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Abstract: - In this paper, we describe and apply different models of portfolio construction in the selection 
between a small number of big-cap cryptocurrencies. Our purpose is to select the minimum riskiness between 
cryptocurrencies, comparing different risk measures and maximum diversification.  We build our models 
without the constraints of the expected returns. Without relying on expected returns, we have the same 
condition on the comparison between them. Cryptocurrencies are not common stock or other assets indexed in 
the market but it is interesting to study how diversification can significantly improve investment performance.  
We first give the methodology to use high-frequency observation data, in the numeral approximation especially 
in the novel application of the Risk parity models, used with different risk measures we can achieve a very 
good result, from the position of gaining and variation. Since Risk parity models divide the weights of the asset 
in equal risk contribution proportion, it is suggested to use a small number of cryptocurrencies, otherwise their 
performance will be close to the uniform portfolio. To the traditional Mean Variance model, and the alternative, 
Expected shortfall/Conditional Value at Risk, we use three versions of Risk Parity with two different risk 
measures and a naive risk parity. The uniform portfolio is used as a benchmark for selection comparison with 
the other portfolio models. We give the conditions for the Risk Parity with the Expected shortfall/Conditional 
Value at Risk (CVaR) to guarantee convergence with the numerical approximation. In the end, we study the 
tradeoff between each model and which is more suitable for a small cryptocurrency portfolio. 
 
Key-Words: - Bitcoin, Cryptocurrency, Asset allocation, Portfolio optimization, Risk diversification, Risk 

Parity, Markowitz, Marginal Risk Contribution, Robust Optimization, Risk Management. 
 
Received: April 9, 2023. Revised: January 5, 2024. Accepted: January 27, 2024. Published: February 23, 2024.     
 
 
1   Introduction 
Trading with Cryptocurrencies, as a non-regulated 
market, has achieved a lot of focus from the point of 
view of the view of speculation and research. The 
most famous cryptocurrency, built using blockchain 
technology, is Bitcoin with a market price of about 
16.700 US dollars per coin and a market 
capitalization of about 320 billion dollars 
(December 2022), which has decreased from 359 
billion USD from the last year. 

The Cryptocurrency market capitalization has 
reached in 2022 above 2 trillion U.S; until 2016 the 
total market capitalization was below 18 billion U.S. 
dollars, (Yahoo Finance 2020). 

Trading is easily accessible in more than 100 
different cryptocurrencies to be used as currency or 
as financial assets.  Thus, cryptocurrencies can be 
seen as an alternative asset of investment, since they 

obtained the increasing attention of many investors 
for very high gains in an observed short time. 

The price of Bitcoin ranges between 13.00 USD 
and about 62.000 USD, thus, some professional 
investors must not invest in cryptocurrency due to 
its unpredictable price movements and high 
volatility, not to mention the fact that there is no 
reliable way to value a crypto asset. The price is 
very sensitive to the authority's prohibition in 
accepting Bitcoin as a currency, but also, the price 
can go up if any public figure such as Elon Musk, 
declares positive things about this method of 
payment. However, several studies show that 
including Bitcoin in a portfolio has significant 
benefits, [1], [2]. The crucial problem with 
Cryptocurrency markets is that they are not under 
the market classic regulation, thus, we should use 
models that rely on the minimum risk. 
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A few cryptocurrencies have large market 
capitalization and in terms of millions or even 
billions, while they usually provide lower 
transaction costs to individuals demonstrating an 
efficient financial market characteristic that 
indicates immediate liquidity, [3].  

If we consider cryptocurrencies as a new class 
of assets or as traditional currency, [4], we should 
first see their statistical characteristics in the 
distribution of the returns such as the skewness, 
kurtosis, and heteroscedasticity. Many works on the 
study of cryptocurrencies found recently are 
common in financial assets and long-memory, [5]. 
Moreover, researches on cryptos further 
demonstrate potential diversification in this 
emerging market for institutional and retail 
investors.  

There are cryptocurrencies that evolvement is 
relatively isolated from the others, [6], which may 
offer diversification benefits for speculators and the 
variety of cryptocurrencies is still uprising, thus the 
cryptocurrency market has an increasing place in 
diversification and portfolio composition, thus, the 
research on the portfolio diversification of 
cryptocurrencies has been increased. Today, you 
may find more than two thousand different 
cryptocurrencies, but do we trust all of them? 

