accept the
proposal if they are satisfied or initiate negotiations if
adjustments are needed. During this phase, the system
awaits negotiation results. Candidates who negotiate
may suggest adjustments to the group composition
or request alternative matches. This negotiation step
is crucial for ensuring user satisfaction, allowing
candidates to have a degree of control over the final
carpool arrangements.

After the negotiation and feedback phase is
complete, the system records the finalized carpool
groups. These are the groups that have been accepted
and confirmed by all involved candidates. The system
ensures that all group information is finalized before
proceeding to the next step.

Once the final groups have been recorded, the
system updates the personnel database. This
update reflects the status of employees who have
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confirmed their carpool arrangements, flagging them
as finalized. For any candidates who were not
successfully placed in a carpool or who requested
changes during negotiations, the system recalculates
new carpooling advice. This step ensures that no
candidate is left without options, generating new
proposals or updating existing matches based on the
available candidates.

The carpool matching process concludes once the
system updates have been made and all finalized
groups are confirmed. This marks the end of the
current matching cycle, but the system remains ready
for any future adjustments or for initiating a new
round of matching if needed.

3.5 Complexity Analysis of Algorithm
This subsection provides a detailed computational
complexity analysis ofAlgorithm 1, outlining the time
complexity for each step:

• Data Collection (Step 1): The time complexity
for reading and storing employee data, including
locations, schedules, preference weights, and
telematics data, is O(N), where N denotes the
total number of employees.

• Preselection Stage (Step 2): This stage evaluates
schedule overlap and detour feasibility through
pairwise comparisons between all employees. In
the worst case, this involvesO(N2) comparisons
for every pair (ei, ej), making it a potential
computational bottleneck for large N .

• Matching Stage (Step 3): Groups are formed
dynamically by verifying driver capacities and
adding compatible passengers. In the worst case,
this process approaches O(N2) complexity.
However, practical implementations often
employ heuristics or parallelization to mitigate
this.

• Scoring Mechanism (Step 4): After determining
feasible groups, each group’s score is computed.
With M feasible groups, the scoring operation
has a complexity of O(M). In the worst case,
M could scale to O(N2), resulting in an overall
complexity of O(N2).

• Ranking and Proposal (Steps 5 and 6): Sorting
feasible groups based on their scores incurs a
complexity of O(M logM). Given the worst
case of M = O(N2), this step scales to
O(N2 logN).

• Notification and Database Update (Steps 6 and
7): These steps involve writing final matches to
a database, with complexity proportional to the
size of the matches, i.e.,O(N) orO(M) in most
practical scenarios.

4 Experiments and Results
The experiments detailed in this section are designed
to assess the effectiveness and efficiency of the
carpool matching framework. These evaluations
concentrate on two primary dimensions: the
framework’s computational performance and the
quality and practicality of the carpool groups it
generates. To examine the scalability and runtime
of the framework, analyses are conducted using
datasets of varying magnitudes that emulate
real-world scenarios. Furthermore, the framework’s
capability to create viable carpool groups that satisfy
user-specified preferences and logistical constraints
is scrutinized, with comparisons made against
established baseline approaches.

The objective of these experiments is to shed
light on the overall performance of the framework,
pinpoint potential areas for enhancement, and
demonstrate its capacity to facilitate efficient
and user-friendly carpooling solutions in densely
populated urban settings. Through comprehensive
testing, the outcomes underscore the framework’s
advantages and provide recommendations for future
refinements.

After establishing the evaluation objectives, the
subsequent step involves constructing a realistic
testing environment for the framework. To achieve
this, a synthetic dataset was generated to replicate the
intricacies of urban commuting. This dataset serves
as the foundation for all experimental procedures,
offering the necessary diversity in variables such as
employee locations, schedules, and preferences.

4.1 Synthetic Data Generation
In order to rigorously evaluate our carpool matching
framework across diverse scenarios, a synthetic
dataset was generated that simulates a realistic
metropolitan commuting environment. The goal of
this dataset is twofold: (1) to emulate common
urban travel patterns and constraints (such as multiple
business hubs and suburban areas), and (2) to
provide controlled variability in factors like employee
locations, schedules, vehicle capacities, preferences,
telematics data, and ratings.

