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agree with the numerical results obtained from the Monte Carlo simulation (MC), but the latter is very time-
consuming. 
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1   Introduction  
Statistical Quality Control (SQC) is critically 
important in various industries, [1], and business, [2], 
sectors. It plays a crucial role in ensuring that 
products and processes meet specified standards and 
customer expectations. Here are some reasons 
highlighting the importance of statistical quality 
control: consistency and uniformity, defect reduction, 
cost reduction, customer satisfaction, process 
improvement, and early detection of issues. In 
summary, Statistical Quality Control is a 
fundamental aspect of quality management in various 
industries. It enables organizations to produce high-
quality products, reduce costs, meet customer 
expectations, and stay competitive in the market. The 
SQC relies on several key assumptions to effectively 
apply statistical methods and tools to monitor and 
control processes. Many statistical methods in SQC 
assume that the data follows a normal distribution. 

This assumption is particularly important when using 
control charts and other statistical tools. While 
normality is not always strictly required, deviations 
from normal distribution may affect the accuracy and 
interpretation of results. It's important for 
practitioners to be aware of these assumptions and to 
assess whether they hold in a particular context. 
Deviations from these assumptions may necessitate 
adjustments to the statistical approach or additional 
considerations in the interpretation of results.  

In real-world applications, time-series data which 
may be found in a variety of fields including 
communication engineering, epidemiology, [3], 
monetary economics [4], financial and insurance [5], 
environmental science [6], and so on—may be tied to 
time. The number of incidents and accident rates, 
multiple crimes, the identification of communication 
errors, the number of customers using the internet in 
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an hour, the volume of business phone calls, the 
number of customers from different organizations 
who have used the service in the previous year, and 
the amount of time spent waiting for the plane to take 
off are other scenarios that may give rise to it. 
Consequently, utilizing the thinning operator 
concepts described by, [7], [8], [9], several 
researchers have created a model appropriate for 
these data, dubbed the first order of Integer-valued 
Autoregressive (INAR(1)), proposed by, [10], [11]. 
They took advantage of a discrete distribution time 
series model created by, [12]. 

The discrete probability distribution known as 
the Poisson distribution, which represents the number 
of occurrences that take place within a specific time 
or location, is especially well-suited for describing 
counting operations. A sort of time series model 
intended for count data that displays conditional 
heteroscedasticity and autocorrelation is an integer-
valued autoregressive conditional heteroscedasticity 
(INARCH) model with a Poisson process. The term 
"autoregressive conditional heteroscedasticity" 
(ARCH) in this context denotes that the conditional 
variance of the process is not constant but rather 
fluctuates with time, and "integer-valued" refers to 
the type of data. It can also happen in other 
circumstances, like the quantity and rate of accidents, 
multiple crimes, the identification of communication 
breakdowns, the number of users accessing the 
internet in a single hour, the number of users from 
different organizations who have used the service in 
the previous year, and the amount of time spent 
waiting for an aircraft to take off from the airport. 
Consequently, utilizing the thinning operator 
concepts described by, [7], [8], [9], several 
researchers have created a model appropriate for 
these data, dubbed the first order of Integer-valued 
Autoregressive (INAR(1)), proposed by, [10], [11]. 
The first-order numerical correlation Poisson model 
with unstable variance Poisson Integer-valued 
Autoregressive Conditional Heteroscedasticity 
(INARCH(1)) was developed from many research 
fields such as application use in pharmaceutical 
science by, [13], infectious rates by, [14], [15], 
studied the number of insurance claims from 
insurance companies, [16], and applied to the 
queueing of internet access claims data, [17].  

With its Poisson distribution and constant 
variance, the Poisson INARCH(1) model bears a 
resemblance to the AR(1) model. By multiplying the 
random operator by a numerical random variable to 

construct an INAR(1) and INARCH(1) by, [18], [19], 
[20], [21], [22], these use a random operator known 
as the Binomial Thinning Operator to assist in the 
creation of an integer value model.  