Speaking of optimization models, many other 
portfolio optimization models, such as 𝑉𝑎𝑅𝛼(𝑥), as 
a maximum potential loss of a portfolio in an 
interval of time, have been proposed in the literature 
after the Nobel prize H. Markowitz, [7], with his 
first step in modern portfolio theory. Numerous 
studies on a similar risk measure, the Conditional 
Value at Risk   𝐶𝑉𝑎𝑅𝛼(𝑥), [8], demonstrate why it 
is preferred to Value at Risk  𝑉𝑎𝑅𝛼(𝑥) because the 
later does not allow diversification. The most crucial 
characteristics are that 𝐶𝑉𝑎𝑅𝛼(𝑥) is a convex and 
coherent risk measure demonstrated in the model 
function, [9], a model that supports diversification. 

All of these models rely on the estimated 
expected return of the assets as an input, which 
causes them to concentrate heavily on a restricted 
set of assets and perform badly outside of the 
sample, [10]. Additionally, these models generate 
extremely high weights and demonstrate large 
fluctuations over time. So, comparable to within a 
Mean Variance portfolio, a major adjustment in the 
input parameters can affect the portfolio's 
composition significantly. 

The Risk Parity approach's ability to avoid 
requiring the estimation of expected returns is one 
of its main advantages. The Risk Parity 
methodologies divide the entire risk of the portfolio 

into the risk contributions of each asset in the same 
proportion 

Using the Euler breakdown for the first order 
homogeneous function, we will be able to apply the 
Risk Parity technique to the Expected shortfall or 
more common 𝐶𝑉𝑎𝑅𝛼(𝑥).  

By observation, we know that the idea that the 
returns are a normal multivariate distribution is less 
credible due to the lack of reality.  Other authors, 
[11], use a Mixed Tempered stable distributed for 
the source of risk in the Risk Parity models.  An 
alternative approach, called Equal Risk Bounding 
(ERB), requires the solution of a nonconvex 
quadratically constrained optimization problem. The 
ERB approach, while starting from different 
requirements, turns out to be firmly connected to the 
RP approach, [12]. In this paper, we will treat 
cryptocurrencies as usual stocks or bonds, with a 
purpose of studying how the novices' 
digital currency, which operates without a financial 
system or government authorities, will behave in 
these conditions. We first describe the selected 
small crypto portfolio, justifying our selection on 
these, to analyse the performance in a out of sample 
period with the use of a rolling window. Another 
important step is the analysis of riskiness, portfolio 
turnover, and diversification. 
 

 

2 Cryptocurrency Datasets and 

Models Used 
The cryptocurrency dataset selected, includes the 
period from 1/1/2018 to 31/01/2021 with 1123 
trading days in total (remember that you can trade 
each day of the year 24/7).  We chose this time span 
because it does not included, the moment in which 
Bitcoin reached its highest peak in November 2021, 
avoiding the unusual distortion of the data. 

We collect ten cryptocurrencies with a market 
capitalization larger than half a billion.  To avoid 
any currency fluctuation, all the prices are in dollars 
as they are listed on Yahoo Finance. 
 
 
 
 
 
 
 
 
 
 
 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2024.21.57 Denis Veliu, Marin Aranitasi

E-ISSN: 2224-2899 687 Volume 21, 2024



Table 1. Data of the distribution of the daily returns 
(in %) 

Cryptocurrency Mean Median Range Skewness Kurtosis 

Cardano USD 
(ADA-USD) 

-0.07 -0.01 82.54 -21.40 924.72 

Ethereum 
Classic USD 
(ETC-USD) 

0.24 0.06 81.99 78.10 1436.37 

Binance Coin 
USD (BNB-

USD) 

0.15 0.07 102.4 -13.64 2083 

Bitcoin USD 
(BTC-USD) 

0.08 0.15 63.18 -147.85 2081.29 

Dogecoin USD 
(DOGE-USD) 

0.13 -0.10 183.8 592.56 10552 

Chainlink USD 
(LINK-USD) 

0.31 -0.10 109.5 2.31 1097.80 

Litecoin USD 
(LTC-USD) 