Real-world data on large-scale commuting and
carpooling can be challenging to obtain due to
privacy, incomplete records, or limited sample sizes.
Synthetic data generation helps overcome these
limitations by allowing comprehensive control over
parameters of interest. With carefully designed
distributions and constraints, it is possible to create
data that captures the complexity of actual commuting
patterns (e.g., varying home-work distances, different
start/end times, diverse preferences for cost, safety,
and eco-friendliness).
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We generate a population of 1000 employees
(denoted N = 1000), reflecting a midsized
organization or a cross-section of a large metropolitan
workforce. Each employee ei is assigned:

• Home location (xhi
, yhi

) and work location
(xwi

, ywi
), stored as 2D coordinates in a

simulated 10× 10 unit area.

• A work schedule, consisting of start and end
times, Se = {(tstart, tend)}.

• A preference profile, which includes weights
{w1, w2, w3, w4, w5} corresponding to cost,
time, safety, eco-friendliness, and rating factors.

• A capacity ci if the employee is designated as a
driver.

• Telematics-derived scores (for drivers), namely a
safety score dsvalue and an eco score devalue.

• A rating vector {r1, r2, . . . , r5} capturing
multi-aspect feedback from previous carpool
experiences.

In practice, these attributes encompass the key
variables needed by our framework to match, filter,
and score potential carpool groups.

We represent an urban or suburban region as a 10×
10 grid:

• For each employee ei, a random coordinate
(xhi

, yhi
) is drawn from a uniform distribution

across the entire 10 × 10 area. This reflects a
broad spread of residential areas, ranging from
city-center apartments to peripheral suburban
neighborhoods.

• We define three primary business hubs within
the city, each occupying a 2 × 2 sub-area.
For each employee, we randomly assign one
of these three hubs and then sample (xwi

, ywi
)

uniformly within that selected sub-area. This
pattern approximates a common metropolitan
scenario where multiple downtown or business
clusters exist.

Such a design mimics real-world commuting, where
most workplaces are concentrated in specific regions,
but employees live in more widely distributed
residential districts.

For each pair (ei, ej) (or equivalently (hi, wj)), we
compute a travel time matrix T (hi, wj) using:

T (hi, wj) =
distance(hi, wj)

average speed
,

where distance(·) denotes the Euclidean distance in
the synthetic plane, and the average speed is set

to 40 km/h (scaled appropriately for our coordinate
system). This approach strikes a balance between
simplicity and realism: while real-world driving may
involve more complex routes and traffic conditions,
Euclidean-based times are adequate to illustrate and
test our matching algorithms.

We represent each employee’s schedule by
sampling start and end times from a normal
distribution centered around typical business hours.
Specifically,

tstart ∼ N (9:00, 0.52), tend ∼ N (17:00, 0.52),

where 0.5 corresponds to a standard deviation of
30 minutes, capturing day-to-day variations. Each
employee ei is thus assigned:

Si =
(
tstart(i), tend(i)

)
.

This normal-based sampling ensures realistic
clustering of start/end times around typical 9-to-5
jobs while allowing flexibility for early/late work
shifts. Furthermore, for multi-day modeling (e.g., a
week), we replicate or slightly perturb these times
across days to reflect real-world patterns where
employees often start/end at similar times each
weekday.

Since carpooling requires compatible schedules
and manageable detours, two key parameters are
introduced:

1. Overlap Threshold (Ωmin). We set a
30% minimum schedule overlap across
a recurring period P (often 5 workdays).
Formally, employees ei and ej are considered
time-compatible if:

TotalOverlap(si, sj , P ) ≥ Ωmin,

meaning that across the P days, they share
at least 30% of their working hours. This
ensures that participants’ departure/arrival times
can reasonably align on most days.

