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Abstract: - In this paper, we suggest the bare minimum initial capital a firm providing insurance must hold to 
avoid going bankrupt. A case-separated investment discrete-time surplus process in motor insurance claims 
serves as the study's model. The 50th, 60th, 70th, and 80th percentiles are used as the dividing line between a 
claim's standard claim and large claim situations. We also discover a link between an insurance company's 
initial capital and the likelihood of ruin. The least squares regression method is utilized to calculate the 
minimum initial capital, and the simulation approach would be used to determine the ruin probability. The 
results indicate that the least initial capital is better provided by the 70th percentile than the 50th, 60th, and 80th 
percentiles, respectively. 
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1 Introduction 
According to [1], the first actuary to define a 
modern excess process, a surplus process is one 
that: Initial capital + premium - outflow equals the 
surplus process. The surplus process is given under 
three assumptions. 
 1. Claims occur at times iT  that satisfy the 
conditions 1 20 T T   . We refer to these as claim 
times. 
 2. The claim size or claim severity 

iY  is caused 
by the i-th claim arriving at a time .iT  An 
independent and identically distributed (i.i.d.) 
sequence of non-negative random variables is the 
sequence of claim sizes { , }.iY i   
 3. The claim sizes process { , }iY i   and the 
claim arrival process{ , }iT i  are mutually 
independent. The discrete-time surplus process 

 0
1

, ; .
n

n k

k

U u cn Y U u n


      (1) 

is studied by [2], in the scenario of claim sizes 
occurring daily ( ,nT n n  ),  where u  is the initial 
capital, cn  is the premium, and   { , 1,2, }iY i n  is a 
set of claim sizes (outflow) that are i.i.d. random 
variables. It is assumed that the set of claim sizes 
{ , 1,2, }iY i n  is made up of geometric and 
exponential random variables. Let 

 ( ) { ( ) 0 0, } | (0)u P U n n n U u        
 be the ruin probability(insolvency), and, [2], 
suggests a recursive version of this equation. The 
model of [2], is generalized in, [3], by considering  
{ , 1,2, }iY i n  as an arbitrary i.i.d. sequence (the 
sequence need not be exponential nor does it require 
geometric random variables). While defining an 
explicit form of the ruin probability is challenging, 
it is possible for it to take the recursive form. 

 
11( ) ( ) ( ) ( ), .

u c

n n Yu u u c y dF y n





          

When ,nT n n  and 1,k k kZ T T k    is the 
inter-arrival time, the surplus process (1) can be 
expressed using the notation 

 1 0, .n n n nU U cZ Y U u     (2) 
The discrete-time surplus process, according to the 
authors in [4], [5], incorporates the constant interest 
rate r  and expresses Lundberg's bounds of the ruin 
probabilities. The model has the form of a 

 1 0(1 ) , , .n n nU U r Y U u n       
In a discrete-time surplus process with proportional 
reinsurance and investment, [6], [7] provide lower 
and upper bounds for the ruin probability by 
applying the techniques of, [8], [9]. As shown by 
[10], using the martingale method, the exponential 
upper bounds of the model's ruin probability can be 
presented as: 
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where nI  is the interest rate sequence, , ,M   
and nX  is the sequence of claim sizes.  
When claims occur exactly once per day ( 1nZ  ), 
[11], examine the investment discrete-time surplus 
process (2) and divide claim sizes into standard and 
large claims under the condition that standard and 
large claims do not occur at the same time. The 
criteria used by them is the 80th percentile. The 
description of this model is as follows: 
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 (3) 