Counting data has been the subject of numerous 
studies, many of which have taken dependent data 
characteristics and variable variance into account. To 
effectively identify the nature of this type of data, 
such as when it is highly correlated, they have 
created a control chart. The autocorrelation model for 
Poisson counting first-order unstable variance 
(INARCH(1)) is a model that works well with this 
kind of data. Its control chart performance has been 
examined by several researchers using various 
control charts examined the Poisson INAR(1) 
model's cumulative combined control chart, [23], 
[24], examined the Poisson INAR(1) model of the 
counting data's two-sided cumulative combined 
control chart, and [25], examined the correlated 
Poisson model's quality control.  

The expected number of samples or observations 
collected from a process before a signal indicating a 
shift or change in the process mean or variability is 
detected is referred to as the average run length 
(ARL) in statistical process control. A statistical 
process control chart is a graphical tool used to 
monitor and control a process over time. The ARL 
evaluates the performance of these charts. It can be 
broken down into two categories: processes that are 
under control (in-control processes) are represented 
by the symbol ARL0, and processes that are not under 
control are represented by the symbol ARL1. In 
mathematical notation, they can be expressed as 
follows: 

 
0 ( )ARL E T         

and 

1 1Minimize ( 1)ARL E        
 
where (.)E is the expected time. 

              is the first passage time (stopping 
times) 

            T  is a constant (usually given T =370) 
             is the change-point time process has 

changed from  1,F x   to  0,F x  . 
 
When comparing the capabilities of various 

control charts, numerical techniques for calculating 
the ARLs are frequently employed. There are 
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multiple methods for figuring out this number. Its 
benefits and drawbacks are as follows: conventional 
techniques, like Monte Carlo Simulation (MC), are 
frequently employed. It is frequently used to confirm 
accuracy in comparison to alternative methods, but 
processing times may occasionally be lengthy. The 
inverse of a matrix is found using the Markov chain 
approach (MCA), [26], [27], but the theory of 
convergence properties still needs to be backed up. 
To estimate, the Numerical Integral Equations (NIE) 
method makes use of sophisticated mathematical 
computations, [28]. The Martingale Approach is a 
contemporary technique that is quick, simple to 
calculate, and convenient, but it could take some time 
for the simulation method to verify accuracy, [29], 
[30]. 

Small changes in the mean or variability can be 
more easily detected with a control chart that has a 
short ARL since it is more responsive to process 
variations. A control chart with a longer ARL, on the 
other hand, is less sensitive and might be more 
suitable for processes that naturally fluctuate.  

Therefore, the purpose of this research is to use 
moving average control charts in conjunction with 
the Poisson INARCH(1) model to design an 
appropriate control for detecting the process's rapid 
dynamics. to identify abrupt average shifts in the 
manufacturing process. By comparing the detection 
efficiency of the MA control chart with the DMA 
chart while taking the average run length into 
account, and by verifying the accuracy of the results 
obtained from the formula with the simulation 
results. 

 
 

2   Research Methodology 
The Poisson INARCH(1) model, moving average 
control charts, double-moving average control charts, 
and their properties are briefly reviewed in this 
section. 
 
2.1  Binomial Thinning Operator 
The probabilistic operation of binomial thinning is 
introduced by, [31]. If X  is a discrete random 
variable with range  0 0,1,...N   and if  0,1 ,   

then the random variable 
1

:
N

ii
N X


  is said to 

arise from X by binomial thinning, and the iX  are 
referred to as the counting series. The thinning 
operation, when operated on by a parameter proven 

to be an adequate alternative to scalar multiplication, 
is defined as 

1

N

i

i

N X


  

where iX  are independent and identically distributed 
(i.i.d.) Bernoulli random variables with success 
probability .  The operator is a random operator, and 
the random variable N  has a binomial 
distribution with parameters ,N   and counts the 
number of survivors from the count N  remaining 
after thinning.  