-0.05 -0.07 73.97 -30.90 1021.65 

Tether USD 
(USDT-USD) 

0.00 -0.01 10.60 27.23 2885.30 

Stellar USD 
(XLM-USD) 

-0.04 -0.18 96.91 112.39 1671.9 

Monero USD 
(XMR-USD) 

-0.09 0.07 72.11 -99.16 1153.8 

Source: Authors' calculation 

 
As we see in Table 1, except for Dogecoin, the 

other daily returns are almost normally distributed, 
even if we compare the skewness and the kurtosis. 
We decided to also include Dogecoin to see the 
difference between the cryptocurrencies. 
 

Table 2. The correlation matrix of the returns of the 
cryptocurrencies 

1.00 0.73 0.61 0.73 0.45 0.59 0.76 -0.06 0.79 0.72 

0.73 1.00 0.62 0.79 0.44 0.54 0.81 -0.05 0.63 0.74 

0.61 0.62 1.00 0.68 0.39 0.50 0.67 -0.06 0.55 0.65 

0.73 0.79 0.68 1.00 0.49 0.56 0.82 -0.03 0.64 0.79 

0.45 0.44 0.39 0.49 1.00 0.34 0.48 -0.02 0.45 0.45 

0.59 0.54 0.50 0.56 0.34 1.00 0.55 -0.02 0.51 0.53 

0.76 0.81 0.67 0.82 0.48 0.55 1.00 -0.06 0.65 0.77 
-

0.06 
-

0.05 
-

0.06 
-

0.03 
-

0.02 
-

0.02 
-

0.06 1.00 
-

0.03 
-

0.03 

0.79 0.63 0.55 0.64 0.45 0.51 0.65 -0.03 1.00 0.64 

0.72 0.74 0.65 0.79 0.45 0.53 0.77 -0.03 0.64 1.00 
Source: Authors' calculation 

 
In Table 2 we notice that Tether (row/column 8) 

is the only crypto with returns negatively correlated 
with the other nine cryptocurrencies. The mean of 
returns is centered around zero and close to the 
median which is a good condition. The next step is 
to measure the performance of the portfolio. 

The correlation matrix is important to 
understand the ongoing market, and how the 

behavior of the models is based on the variance of 
the portfolio. 
The portfolio models considered in this article are:  

 1/N equal weighted rule (Naive Portfolio),  
 minimum variance (MV),  
 minimum CVaR,  
 Risk Parity with standard deviation as risk 

measure (RP-std),  
 Risk Parity with conditional value at risk 

measure CVaR (RP-CVaR),  
 Naive Risk Parity CVaR (RP-CVaR naive).    

 
The last one is a special case in which we have 

the worst-case scenario (highest CVaR, useful as an 
upper bound, [13]. 

In all these methods, we do not use expected 
returns, so at the minimum variance i.e. we don’t 
have the constraints of the return of the portfolio, to 
have the smallest possible variance. 

In all the cases we do not allow short selling, so 
the weights allocated at each cryptocurrency can 
assume only positive values. 

We will try different rolling windows to see 
how do they perform by measuring the cumulated 
return of the portfolio. 
 
The first indicator of performance is the following: 

𝜇𝑘
𝑐 (𝑅𝑃) = ∏(1 + 𝑟𝑝𝑗)

𝑘

𝑗=1

− 1 

so that  𝜇𝑇
𝑐 (𝑅𝑃) is the total compounded return for 

the whole period. 
All portfolios will have n assets, for weight xi 

assigned and ℛ(𝑥) as a measure of risk for the 

portfolio   x = (x1, x2,…,xn).  