where r  is the daily interest rate, c  is the premium 
rate, L

kT  is the arrival time of large claims, and the 
set of standard claims { , }nV n  and the set of 
large claims { , }nW n  are i.i.d. 
     It should be highlighted that the 80th percentile is 
the only criterion used in the proposed model (3) to 
distinguish between standard and large claim sizes. 
 The research of, [4], [5], [6], [7], [10], leads us to 
the conclusion that the ruin probability is 
challenging to express explicitly. As a result, they 
propose using the ruin probability as an implicit 
form or to express the upper and lower bounds of 
the ruin probability. It is not possible to utilize the 
conclusions of, [4], [5], [6], [7], [10], to calculate 
the minimum initial capital that an insurance firm 
must hold in reserve to avoid bankruptcy. 
Consequently, we must obtain the ruin probability 
as a number. The 80th percentile has been the sole 
criterion employed by the writers of [11], to 
distinguish between standard and large claims.  
 In this study, the ruin probability is calculated as 
a number and used to determine the minimum initial 
capital using the simulation approach. Not only is 
the 80th percentile used as a criterion for dividing 
claims into standard and large claims, but also the 
50th, 60th, and 70th percentiles. We are interested in 
how the minimum initial capital is impacted by the 
percentile difference. In addition, we analyze the 
minimum initial capital that an insurance company 
must reserve to avoid bankruptcy for each percentile 
in the model and determine the relationship between 
initial capital and the ruin probability (3). The 

study's boundary is determined by our assumption 
that the insurance company's probability of 
bankruptcy is less than or equal to 0.01 and that it 
can invest in risk-free assets at a constant interest 
rate of 1/365

0(1 ) 1r r   , where 0r  is the compound 
interest rate and 0 0.02r  annually. 
 
 

2 Methodology  
 
2.1 Estimation of Parameters  
Daily motor claims with a 365-claim sample size 
have been the source of the data for this study (see 
Figure 1). rP  should be the percentile (

50,60,70,80r  ) and .i  If the claim size is less 
than or equal to rP , it is referred to as a standard 
claim and is represented by the symbol .iV  When a 
claim size exceeds rP , we refer to it as a large 
claim, and this is indicated by the symbol .iW  Let 
| |S  and | |L  represent a collection of standard and 
large claims, respectively, in terms of the number of 
elements. We determine 50 63833P  Baht, | | 183S  , 
| | 182,L  60 82768.2P   Baht, | | 219S  , | | 146,L 

70 104150.2P   Bath, | | 257S  , | | 109,L  and 
80 1043618.2P  Bath, | | 292S  , | | 73L   from 

Figure 1. Moreover, Table 1 presents, for each 
percentile, the distributions of the standard and large 
claims at a 95% confidence level. 
 

 
Fig. 1: The 365 Claims of motor insurance 
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Furthermore, for each percentile, the distributions of 
the standard and large claims at a 95% confidence 
level are expressed in Table 1. 
 

Table 1. Distribution of standard and large claims 
with a 95% level of confidence 

rP  
Distributions of 
standard claims 

Distributions of 
Large claims 

50P  

Weibull( , )
2.1075
40963.8212

 









 
Log-normal( , , )

10.9174, 1.229
61323

  

 



 



 

60P  

Weibull( , )
1.9382
47864.8482

 









 
Log-normal( , , )

10.8925, 1.3033
81078

  

 



 



 

70P  

Weibull( , )
1.7513
55986.4935

 









 

Weibull( , , )
0.7743
102610.9392
104280

  













 

80P  

Weibull( , )
1.5818
65134.7091

 









 
Log-normal( , , )

11.1282, 1.3489
141080

  

 



 



 

 
2.2 Simulation 
First, we should be notified of the ruin probability 

( ),u   
 0( ) { 0 0, } | .nu P U n n U u        

In other words, the ruin probability is the possibility 
that nU  will eventually fall below zero. This section 

nU  is determined by (3), which is  
 

1

1

0

(1 ) , ,
for all 1, 2,3, ,
(1 ) , ,
for some 1, 2,3, ,

, ,

L

n n k

n L

n n k

U r c V n T

k
U

U r c W n T

k

U u n





    



 

   
 

 

 

 
where 1/365

0(1 ) 1r r    0r  is the compound interest 
rate with 0 2%r   per annum, c  is determined using 
the expected value premium principle, that is,  
 
 1

1
1

(1 )( ),
L

EW
c EV

EZ
    (4) 