The variance and expectations of N  can be 
obtained with ease by using the following well-
known rules for a conditional moment 

[ ] [ ]E α N αE No  
and 

2[ ] [ ] (1 ) [ ].V α N α V N α α E N  o  
 

2.2  Poisson INARCH (1) Model 
A particular kind of time series model called an 
INARCH (1) process is used to model the number of 
events that transpire within a given time interval to 
explain the behavior of a counting process. 
Specifically, an integrated autoregressive conditional 
heteroskedasticity model that assumes the counting 
process is driven by its past values and a stochastic 
component is called an INARCH(1) Poisson 
counting process. The following details relate to the 
INARCH(1) process:                                                  

1t t tN N    
 
where  is a random operator and at time t is 
independent of ( )

t
  and ( )

S S tN   
 

t  is an innovation-independent counts of ( )
S S tN   the 

distribution  
1t

Pois N 


   

tN  is counting observations at time t. 
 

If the initial count 0N  is distributed as ( )
1

β
Pois

α

 

then 
t

N  is stationary and distributed as ( ).
1

β
Pois

α

 

According to the above situation, it can be modeled 
as a Poisson INARCH(1) model. The expectation and 
variance of the Poisson INARCH(1) model are:  
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[ ]
1t

E N






 

and  

  2
[ ] .

1 1
t

V N


 


 
 

 

2.3 Moving Average Control Chart for 

Poisson INARCH(1) Model 
A time-varying control chart with unequal weights, 
known as a moving average control chart (MA chart), 
[32], was developed to count variables such as the 
quantity of nonconformities in a product's inspection 
unit. Assume that discrete observations are obtained 
from a sequence of identically independent 
distributions and the Poisson INARCH(1) model. 
The definition of the width at a time moving average 
is: 

1

1

1       ;
.

1  ;

t

j

j

t t

j

j t k

N i k
i

MA

N i k
k



  





 
 







 

 
The expectation of the MA statistics for the 

Poisson INARCH(1) model when i k  and i k  is: 

  .
1tE MA






 

 
The variance of the MA statistics for the Poisson 

INARCH(1) model for both cases of i k  and i k  
is: 

 
  

  

2

2

,
1 1

.
,

1 1

i

i k
i

Var MA

i k
k



 



 




 
 
 
  


 

 
The upper and lower control limits of the MA 

statistics are given as follows. 

  

  

2

2

1

1

,
1 1 1

,
1 1 1

H i k

H i k

i

k

 

  

 

  

 
  



 
  









 

 
where 1H  refers to a coefficient of control limit of 
the MA chart. 

2.4 Double Moving Average Control Chart 

for Poisson INARCH(1) Model 
A double-moving average control chart (DMA chart) 
was proposed by, [33]. The observations of DMA 
statistics are the collected double moving average of 
the MA statistics. The DMA of span k  at the time t  
is defined as: 

1 2

1 1

1 1

...
;

...
; 2 1

...
; 2 1

i i i

i i i w
i

i i i w

MA MA MA
i k

i

MA MA MA
DMA k i k

k

MA MA MA
i k

k

 

  

  

  



  

   


  
 



 

(1) 
 

where iMA  refers to the statistic of the MA chart. 
It is a time-weighted moving control chart based on a 
simple, unweighted moving average. Assume N1, N2, 

… are obtained from a Poisson INARCH(1) process. 
The MA statistic of span w  at a time i  defined as, 
[34] 

1 1...
;i i i k

i

X X X
MA

k

    
 for i k .     