2. Detour Threshold (∆max). We set a 15%
maximum detour for any driver when picking
up additional passengers. We quantify detour by
comparing:

Detour(hi, hj , wi, p) = T (hi, hj , p)

+ T (hj , wi, p)

− T (hi, wi, p),

summed over the P days, and then normalized
relative to the direct travel time T (hi, wi).

These thresholds (30% overlap, 15% detour) reflect
a practical balance: employees need some consistent
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alignment of schedules, but not necessarily perfect
matches. Similarly, minor route extensions are
permitted (up to 15%) without causing prohibitive
delays.

A subset of employees is randomly designated
as drivers. Each driver di has a vehicle capacity
ci ∈ {2, 3, 4, 5}, representing the maximum number
of passengers. The distribution of capacities is chosen
to emulate realistic personal vehicles (e.g., sedans,
SUVs, etc.). Some employees who could drive
may still prefer to be passengers if it leads to better
cost/time outcomes according to their preferences.

We model five key preference factors: cost (w1),
time loss (w2), safety (w3), eco-friendliness (w4),
and ratings (w5). Each employee randomly receives
integer weights from 1 to 5 for these factors, which
we then normalize to sum to 1:

5∑
k=1

wk = 1.

This approach simulates the diversity of personal
motivations found in real commuter populations (e.g.,
some employees prioritize minimal time loss, while
others care more about safety or cost-sharing).

Each driver’s telematics-based safety (dsvalue) and
eco (devalue) scores are generated uniformly in [2, 5],
mirroring plausible variability in driving style and
environmental impact. These scores mirror typical
rating scales used in commercial telematics solutions.

Lastly, we assign a multi-aspect rating vector
{r1, r2, . . . , r5} to every employee, capturing
the feedback they received from prior carpool
experiences. These ratings range from 1 (lowest)
to 5 (highest) and can highlight preferences around
punctuality, comfort, or other intangible factors.

By carefully selecting distributions and thresholds,
this synthetic dataset mimics many real-world
commuting traits:

• Geographic Variation. A wide spread of
suburban-like home points against clustered
workplace hubs.

• Varied Schedules. Normal distributions around
typical 9–5 hours, allowing for realistic early/late
shifts.

• Mixed Preferences. Users weigh cost, time,
safety, eco, and ratings differently, reflecting
heterogeneous priorities.

• Realistic Driving Capacity. Car seats vary,
reflecting typical sedans and SUVs.

• Limited Detour Tolerance. A 15% maximum
ensures that carpools do not become
unacceptably long for any participant.

Such realism enables our subsequent experiments and
performance metrics (e.g., feasibility rates, matching
efficiency, user satisfaction) to be meaningful proxies
for actual urban carpool scenarios. Furthermore,
using synthetic data allows us to systematically
increase or decrease N , tighten or loosen thresholds,
and test the algorithm’s scalability and robustness
under controlled conditions.

In summary, the generated dataset balances
complexity and realism, equipping us with the
necessary variability to stress-test the proposed
carpool matching framework. The following sections
demonstrate how this synthetic data underpins our
experimental evaluations, including execution-time
analyses and comparisons against baseline matching
methods.

4.2 Simulation Environment
The carpool matching experiments were conducted
within a simulation environment developed in C#
on a Windows platform using .NET 6.0. This
environment supported all stages of the research
workflow, including synthetic data generation, result
collection, and analysis. The following subsections
describe the implementation details, configuration
options, and insights derived from simulation runs.

The simulation was implemented in C# using
.NET 6.0, with Microsoft Visual Studio 2022
as the integrated development environment on
a Windows 10 platform. This setup allowed
seamless integration of libraries for data
parsing (Newtonsoft.Json), multi-threading
(System.Threading), and visualization. An
object-oriented design was adopted, with
key components such as Employee, Driver,
CarpoolGroup, and MatchingEngine encapsulating
relevant attributes and methods. This modular
architecture facilitated experimentation by enabling
quick substitution of scoring functions or filtering
heuristics.

