[65] R. Gabriele, M. Zamarian, and E. Zaninotto,
“Assessing the Economic Impact of Public
Industrial Policies: An Empirical Investigation on
Subsidies,” SSRN Electron. J., 2006, doi:
10.2139/ssrn.1086375.
[66] G. Pellegrini and M. Centra, “Growth and
efficiency in subsidized firms,” Workshop Eval.
Labour Mark. Welf. Firms Incent. Programme,
2006, [Online]. Available:
http://valutazione2003.stat.unipd.it/pdf/VeneziaM
ag2006/Paper/Pellegrini_Centra.pdf
[67] K. Benkovskis, O. Tkačevs, N. Yashiro, and B.
Javorcik, “Importance of EU regional support
programmes for firm performance,” Econ. Policy,
vol. 34, no. 98, pp. 267–313, 2019.
[68] V. Namiotko, A. Galnaitytė, T. Baležentis, and P.
Wang, “The impact of investment support on
labour productivity in Lithuanian family farms: A
propensity score matching approach,” Econ.
Sociol., vol. 12, no. 1, pp. 342–352, Mar. 2019,
doi: 10.14254/2071-789X.2019/12-1/21.
[69] A. Santos, “Do selected firms show higher
performance? The case of Portugal’s innovation
subsidy,” Struct. Change Econ. Dyn., vol. 50, pp.
39–50, Sep. 2019, doi:
10.1016/j.strueco.2019.04.003.
[70] A. Santos, M. Cincera, P. Neto, and M. M.
Serrano, “Which projects are selected for an
innovation subsidy? The Portuguese case,” Port.
Econ. J., vol. 18, no. 3, pp. 165–202, Oct. 2019,
doi: 10.1007/s10258-019-00159-y.
[71] N. Duch, D. Montolio, and M. Mediavilla,
“Evaluating the impact of public subsidies on a
firm’s performance: a two-stage quasi-
experimental approach,” SSRN Electron. J., p. 24,
2009, doi: 10.2139/ssrn.1847600.
[72] P. Nilsson, “Productivity effects of CAP
investment support: Evidence from Sweden using
matched panel data,” Land Use Policy, vol. 66,
pp. 172–182, Jul. 2017, doi:
10.1016/j.landusepol.2017.04.043.
[73] I. Kostopoulos and A. Pseiridis, “The impact of
state aid on labor productivity in firms of EU
member states: a systematic review of propensity
score matching analyses [Unpublished
manuscript],” Panteion University, Athens,
Greece, 2021.
[74] D. B. Rubin, “Estimating causal effects of
treatments in randomized and nonrandomized
studies.,” J. Educ. Psychol., vol. 66, no. 5, pp.
688–701, 1974, doi: 10.1037/h0037350.
[75] S. Khandker, G. B. Koolwal, and H. Samad,
Handbook on Impact Evaluation: Quantitative
Methods and Practices. The World Bank, 2009.
doi: 10.1596/978-0-8213-8028-4.
[76] P. R. Rosenbaum and D. B. Rubin, “The central
role of the propensity score in observational
studies for causal effects,” Biometrika, vol. 70,
no. 1, pp. 41–55, 1983, doi:
10.1093/biomet/70.1.41.
[77] P. M. Steiner, “S. Guo & M.W. Fraser (2010).
Propensity Score Analysis: Statistical Methods
and Applications.: Thousand Oaks: SAGE
Publications. 370+xviii pp. US$64.95. ISBN 978-
1-4129-5356-6,” Psychometrika, vol. 75, no. 4,
pp. 775–777, Dec. 2010, doi: 10.1007/s11336-
010-9170-8.
[78] E. A. Stuart, “Matching Methods for Causal
Inference: A Review and a Look Forward,” Stat.
Sci., vol. 25, no. 1, Feb. 2010, doi: 10.1214/09-
STS313.
[79] D. E. Ho, K. Imai, G. King, and E. A. Stuart,
“Matching as Nonparametric Preprocessing for
Reducing Model Dependence in Parametric
Causal Inference,” Polit. Anal., vol. 15, no. 3, pp.
199–236, 2007, doi: 10.1093/pan/mpl013.
[80] M. M. Joffe and P. R. Rosenbaum, “Invited
Commentary: Propensity Scores,” Am. J.
Epidemiol., vol. 150, no. 4, pp. 327–333, Aug.
1999, doi: 10.1093/oxfordjournals.aje.a010011.
[81] P. R. Rosenbaum and D. B. Rubin, “Constructing
a Control Group Using Multivariate Matched
Sampling Methods That Incorporate the
Propensity Score,” Am. Stat., vol. 39, no. 1, p. 33,
Feb. 1985, doi: 10.2307/2683903.
[82] P. R. Rosenbaum and D. B. Rubin, “Reducing
Bias in Observational Studies Using
Subclassification on the Propensity Score,” J. Am.
Stat. Assoc., vol. 79, no. 387, pp. 516–524, Sep.
1984, doi: 10.1080/01621459.1984.10478078.
[83] D. B. Rubin, “Estimation in Parallel Randomized
Experiments,” J. Educ. Stat., vol. 6, no. 4, p. 377,
1981, doi: 10.2307/1164617.
[84] P. J. Gertler, S. Martinez, P. Premand, L. B.
Rawlings, and C. M. J. Vermeersch, Impact
Evaluation in Practice, Second Edition.
Washington, DC: Inter-American Development
Bank and World Bank, 2016. doi: 10.1596/978-1-
4648-0779-4.
[85] A. Abadie and G. W. Imbens, “Matching on the
Estimated Propensity Score,” Econometrica, vol.
84, no. 2, pp. 781–807, 2016, doi:
https://doi.org/10.3982/ECTA11293.
[86] H. Bai, “Methodological considerations in
implementing propensity score matching,” in
Propensity score analysis: Fundamentals and
developments, New York, NY, US: Guilford
Press, 2015, pp. 74–88.
[87] R. H. Dehejia and S. Wahba, “Propensity Score
Matching Methods for Non-Experimental Causal
Studies,” SSRN Electron. J., 2002, doi:
10.2139/ssrn.1084955.
[88] D. B. Rubin, “Using Multivariate Matched
Sampling and Regression Adjustment to Control
Bias in Observational Studies,” J. Am. Stat.
Assoc., vol. 74, no. 366a, pp. 318–328, Jun. 1979,
doi: 10.1080/01621459.1979.10482513.
[89] General Electronic Commercial Registry, “Data
of companies,” 2021. [Online]. Available:
https://www.businessregistry.gr/publicity/index
WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2023.20.33
Anastasia Pseiridis, Ioannis Kostopoulos