 
For the period i k  we do not have k  

measurements to compute a moving average of span 
.k  For these periods, the average of all measurements 

up to periods i  defines the MA. The mean based on 
an in-control process of the DMA chart are: 

( )
1iE DMA






                   (2) 

 
and variance based on an in-control process of the 
DMA chart are: 

  

  

  

2 2
1

1

2 2
1

2 2

1 ;
1 1

1 1( ) ( 1) ; 2 1
1 1

; 2 1.
1 1

i

j

k

i

j i k

i k
j i

Var DMA j k k i k
j k k

i k
k



 



 



 





  




 

  

        
   


  
  




                                                             

                                                                                         (3) 
 

From Eq. (2) and (3), the upper and lower control 
limit of the DMA chart can be established as follows 
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2 2 2
1

1

2 2 2
1

2 2 2

1 ;
1 1 1

1 1( 1) ; 2 1
1 1 1

; 2 1
1 1 1

i

j

k

j i k

H i k
j i

H j k k i k
j k k

H i k
k

 

  

 

  

 

  





  


  
  



  

         
    




  
  







                                                                            (4) 
 

when 2H  is a coefficient of control limit based 
on a desired in-control ARL0. The Poisson 
INARCH(1) model of the DMA chart will signal the 
out-of-control situation when iDMA LCL  or 

.iDMA UCL    
 
 
3 An Explicit Formulas for Average 

Run Length of DMA Control Chart 
In quality control and process monitoring, Average 
Run Length (ARL) is frequently used to assess how 
well a control chart detects shifts or modifications in 
a process. Assuming the process is under control, the 
ARL value indicates the anticipated number of 
observations before a control chart indicating a 
process shift. Explicit formulas, integral equations, 
Markov chain analysis, simulation, and other 
mathematical techniques can all be used to calculate 
the ARL value. The results of these techniques can 
then be compared with Monte Carlo simulation 
results. The latter, which is employed in situations 
where ARL's explicit formulas or closed-form 
formulas are unavailable, takes a very long time.  

Based on the central limit theorem (CLT), this 
section presents the derivative analytical ARL of the 
DMA chart for the Poisson INARCH(1) 
observations. The following formula can be used to 
determine the DMA chart's average run length:  
 
Let ,ARL n  then 

 

 

1 1 out of control signal at time   

1 out of control signal at time 2 1

P i k
ARL n

P k i k
n

 

   

 

          
(2 2) out of control signal at time 2 1n k

P i k
n

 
   .    

                                                                                 (5) 
 

According to Eq. (5), the DMA statistics in terms 
of out-of-control signals at time i  state are replaced 
as follows: 

    
1

1 k

i i k i i k

i

P M UCL P M LCL
n

 



     

      
2 2

2 1 2 1
1

1 k

j k i k j k i k

j i k

P M UCL P M LCL
n



     

  

                    

    2 1 2 1
(2 2)

i i k i i k

n k
P M UCL P M LCL

n
   

 
    .       (6)                                                                             

 
Then, substitute the upper and lower control 

limits of DMA statistics from Eq. (1) into Eq. (6), 
which can be rewritten. 

  1

1
2 2 2

1

1 1
1 1 1

k

i

i

j i
j

jn

MA

P H
i ji

 

  







  
  
   
    
  

 





         

  
  

1

2 22
11 1 1

1

i
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j
i
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P H
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2 2

1

1
1

2 2 2
1

1 1 1( 1)
1 1 1

k
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i
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MA

P H j k
k j kk

 

  



  


  

  

  
  

                
  

 





 

  
1

2 2

1

11 1 1
1 1( 1)

i

j

j i k
k
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P H
k

MA
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1

2 2 2

(2 2)
1 1 1

i

j

j i kn k

n

MA

P H
k k

 

  

   


  
  
   
    
  

 

                       

  
1

2 22
1 1 1

i

j

j i k

P H
k

MA

k

 

  

  

  
  

 
 
 
 

 
 


.                

(7) 
 
The central limit theorem is used to derive the 

explicit formulas. Then, Eq. (7) can be rewritten as: 

  
1

2 2
1

1 1 1
1

1 1

k t k

A
i

t

j

UCL

P Z
ARL n

j i
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  2 2
1

1
1

1 1

t k

A
i

j

LCL

P Z

j i







 





 
 

       
  
   
  

  

  

  

2 12 2

1
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1 1
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B
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2 1
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1

1
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1 1

k i k

B
k
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P
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Z
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2 1

2 2

(2 2) 1

1 1

i k

C

UCL
n k

P Z
n
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2 1

2 2

1 .