 
In other works, [14], the more common use of 

Risk Parity is as a risk measure of the standard 
deviation. Considering the weights x = (x1, x2,.....,xn) 
assigned to n assets, the risk measure, in this case, 
standard deviation is given by: 

ℛ(𝑥) = 𝜎𝑃(𝑥) = √∑ ∑ 𝑥𝑖𝑥𝑗𝜎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

= √𝑥′V𝑥 

 
whereV is the covariance matrix. For the i asset, the 
marginal risk contribution is: 

𝑀𝑅𝐶𝑖(𝑥) =
𝜕𝜎𝑃(𝑥)

𝜕𝑥𝑖
=

𝜕𝜎𝑖
2 + ∑ 𝑥𝑖𝜎𝑖𝑗

𝑛
𝑗=1

𝜎𝑃(𝑥)
=

(V𝑥)𝑖

√𝑥′V𝑥
 

 
and the total risk contribution: 
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𝑇𝑅𝐶𝑖(𝑥) = 𝑥𝑖

𝜕𝜎𝑃(𝑥)

𝜕𝑥𝑖
= 𝑥𝑖

𝜕𝜎𝑖
2 + ∑ 𝑥𝑖𝜎𝑖𝑗

𝑛
𝑗=1

𝜎𝑃(𝑥)

= 𝑥𝑖

(V𝑥)𝑖

√𝑥′V𝑥
 

 
The following optimization problem can be used to 
represent the Risk Parity model: 

𝑥∗ = arg min ∑ ∑ (𝑇𝑅𝐶𝑖(𝑥) − 𝑇𝑅𝐶𝑗(𝑥))
2

𝑛

𝑗=1

𝑛

𝑖=1

 

∑ 𝑥𝑖 = 1

𝑛

𝑖=1

 

𝑥 ≥ 0 
 

Remind that the Mean Variance Markowitz 
model equalizes the marginal Risk 
Contribution. 

For the numerical approximation in the proof of 
the partial derivatives of 𝐶𝑉𝑎𝑅𝛼(𝑥), some 
conditions are needed on the distribution of the 
return vector  R = (r1, r2,.....,rn) .  

The denote with 𝑋 = 𝑅′𝑥 = ∑ 𝑥𝑖𝑟𝑖
𝑛
𝑖=1  the 

portfolio return, which must be differentiable to the 
weights 𝑥𝑖 to apply the Euler decomposition. 
The return 𝑟𝑖  from t to time t+1  is measured as 
follow: 

𝑟𝑖,𝑡+1 =
𝑃𝑖,𝑡+1 − 𝑃𝑖,𝑡

𝑃𝑖,𝑡
 

 
We can compute the partial derivatives of the 
𝐶𝑉𝑎𝑅𝛼(𝑥) from partial derivatives for the Value at 
Risk.  Starting from the definition of  𝐶𝑉𝑎𝑅𝛼(𝑥), 
[8], we have 
 

𝐶𝑉𝑎𝑅𝛼(𝑥) =
1

α
∫ 𝑉𝑎𝑅𝑣(𝑥)d𝑣

α

0

 

 
Thus, using the needed assumptions, [9], from 

the mathematical point of view, we can proceed 
with the differentiation to the variable 𝑥𝑖  weights. 
𝜕𝐶𝑉𝑎𝑅𝛼(𝑥)

𝜕𝑥𝑖
=

1

α
∫

𝜕𝐶𝑉𝑎𝑅𝛼(𝑥)

𝜕𝑥𝑖
d𝑣

α

0

= −
1

α
∫ 𝐸[𝑟𝑖|−𝑅′𝑥

α

0

= 𝑉𝑎𝑅𝛼(𝑥)]d𝑣 = 

−
1

α
∫ 𝐸[𝑟𝑖|𝑋 = 𝑞𝛼(𝑋)]d𝑣 =

α

0

−  𝐸[𝑟𝑖|𝑋 ≤ −𝑉𝑎𝑅𝛼(𝑥)] 
 

The Total Risk is given from the following 
expression for the asset i: 

𝑇𝑅𝐶𝑖
𝐶𝑉𝑎𝑅𝛼(𝑥)

(𝑥) = 𝑥𝑖

𝜕𝐶𝑉𝑎𝑅𝛼(𝑥)

𝜕𝑥𝑖
 

 
In case of continuous returns distribution, we 

can pass to the following presentation: 
 

𝑇𝑅𝐶𝑖
𝐶𝑉𝑎𝑅𝛼(𝑥)

(𝑥) = −𝑥𝑖𝐸[𝑟𝑖|𝑋 ≤ −𝑉𝑎𝑅𝛼(𝑥)] 

𝐶𝑉𝑎𝑅𝛼(𝑥) = ∑ 𝑇𝑅𝐶𝑖
𝐶𝑉𝑎𝑅𝛼(𝑥)