The synthetic datasets were stored in
JSON format, ensuring human-readability and
streamlined manipulation through serialization and
deserialization processes. Logging mechanisms built
into C# were utilized to capture timestamps, memory
usage, and CPU metrics, producing detailed reports
for each simulation run.

The simulation flow was managed by a central
control module, which sequentially executed data
generation, preselection filtering, matching, and
scoring steps. Configuration parameters, including
the total number of employees (N ), detour thresholds
(e.g., ∆max = 15%), and preference distributions
({w1, . . . , w5}), were adjustable via a configuration
file. Parallel processing was leveraged to optimize
performance, particularly for computationally
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intensive steps like pairwise comparisons in the
preselection stage. The thread pool size was
configurable, enabling performance evaluations
across different CPU core counts.

To ensure robustness and generalizability,
experiments were conducted with datasets of varying
sizes (N ∈ {100, 200, 300, 500, 1000}). Each
configuration was repeated ten times using different
random seeds, resulting in a total of 50 simulation
runs. Execution times ranged from 2.1 seconds (for
N = 100) to 46.8 seconds (for N = 1000), with the
preselection stage contributing up to 60% of the total
runtime. Memory usage remained below 800 MB for
all scenarios, demonstrating efficient data structure
design and garbage collection.

The number of feasible carpool groups generated
ranged between 300 and 5000, depending on
detour thresholds and employee distributions.
Invalid data entries, such as negative capacities or
out-of-range schedules, were automatically flagged
and regenerated, accounting for less than 1% of all
cases.

Post-simulation results were exported in both
JSON and CSV formats. The JSON files captured
detailed logs, including group assignments and
rejected pairs, while the CSV files summarized
key metrics such as the total number of feasible
groups and average final scores. Visualization
of the results was achieved using .NET charting
libraries, complemented by Python-based tools like
matplotlib and seaborn for advanced analysis.

Statistical summaries were computed for each
batch of runs, including measures such as feasibility
rates (the proportion of employees successfully
placed in carpools), average preference scores
(reflecting user satisfaction), and execution times for
each stage. These metrics provided insights into both
the quantitative and qualitative performance of the
framework.

The simulation environment allowed for dynamic
experimentation with parameters, revealing several
key trade-offs. Tightening the detour threshold
(∆max) from 15% to 10% reduced feasible groups
by 12–20%, but increased user satisfaction among
the remaining matches. Increasing the proportion
of drivers improved feasibility rates by up to 15%,
albeit with a slight increase in computational cost.
Variations in work schedule distributions highlighted
the sensitivity of the framework to input parameters,
with greater variability reducing overall feasibility.

To sum up, the C#-based simulation environment
proved to be a robust and adaptable platform for
evaluating the carpool matching framework. By
supporting multi-threaded execution, comprehensive
logging, and flexible configuration options, it
facilitated a detailed assessment of both performance

and user satisfaction. These findings underscore the
framework’s potential for real-world applications in
organizational or metropolitan commuting scenarios.

4.3 Execution Time Analysis Experiment
To find the computational performance and scalability
of the carpool matching system, an execution time
evaluation was performed utilizing the previously
mentioned synthetic dataset. The main aim of this
study is to determine the framework’s efficiency as
the number of employees increases, with particular
emphasis on the most resource-intensive phases: the
Preselection Phase and the Matching Phase.

The evaluation entailed running the framework on
datasets of different magnitudes, ranging from 100
to 1000 employees in steps of 100. For each dataset
size, synthetic employee profiles were generated,
encompassing home and workplace locations,
schedules, preferences, and telematics information,
to replicate a realistic urban commuting environment.

Four principal execution time metrics were
tracked: Data Generation and Initialization Duration
(time allocated to creating and setting up the synthetic
dataset), Preselection Duration (time necessary
to screen employee pairs based on overlapping
schedules and detour limitations), Matching Duration
(time required to dynamically assemble viable
carpool groups and compute their scores), and
Scoring and Ranking Duration (time needed to
calculate the final group scores and prioritize the
carpool groups).