1 1

i k

C

LCL

P Z

k







 

 

 
 

     
 
  

 

                         (8) 

 
Next, the statistics of the DMA chart in Eq. (8) 

are transformed to be standardized, then assume that. 
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i
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According to Eq. (8), let 
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Then, the explicit formulas of ARL0 and ARL1 

for the DMA chart are rewritten by substituting A, B, 
and C into Eq. (8).

 
     

1 1 1 (2 2)n k
A B C

n n n n

 
    

 1
(2 2)

A B
n k

C

 
   . 

As we give ,ARL n  then 

                1[ 1 ] (2 2)ARL A B C k     .                
(9) 

 
From Eq. (9), proving the explicit formula of the 

DMA chart can be divided into two cases: 
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Proposition I: Explicit formulas of ARL0 for the DMA 

chart. 
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 (10) 
 
Proposition II: Explicit formulas of ARL1 for the 

DMA chart. 
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4    Numerical Results  
This section presents the performance results of the 
DMA chart for the INARCH(1) model. It is divided 
into two parts: Part 1 presents the average run length 
determination of the DMA chart, and Part 2 presents 
the performance comparison control chart for actual 
data. 

 
4.1  Average Run Length of DMA Chart 
The study compares the accuracy and precision of the 
results calculated from the explicit formula from Eqs. 
(10) and (11). This research presents the results 
obtained from the Monte Carlo simulation method. 
The in-control parameter was given 0 1,   0 0.1   , 
and ARL0 = 370. The magnitude of changes of 0 is 

1 which set value equal to 0.1, 0.2,…,1. The 
magnitude of the changes of 0  is 2  which set 
value equal to 0.1, 0.2, …,1. The period for finding 
the moving average  k  equals 2, 5, 10, 15, and 20; 
for the MC method, the number of iteration cycles is 
50,000 replications. The numerical results are shown 
in Table 1 and Table 2 for the given  change and 
Table 3 and Table 4 for the given  change as 
follows.  
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Table 1. Average run length of DMA chart for the INARCH(1) model where 0 1,   0 0.1   and given   change 

1  k  
2 5 10 15 20 

0.0 370.398* 

371.560** 

(1.455) 

370.398 
370.589 
(1.513) 

370.398 
370.677 
(1.643) 

370.398 
371.294 
(1.545) 

370.398 
370.499 
(1.451) 

0.1 318.871 
318.566 
(0.956) 

179.137 
179.556 
(0.942) 

67.596 
67.659 
(0.933) 

42.582 
42.355 
(0.956) 

41.641 

41.328 

(0.973) 
0.2 236.985 

236.454 
(0.853) 

71.536 
71.298 
(0.835) 

25.468 

25.436 

(0.867) 

27.526 
27.483 
(0.862) 

35.219 
35.748 
(0.845) 

0.3 173.99 
173.452 
(0.760) 

36.633 
36.806 
(0.743) 

18.907 

18.706 

(0.732) 

25.343 
25.398 
(0.763) 

32.345 
32.472 
(0.739) 

0.4 131.593 
131.839 
(0.678) 

23.070 
23.547 
(0.665) 

17.016 

17.430 

(0.645) 

23.726 
23.094 
(0.654) 

28.357 
28.445 
(0.637) 

0.5 103.213 
103.454 
(0.565) 

16.822 
16.745 
(0.549) 

16.090 

16.375 

(0.548) 

21.841 
21.427 
(0.561) 

24.151 
24.964 
(0.535) 

0.6 83.696 
83.409 
(0.453) 

13.541 

13.528 

(0.467) 

15.408 
15.398 
(0.403) 

19.820 
19.406 
(0.438) 

20.464 
20.673 
(0.468) 