(𝑥)

𝑛

𝑖=1

= − ∑ 𝑥𝑖𝐸[𝑟𝑖|𝑋 ≤ −𝑉𝑎𝑅𝛼(𝑥)]

𝑛

𝑖=1

 

 
For the discrete variables in the numerical 

finding for  𝑽𝒂𝑹𝜶(𝒙) and 𝑪𝑽𝒂𝑹𝜶(𝒙) Risk Parity 
using times series observations we have to do the 
following assumption.  Assuming that the i-th asset 
return  rji with i=1,.....,n  and j=1,...,T where n is the 
quantity of elements considered at our portfolio  and 
T the laps of time of observation. The vector of the 
created portfolio returns is 𝑅𝑃 = (𝑟𝑝1, … . . , 𝑟𝑝𝑇) in 
which: 

 
𝑟𝑝𝑗 = 𝑥′𝑟𝑗 with j=1,....,T where 𝑟𝑗 = (𝑟𝑗1, … . . , 𝑟𝑗𝑇). 
 

Using the central limit theorem for the number 
of observation large enough, the approximation of 
the empirical distribution of the observed portfolio 
returns: 

𝑃(𝑅𝑃 ≤ 𝑦) ≈
#(𝑗 = 1, … . , 𝑇|𝑟𝑝1 ≤ 𝑦)

𝑇
 

So, approximation for the 𝑉𝑎𝑅𝛼(𝑥) and 𝐶𝑉𝑎𝑅𝛼(𝑥) 
of portfolio returns will be as follows: 

𝑉𝑎𝑅𝛼(𝑥) ≈ −𝑟p⌊αT⌋
sorted 

𝐶𝑉𝑎𝑅𝛼(𝑥) ≈ −
1

αT
∑ 𝑟p j

sorted

⌊αT⌋

j=1

 

 
where α is the significance level and  rp j

sortedare the 
sorted portfolio returns that must satisfy 
 

𝑟𝑝 1
𝑠𝑜𝑟𝑡𝑒𝑑 ≤ 𝑟𝑝 2

𝑠𝑜𝑟𝑡𝑒𝑑 ≤ ⋯ 𝑟𝑝 𝑗
𝑠𝑜𝑟𝑡𝑒𝑑 ≤ ⋯ ≤ 𝑟𝑝 𝑗

𝑠𝑜𝑟𝑡𝑒𝑑 

 
For more details, [15]. 
 

Using times series observations, the discrete 
values of the partial derivatives 𝐶𝑉𝑎𝑅𝛼(𝑥) for each 
asst i becomes: 

𝜕𝐶𝑉𝑎𝑅𝛼(𝑥)

𝜕𝑥𝑖
≈ −

1

αT
∑ 𝑟k i

sorted⌊αT⌋
k=1  i=1,...,n 

 
and then the total risk contribution of asset i is 
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𝑇𝑅𝐶𝑖
𝐶𝑉𝑎𝑅𝛼(𝑥)

(𝑥) = 𝑥𝑖

𝜕𝐶𝑉𝑎𝑅𝛼(𝑥)

𝜕𝑥𝑖

≈ −
1

⌊αT⌋
𝑥𝑖 ∑ 𝑟k i

sorted

⌊αT⌋

k=1

 

 
where 𝑟k i

sorted  are the related portfolio returns to the 
ordered from the smallest to the largest value. 
  

We consider three diversification measures, to 
control, if the portfolios are well diversified. 
Consider a portfolio x = (x1, x2,.....,xn)   satisfying 
the budget constraint  ∑ 𝑥𝑖

𝑛
𝑖=1 = 1 with no short 

selling (𝑥𝑖 ≥ 0) .   
The Bera and Park 𝐷𝐵𝑃 measure, [16], is very 

important to understand the entropy of the portfolio, 
for strategies no short selling strategies.  

𝐷𝐵𝑃 = − ∑ 𝑤𝑖log (𝑤𝑖) 

𝑛

𝑖=1

= ∑ 𝑤𝑖log (
1

𝑤𝑖

) 

𝑛

𝑖=1

 

 
The 𝐷𝐵𝑃 assumes values between 0 (all in one) 

and log(n)  for uniform allocation: the 
diversification measures only accurately reflect 
diversity in terms of weights allocated and do not 
consider the fact that different types of assets will 
have changing effects on the high change of the 
entire portfolio. 