Each experiment was repeated 10 times for each
dataset size, and the average execution time was
computed to ensure the reliability of results.

For each dataset size, the synthetic data generator
produced a corresponding dataset, incorporating
realistic variations in employee locations, work
schedules, preferences, and telematics data. The
carpool matching framework was executed on the
generated dataset, and system timers recorded the
execution times for each stage. The average
execution times for each stage and the total execution
time were logged and are presented in Table 2, which
is included in the Appendix.

The results indicate that the execution time
increases non-linearly with the number of employees.
The total execution time grows significantly,
particularly during the Preselection Stage, where
pairwise comparisons between employees result in
quadratic time complexity, i.e., O(N2). In contrast,
the Data Collection, Matching, and Scoring stages
show more modest increases in execution time, with
complexities of O(N) or O(N logN).

The Preselection Stage emerged as the main
computational bottleneck, especially for larger
datasets. Optimizations such as parallelization or
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Fig. 1:    Average Execution Time (in seconds) for
Different Dataset Sizes

heuristic-based filtering could mitigate this issue.
Overall, the framework demonstrated scalability up
to 1000 employees, with acceptable total execution
times for real-time or near-real-time applications.

The conducted experiment yields essential
perspectives on the framework’s computational
capabilities, directing subsequent optimization
initiatives aimed at improving its efficiency,
particularly within the Preselection Phase.

While ensuring computational efficiency is
paramount, the framework’s capacity to create
practical and user-friendly carpool groups is equally
significant. The upcoming section examines the
quality and practicality of the carpool groups,
concentrating on the framework’s effectiveness in
satisfying logistical requirements and aligning with
user preferences.

4.4 Evaluation of Feasible Carpools
This experiment aims to assess the effectiveness and
practicality of the carpool groups formed by the
proposed framework utilizing a synthetic dataset. The
evaluation focuses on the viability of carpool groups
by considering aspects such as timetable alignment,
permissible detour ranges, vehicle seating capacity,
and individual user preferences. The effectiveness
of the suggested carpool groups is determined by
how well they correspond to the scoring weights
assigned by users, ensuring that the framework
generates carpool configurations that prioritize and
accommodate user-specific needs and priorities.

The assessment was performed using a synthetic
dataset comprising 1000 employees, through which
viable carpool groups were established according to
the framework outlined earlier. The following steps
were performed:

The evaluation focuses on several key criteria
for determining the feasibility and quality of carpool
groups: Schedule Compatibility (the extent to which

group members’ work schedules overlap over the
recurring period, e.g., one week. A minimum
of 30% overlapping work hours is required for a
group to be considered feasible), Detour Limits
(the total additional travel time incurred by the
driver for picking up passengers, expressed as
a percentage of direct travel time. A detour
threshold of 15% is enforced to prevent excessive
delays), Vehicle Capacity (the number of passengers
assigned to each driver must not exceed the driver’s
available vehicle capacity, which is between 2
and 5 passengers), and User Preference Alignment
(the carpool groups are evaluated based on user
preferences across five scoring factors: cost, time
loss, safety, eco-friendliness, and rating. Each
carpool group’s final score reflects the weighted sum
of these factors as defined by the user’s preferences).

The goal of the evaluation is to ensure that
carpool groups meet all logistical constraints (i.e.,
schedule, detour, and capacity), while maximizing
user satisfaction through preference-based scoring.

The experiment was conducted using the synthetic
dataset with 1000 employees, and feasible carpool
groups were generated based on the previously
described framework. Initial carpool groups
were generated by the framework according to
schedule overlap, detour limits, and vehicle capacity
constraints. For each feasible group, scores were
calculated based on factors such as cost savings,
time loss, safety, eco-friendliness, and ratings, with
users’ weights applied to generate a final group
score. Groups that failed to meet the minimum
thresholds for schedule overlap, detour limits,
or vehicle capacity were deemed infeasible and
excluded from further consideration. The remaining
feasible carpool groups were then ranked according
to their final weighted scores, with the top-ranked
groups selected as the best proposals.