0.7 69.822 
69.328 
(0.346) 

11.636 

11.545 

(0.369) 

14.787 
14.981 
(0.347) 

17.888 
17.059 
(0.317) 

17.510 
17.451 
(0.336) 

0.8 59.643 
59.462 
(0.288) 

10.439 

10.506 

(0.243) 

14.180 
14.227 
(0.231) 

16.171 
16.548 
(0.243) 

15.249 
15.493 
(0.269) 

0.9 51.961 
51.398 
(0.185) 

9.636 

9.782 

(0.187) 

13.585 
13.679 
(0.168) 

14.703 
14.093 
(0.189) 

13.554 
13.603 
(0.172) 

1.0 46.019 
46.475 
(0.098) 

9.070 

9.113 

(0.096) 

13.008 
13.241 
(0.093) 

13.473 
13.326 
(0.087) 

12.286 
12.096 
(0.097) 

*results from explicit formulas, **results from simulation, the Italic number is minimum ARL1 

 The number in parentheses is the standard deviation of run length. 
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Table 2. Average run length of DMA chart for the INARCH(1) model where 0 5,  0 0.1  and given   change 

1  k  
2 5 10 15 20 

0.0 370.398 
370.623 
(1.451) 

370.398 
371.558 
(1.565) 

370.398 
370.699 
(1.630) 

370.398 
370.664 
(1.597) 

370.398 
371.745 
(1.468) 

0.1 318.871 
318.452 
(0.988) 

179.137 
179.564 
(0.965) 

67.596 
67.493 
(0.934) 

42.582 
42.389 
(0.974) 

41.641 

41.657 

(0.982) 
0.2 236.985 

236.548 
(0.865) 

71.536 
71.478 
(0.837) 

25.468 

25.489 

(0.863) 

27.526 
27.438 
(0.844) 

35.219 
35.462 
(0.847) 

0.3 173.99 
173.495 
(0.744) 

36.633 
36.291 
(0.732) 

18.907 

18.539 

(0.752) 

25.343 
25.493 
(0.716) 

32.345 
32.367 
(0.759) 

0.4 131.593 
131.522 
(0.676) 

23.070 
23.541 
(0.629) 

17.016 

17.698 

(0.645) 

23.726 
23.578 
(0.653) 

28.357 
28.433 
(0.611) 

0.5 103.213 
104.540 
(0.577) 

16.822 
16.483 
(0.509) 

16.090 

16.493 

(0.521) 

21.841 
21.437 
(0.547) 

24.151 
24.368 
(0.508) 

0.6 83.696 
83.533 
(0.409) 

13.541 

13.276 

(0.425) 

15.408 
15.463 
(0.487) 

19.820 
19.439 
(0.489) 

20.464 
20.433 
(0.465) 

0.7 69.822 
69.789 
(0.354) 

11.636 

11.478 

(0.328) 

14.787 
14.728 
(0.369) 

17.888 
17.439 
(0.376) 

17.510 
17.213 
(0.361) 

0.8 59.643 
59.675 
(0.265) 

10.439 

10.438 

(0.230) 

14.180 
14.287 
(0.261) 

16.171 
16.585 
(0.255) 

15.249 
15.309 
(0.254) 

0.9 51.961 
51.433 
(0.196) 

9.636 

9.456 

(0.126) 

13.585 
13.269 
(0.134) 

14.703 
14.979 
(0.183) 

13.554 
13.271 
(0.168) 

1.0 46.019 
46.767 
(0.093) 

9.070 

9.327 

(0.096) 

13.009 
13.726 
(0.089) 

13.473 
13.896 
(0.097) 

12.286 
12.078 
(0.098) 

*results from explicit formulas, **results from simulation, the Italic number is minimum ARL1 

The number in parentheses is the standard deviation of run length. 
 