The turnover of the portfolio is another helpful 
amount for determining transaction costs: 
 

𝑇𝑂 = ∑ |𝑤𝑖
𝑡+1 − 𝑤𝑖

𝑡|𝑛
𝑖=1 , 

 
where 𝑤𝑖

𝑡 is the amount assigned in i the 
observation t.  
 

For the computation, we use MATLAB 
software running on a Laptop with Windows 10 
Home operation system, Intel(R) Core(TM) i7-
7500U CPU @ 2.70GHz   2.90 GHz, 12 RAM  and 
NVIDIA GeForce 930MX graphic card. The timing 
of optimization is very short compared to the other. 
 

 

3 Results in Performance out of 

Sample and Diversification  
To succeed in the numerical approximation, we 
create a rolling window using the data of the past 2 
years (from 1/1/2018 to 1/1/2020 so L=365*2=730 
observation) for the estimation of the weights of 
each of the portfolio models and move the rolling 
window in the period from 1/1/2020 to 31/1/2021 to 
measure the out of sample for the next 7 days 

(Holding period). This will take 56 iterations for the 
calculation of the optimal portfolios. Remembering 
that short selling is not allowed. The expected 
returns constraint is eliminated, for the Minimum 
Variance and Conditional Value at Risk model: the 
minimum risk is achieved for each risk measure. 
Let us see the weights only for the first optimization 
(L=730 days). 
 
Table 3. Weight allocation of the first optimization 

(in %) 

 Portfolio Model 

 
 
 
 
 

Crypto. 

U
niform

 

R
. P. S. D

. 

R
. P. C

V
aR

 

R
. P. C

V
aR

 N
. 

M
in-C

V
aR

 

M
in-V

ar 

Cardano  10 2.97 4.38 2.07 0.00 0.07 
Ethereum 10 2.76 4.07 1.98 0.00 0.03 
Binance  10 3.48 4.94 2.70 0.00 0.06 
Bitcoin  10 4.26 6.32 2.96 0.00 0.03 
Dogecoin  10 3.62 4.96 2.78 0.00 0.07 
Chainlink  10 2.99 3.96 2.13 0.00 0.01 
Litecoin  10 3.28 5.13 2.47 0.00 0.05 
Tether  10 70.3 57.1 78.5 100 100 
Stellar  10 3.18 4.60 2.28 0.00 0.02 
Monero  10 3.20 4.56 2.22 0.00 0.02 
TOTAL 100 100 100 100 100 100 
Source: Authors' calculation 

  
As it is clear from Table 3, most of the 

portfolios focus on the  Tether USD, in which, 
Minimum variance and CVaR are fully allocated.  
The Risk parity models a range between 57% to 
78% in the same cryptocurrency.  This is very 
interesting if we compare it with the matrix of 
covariance, Tether is the only one negatively 
correlated, as we know, it will have a smaller 
volatility. Thus, most of the weights are higher for 
this cryptocurrency.  

The better way to show the compound return 
rate is from the graph below.  
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Fig. 1: The compound return rate  

 Source: Authors' calculation 
     

In Figure 1, we observe that the uniform 
portfolio (naïve portfolio in blue color) and the Risk 
Parity with CVaR Naïve, which do not consider the 
risk in the first place, outperform compared to the 
other risk measures but on the ongoing have also a 
higher drawdown (April 2020).  The uniform at the 
end of the observation has doubled his compound 
return rate. 

The Mean Variance Model and the CVaR, have 
almost the same performance by having the 
minimum risk possible but a very small value in 
compound return. 

In between, we have the Risk Parity with CVaR 
and Risk Parity with standard deviation as a risk 
measure. As we explained, these come for the better 
diversification of the risk (Figure 1). 

If we measure the riskiness of each portfolio 
using the standard deviation, we will notice that the 
uniform and the Risk Parity with naïve CVaR will 
have a very high risk. 
 