Figure 1 presents a summary of the evaluation
results, including the percentage of feasible carpool
groups and the average final group score. The
results were calculated across multiple runs of the
experiment, with each run using a different random
seed for the synthetic dataset.

Figure 2 provides a visual summary of the
evaluation metrics for the feasible carpool groups,
illustrating how factors such as schedule overlap,
detour limits, and user preference alignment
contribute to group formation.

The results indicate a high percentage of feasible
carpool groups, with feasibility improving as the
number of employees increases. This trend can be
attributed to the larger pool of potential matches,
allowing the framework to form more compatible
groups based on schedule overlap and detour limits.

The average final score of the feasible groups
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Fig. 2:       Evaluation of Feasible Carpool Groups

consistently increased as the number of employees
grew, reaching an average score of 0.91 for the dataset
with 1000 employees. This suggests that as more
employees are included in the system, the likelihood
of forming carpool groups that closely match user
preferences increases, leading to higher satisfaction.

It is important to note that the majority of
infeasible groups were excluded due to violations
of the schedule overlap and detour constraints,
particularly in smaller datasets. In larger datasets,
the abundance of potential matches allowed for more
flexibility in meeting these constraints.

Overall, the framework demonstrates strong
performance in generating feasible and high-quality
carpool groups, effectively balancing logistical
constraints with user preferences. These findings
suggest that the framework is scalable and capable
of forming efficient carpool groups in large urban
environments, while maintaining high levels of user
satisfaction.

Having evaluated the feasibility of individual
carpool groups, we now shift focus to a broader
comparison. In the next experiment, we compare
our framework’s overall matching efficiency and
user satisfaction against two baseline methods. This
comparison highlights the strengths of our approach
in creating both efficient and user-aligned carpool
groups.

4.5 Matching Efficiency and User
Satisfaction Comparison

To evaluate the carpool matching efficiency and
user satisfaction, we used two key metrics for
each experiment: the Feasibility Rate and Matching
Rate for efficiency, and the Average Preference
Score and User Satisfaction Rate for alignment with
preferences.

• Random Matching. In the Random Matching
method, employees are grouped together

without considering schedules, preferences,
or geographic proximity. The only constraint
applied is the vehicle capacity, making this a
naive method for carpool group formation.

• Geographic Proximity Matching. In Geographic
Proximity Matching, employees are grouped
based solely on the Euclidean distance between
their home locations. Other important factors,
such as work schedules and user preferences, are
not considered. A detour constraint is applied to
ensure that routes remain feasible for drivers.

• Our Framework. The proposed framework
integrates multiple factors, including schedule
compatibility, geographic proximity, user
preferences (such as cost savings, safety, and
eco-friendliness), and telematics data. Users can
assign weights to these factors according to their
priorities, and the framework optimizes carpool
groups based on these preferences.

The following metrics were used to compare the
methods:

• Feasibility Rate: The percentage of employees
successfully matched into feasible carpool
groups, satisfying all constraints such as vehicle
capacity, schedule compatibility, and detour
limits.

• Matching Rate: The percentage of employee
pairs that result in viable carpool groups.

• Average Preference Score: The weighted sum of
user-prioritized factors (e.g., cost savings, safety,
eco-friendliness) for each group.

• User Satisfaction Rate: The percentage of users
placed in carpool groups that fall within their top
20% of preferred outcomes.

Figure 3 and Figure 4 present the results for the
Feasibility Rate and Matching Rate, respectively.

The results demonstrate that our framework
significantly outperforms the baseline methods in
terms of Feasibility Rate and Matching Rate. On
average, the Feasibility Rate of our framework
is 92.6%, compared to 67.94% for Geographic
Proximity Matching and 45.6% for Random
Matching. Likewise, the Matching Rate for our
framework is 75.72%, much higher than that of
Geographic Proximity Matching (40.34%) and
Random Matching (24.6%). These results highlight
the benefits of incorporating multiple factors into
the matching process, resulting in more feasible and
efficient carpool groups.