The results obtained from the proposed explicit 
formulas are compared with those obtained from 
Monte Carlo simulations. The results showed that the 
efficiency of explicit formulas is the same as those 
obtained from the Monte Carlo simulation; however, 
the former is less time-consuming. When parameter 
values were changed, for example, when the process 
was under control 0 1,  0 0.1,   given in Table 1, 
it was found that when the parameter value changed 
magnitude, 1 0.1,   that 20k   value would 
minimize ARL1 when 10.2 0.5   that 15k   value 
makes ARL1 minimum, and when 1 0.6   that 10k   

value makes ARL1, which yields the same findings as 

0 5,  0 0.1   shown on Table 2. 
For the case of changing the parameters   and 

the control parameter is given 0 1,  and 0 0.1   
the numerical results showed that the performance of 
explicit formulas for ARL of the DMA chart was 
excellent when compared with the Monte Carlo 
simulation method. Unfortunately, the latter is very 
time-consuming. In Table 3 and Table 4, it was found 
that when the magnitude of the parameter change 

2 0.1,   that value 20k   caused the lowest ARL1 

value.
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Table 3. Average run length of DMA chart for the INARCH(1)model where 0 1,   0 0.1   and given  change 

2  k  
2 5 10 15 20 

0.0 370.398 
371.799(

1.406) 

370.398 
370.573(

1.476) 

370.398 
370.599 
(1.465) 

370.398 
371.981(

1.462) 

370.398 
370.568(

1.532) 
0.1 370.388 

370.572(
0.978) 

370.337 
370.452(

0.957) 

370.159 
370.376 
(0.954) 

369.874 
369.756(

0.976) 

369.491 

369.769(

0.966) 

0.2 370.359 
370.465(

0.864) 

370.154 
370.306(

0.837) 

369.443 
369.392 
(0.834) 

368.307 
368.776(

0.879) 

366.793 

366.542(

0.854) 

0.3 370.309 
370.284(

0.776) 

369.848 
369.243(

0.767) 

368.253 
368.583 
(0.766) 

365.72 
365.548(

0.716) 

362.373 

362.452(

0.754) 

0.4 370.24 
370.199(

0.649) 

369.419 
369.292(

0.608) 

366.569 
366.592 
(0.628) 

362.151 
362.434(

0.645) 

356.35 

356.539(

0.605) 

0.5 370.15 
370.173(

0.506) 

368.869 
368.658(

0.536) 

364.483 
364.591 
(0.547) 

357.652 
357.563(

0.563) 

348.878 

348.563(

0.564) 

0.6 370.041 
370.067(

0.452) 

368.197 
368.549(

0.433) 

361.927 
361.973 
(0.463) 

352.289 
352.479(

0.462) 

340.141 

340.568(

0.438) 

0.7 369.911 
369.985(

0.377) 

367.405 
367.291(

0.342) 

358.945 
358.607 
(0.328) 

346.136 
346.511(

0.342) 

330.34 

330.522(

0.387) 

0.8 369.762 
369.675(

0.265) 

366.494 
366.485(

0.299) 

355.555 
355.376 
(0.265) 

339.277 
339.678(

0.257) 

319.686 

319.382(

0.203) 

0.9 369.592 
369.489(

0.183) 

365.464 
365.752 
(0.124) 

351.779 
(351.288(

0.189) 

331.799 
331.575 
(0.176) 

308.385 

308.531(

0.183) 

1.0 369.403 
369.254(

0.096) 

364.318 
364.589(

0.074) 

347.64 
347.547 
(0.087) 

323.7953
23.609(0.