 
Fig. 2:  The standard deviation of portfolio 
selections 
Source: Authors' calculation 

      The Mean Variance and CVaR models have 
almost the same results (Figure 2), as we notice in 
the lower part of the graph. We will have similar 
results if the holding period changes by one or two 
days.  

In a recent paper, [17], they created portfolios 
comparing cases with and without Bitcoin only as 
one asset in portfolios with usual assets such as gold 
and other indexes. They use the mean variance 
model and the risk parity only with the standard 
deviation as a risk measure. They are pointing out 
that the allocation to Bitcoin in most of the 
unconstrained or semi-constrained frameworks was 
minimal. They insist since Bitcoin observers have 
substantial value variations, stakeholders must 
exercise attentiveness and limit their acquaintance to 
Bitcoin, a superfluous exposure to Bitcoin may not 
principally lead to development in portfolio 
performance qualities, [16]. 

To have a close estimation of what happens in 
case we consider the transaction costs, we can see 
the portfolio turnover (Figure 3). 

 

 
Fig. 3: Portfolio weekly turnover 
Source: Authors' calculation 

 
Knowing that the number of cryptocurrencies 

(ten) is a small one, Mean Variance and CVaR are 
focused on a smaller number of cryptocurrencies, 
thus the portfolio turnover will be higher (Figure 3). 
Considering that cryptocurrencies are easily 
accessible by different competitive platforms, we 
still may face different costs, for instance, 
subscriptions costs and small commissions. 

The last point to discuss is diversification by 
measuring Bera Park, remember that the higher is 
the value, the better are diversified the portfolios. 
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Fig. 4: Diversification by Bera Park. 
Source: Authors' calculation  
 

As we notice from the Figure 4, both measures 
have similar results. Focusing on a smaller number 
of crypto, M-V, and CVaR are concentrated 
compared to the models. 

The values of the diversification are better with 
the Risk parity methods, especially with the 
Conditional Value at Risk as a Risk measure (Figure 
4).  
 

 

4   Conclusion 
The novelty of this paper consists in comparing 
different methods of portfolio optimization in the 
cryptocurrency market. Without using the expected 
returns all the models for portfolio selection are in 
the same condition, The Mean Variance and CVaR 
are at the minimum risk, as the other models without 
the use of the expected returns constraint. We have 
chosen ten cryptocurrencies with the highest 
capitalization and a lap of time for the observed data 
large enough to give a significant conclusion. We 
described the observed data, to make sure that they 
are suitable for the conditions of the Mean Variance 
and other models that have conditions on the 
distribution of the returns and the correlation matrix. 
After we described the methodology for the 
numerical approximation, we passed from the 
continuous case to the discrete observation with 
high-frequency data. 

Considering cryptocurrencies as an asset class 
we faced an issue of increased volatility, and were 
very sensitive to the market information. For that, 
there is a necessity to develop particular models for 
asset allocation in cryptocurrencies. Traditional 
approaches, like the Markowitz model, solely 
concentrate on assets that carry an absolute minimal 
amount of risk. Therefore, if the investor tries to 
rebalance the portfolio, this high concentration will 

likewise have significant transaction costs. 
Additionally, relying on predicted returns during a 
downturn in the economy would result in an 
unrealistic and pessimistic asset allocation. Some 
investors may have a large collection of 
cryptocurrencies in their financial holdings for a 
variety of reasons, most notably for speculation.  

When associated with CVaR and Mean 
Variance, the cryptocurrency portfolio built using 
the Risk Parity criteria showed higher diversity and 
less focus on high weights.  This results in lower 
costs for recalibrating the portfolio due to the low 
turnover. 

From the perspectives of performance and 
volatility, the Risk Parity techniques in each of these 
situations represent a good compromise between the 
CVaR, Mean Variance, and the uniform portfolio. 
The importance of the cryptocurrency has been seen 
lately as Bitcoin is a novice to the world of 
exchange-traded funds. Bitcoin ETFs allow 
investors to get exposure to the tempting potential of 
BTC without having to directly own it or safely 
store it, [18]. Some investors may feel safer getting 
exposure to Bitcoin in their portfolios by purchasing 
a professionally managed ETF than they do owning 
an actual BTC. This is to show the importance of 
cryptocurrencies in the post COVID 19 market and 
more studies need to be done by including these 
assets in the investments. 
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