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.222

Konstantinos Psaraftis, 
Klimis Ntalianis, Nikos Mastorakis

E-ISSN: 2224-2899 2731 Volume 21, 2024



Fig. 3:       Feasibility Rate Comparison for Different
Matching Methods

Fig. 4:        Matching Rate Comparison for Different
Matching Methods

Fig. 5:         Average Preference Score Comparison for
Different Matching Methods

Fig. 6:      User Satisfaction Rate Comparison for
Different Matching Methods

Figure 5 and Figure 6 present the results for
Average Preference Score and User Satisfaction Rate,
respectively.

Our proposed framework demonstrates superior
performance compared to the baseline approaches
in terms of aligning with user preferences and
overall satisfaction. Specifically, the Average
Preference Score achieved by our framework is 4.90,
whereas Geographic Proximity Matching scores 3.81
and Random Matching scores 2.69. In addition,
our framework attains a User Satisfaction Rate of
79.44%, which is markedly higher than the 38.66%
observed for Geographic Proximity Matching and
24.48% for Random Matching. These findings
underscore the critical role of incorporating user
preferences in the formation of carpool groups.

The outcomes from both sets of experiments
consistently show that our framework outperforms
the baseline methods regarding matching efficiency
and user satisfaction. By integrating a wide
range of factors and enabling users to prioritize
their preferences through weighted assignments,
our framework enhances both user satisfaction and
system efficiency. This methodology has the
potential to boost participation rates in carpooling
initiatives and contribute to the advancement of
sustainable transportation solutions.

5 Conclusions and Future Work
This study introduced a carpool matching system
aimed at enhancing the creation of practical and
efficient carpool groups by taking into account
multiple factors such as schedule alignment,
geographic closeness, user preferences, and
telematics information. Our system features a
dynamic group formation mechanism that not only
guarantees logistical viability but also caters to
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individual user priorities like cost reduction, safety,
and environmental sustainability.

The results from our experiments highlight the
system’s scalability and effectiveness. We performed
comprehensive testing using synthetic datasets that
mimic real-life urban commuting conditions. The
analysis of execution times indicated that the
system can manage large datasets with reasonable
computational demands, although the Preselection
Stage remains a performance challenge for very
large employee groups. Furthermore, our system
consistently surpassed baseline approaches in metrics
related to matching efficiency, feasibility rates, and
user satisfaction.

While the findings are encouraging, there
are several avenues for future research. Firstly,
enhancing the Preselection Stage through techniques
such as parallel processing or heuristic-based filtering
could substantially boost performance in large-scale
applications. Secondly, integrating real-world data
sources, including traffic flow information or public
transportation schedules, could further improve the
system’s practical utility. Thirdly, expanding the
framework to accommodate more intricate factors
like dynamic work schedules or fluctuating traffic
conditions could enhance the accuracy of matches in
variable environments.

Additionally, future investigations might explore
the use of machine learning algorithms to anticipate
user preferences or identify matching patterns,
thereby refining the carpool matching process and
increasing long-term user satisfaction. In summary,
the proposed system offers a solid base for developing
sustainable and user-focused carpooling solutions,
with numerous possibilities for future enhancements.
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                                                         APPENDIX

Table 2. Average Execution Time (in seconds) for Different Dataset Sizes (Appendix)
Number of Employees Data Collection (s) Preselection (s) Matching (s) Scoring & Ranking (s) Total Time (s)

100 0.12 1.54 0.72 0.15 2.53
200 0.25 6.25 2.10 0.28 8.88
300 0.37 13.95 4.12 0.42 18.86
400 0.50 25.80 7.35 0.55 34.20
500 0.63 40.30 11.20 0.68 52.81
600 0.77 58.25 16.45 0.82 76.29
700 0.90 79.60 22.90 0.96 104.36
800 1.03 104.35 30.75 1.10 137.23
900 1.16 132.50 39.90 1.24 174.80
1000 1.30 164.00 50.30 1.38 216.98

     Fig. 7: Flowchart of the Carpool Framework (Appendix)
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