096) 

296.635 

296.546(

0.092) 

*results from explicit formulas, **results from simulation, , Italic number is minimum ARL1 

 The number in parentheses is the standard deviation of run length 
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Table 4. Average run length of DMA chart for the INARCH(1)model where 0 5,  0 0.1   and given   change 

2  k  
2 5 10 15 20 

0.0 370.398 
370.571 
(1.406) 

370.398 
371.292 
(1.392) 

370.398 
371.746 
(1.434) 

370.398 
370.579 
(1.419) 

370.398 
371.856 
(1.333) 

0.1 370.349 
370.426 
(0.968) 

370.093 
370.569 
(0.924) 

369.206 
369.760 
(0.966) 

367.791 
367.309 
(0.933) 

365.906 

365.940 

(0.954) 
0.2 370.2 

379.765 
(0.843) 

369.178 
369.675 
(0.846) 

365.666 
365.478 
(0.862) 

360.164 
361.430 
(0.873) 

353.034 

353.403 

(0.879) 
0.3 369.953 

369.675 
(0.784) 

367.659 
367.565 
(0.709) 

359.897 
359.420 
(0.774) 

348.087 
348.466 
(0.761) 

333.424 

333.219 

(0.791) 
0.4 369.606 

369.496 
(0.655) 

365.549 
365.354 
(0.611) 

352.088 
352.218 
(0.647) 

332.404 
332.085 
(0.679) 

309.286 

309.739 

(0.675) 
0.5 369.161 

369.217 
(0.579) 

362.864 
362.948 
(0.554) 

342.486 
342.392 
(0.561) 

314.096 
314.204 
(0.566) 

282.862 

(282.571 

(0.546) 
0.6 368.617 

368.452 
(0.463) 

359.627 
359.650 
(0.483) 

331.376 
331.084 
(0.435) 

294.157 
295.641 
(0.463) 

256.039 

256.659 

(0.441) 
0.7 367.975 

367.290 
(0.354) 

355.599 
355.642 
(0.343) 

319.064 
319.302 
(0.372) 

273.482 
273.439 
(0.395) 

230.184 

230.798 

(0.365) 
0.8 367.236 

367.928 
(0.275) 

351.599 
351.203 
(0.265) 

305.855 
306.549 
(0.228) 

252.813 
253.074 
(0.245) 

206.151 

206.454 

(0.277) 
0.9 366.4 

366.097 
(0.187) 

346.872 
346.087 
(0.125) 

292.043 
292.438 
(0.167) 

232.713 
232.669 
(0.173) 

184.372 

185.078 

(0.169) 
1.0 365.468 

365.289 
(0.092) 

341.716 
341.685 
(0.096) 

277.894 
277.439 
(0.085) 

213.577 
213.094 
(0.091) 

164.984 

165.938 

(0.087) 
*results from explicit formulas, **results from simulation, the Italic number is minimum ARL1 

The number in parentheses is the standard deviation of run length. 

 
4.2  Real Application 
This section presents the performance of the DMA 
chart with the Shewhart and MA chart. The data 
consists of n = 108 monthly work stoppage count 
displayed in Figure 1, originally published in, [35]. 
The mean of INARCH(1) model is 1.173, and the 
variance of INARCH(1) model is 0.766. The result 
shows that the first sample outside the control limit is 
no. 4 for the Shewhart, MA, and DMA charts in 
Figure 2, Figure 3 and Figure 4, respectively. It can 
be concluded that all three charts are equally 
effective in detecting such data change.   

 
Fig. 1: Strikes counts data 
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Fig. 2: Shewhart chart of strike count data 

 

 
Fig. 3: MA chart (k=5) of strike count data 
 

 
Fig. 4: DMA chart (k=5) of strike count data 
 

 
5  Conclusion and Future Work 
The derivative proof of explicit ARL formulas of the 
DMA control chart for a Poisson INARCH(1) 
process was presented. The numerical results were 
obtained from the explicit formulas and compared 
with the Monte Carlo simulation. They show that the 
explicit formulas' accuracy is in excellent agreement 
with the MC. Furthermore, the results found that 
when a parameter both   and   increases, the DMA 
chart will perform better as the value of k  decreases 

for all case studies. In addition, these explicit 
formulas are simple and easy to implement with 
reduced computation times. For future work, this 
work can extend to other time series models and use 
for the other control charts that practitioners may 
apply in several fields. 
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