 
{ , }nV n  and { , }nW n are i.i.d., along with ,  

the safety loading, ,L

kZ  the inter-arrival time of a 
large claim, ,L

kT  and the arrival time of large 

claims, so { , }L

kT k N  is assumed as i.i.d., and

1 Poisson( ).L LZ   

 The premium rate of (4) is then determined using 
the parameters listed in Table 1 and the knowledge 

that, 1Weibull( , ), ( ) (1 ),X E X  


    

1Weibull( , , ), ( ) (1 ) ,X E X    


     and if  

21Log-normal ( , , ), ( ) exp( ) .
2

X E X         

 
Table 2. Premium rate c for each percentile 

rP  Premium rate c  

50P  

1
1

1

1

(1 )( ) (1 )(125355.0265),

365 2.0055
182

L

L

EW
c EV

EZ

EZ

     

 

 

60P  

1
1

1

1

(1 )( ) (1 )(125167.1633),

365 2.500
146

L

L

EW
c EV

EZ

EZ

     

 

 

70P  

1
1

1

1

(1 )( ) (1 )(116571.3903),

365 3.3486
109

L

L

EW
c EV

EZ

EZ

     

 

 

80P  

1
1

1

1

(1 )( ) (1 )(120487.796),

365 5
73

L

L

EW
c EV

EZ

EZ

     

 

 

 
An example of calculating the premium rate c  is 
shown in Table 2 after that. When considering the 
50th percentile as the criterion, 
 

1 weibull( 2.1075, 40963.8212)V     and  
1 Log-normal( 10.9174, 1.229, 61323)W     

1
1(1 )

(40963.8212) (1 1/ 2.1075)
36280.5842

EV 


  

  



 

2
1

2

exp( (1/ 2) )

exp(10.9174 (1/ 2)(1.229) ) 61323
178638.3046

EW     

  



 

 
1
LZ  is the inter-arrival time of a large claim and  

1 ( )LZ Poisson   and 1 365 /182 2.0055.LEZ     
As a result, 
 

1
1

1

(1 )( )

178638.3046(1 )( 36280.5842)
2.0055

(1 )(125355.0265).

L

EW
c EV

EZ






  

  

 
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 These are the simulation procedures with the 50th 
percentile as the criterion. 
 
 step 1: set the number of simulations 20000,N   

0,20000, ,1320000u  , safety loading 
0, 0.1, , 1   and 1/365(1 0.02) 1.r     

 step 2: generate variate iv  and iw  (sample from 
Weibull and log-normal distribution) and generate 
variate L

iZ ( sample from Poisson distribution). 
     step 3: calculate the inter-arrival time of  L

iZ   
summation. If sum( ) 365L

iZ  , move on to step 4. 
We begin the next simulation if sum( ) 365.L

iZ   
 step 4: compute (1 )i i i iu u r c v     or 
                 compute (1 )i i i iu u r c w      
     step 5: if 0iu  , set 1i i  and move on to step 2 
from there. If 0,iu   then the current time is in ruin 
(insolvency), and the subsequent simulation will 
begin. 
 step 6: repeat this process up to a total of 20000 
times. The ruin probability is equal to the sum of all 
instances where 0iu  divided by 20000. 
In Figure 2, the flowchart is presented. 
 
When used as a criterion, the 60th, 70th, and 80th 
percentile simulation steps are equivalent to the 50th 
percentile simulation steps. 
 
The exponential relationships between the ruin 
probabilities and the initial capitals are obtained 
from Figure 2 and shown in Figure 3; the highest 
curve is plotted based on 0.1,   followed by the 
next curve at 0.2,  and so on, ending with the 
lowest curve at 1  . When we divide claims using 
the 60th, 70th, and 80th percentiles, the relationships 
between the ruin probabilities and the initial capitals 
are still exponential relationships. The results are 
represented in Figure 4, Figure 5, and Figure 6, 
respectively. 

 

 
Fig. 2: The simulation flowchart uses the 50th 
percentile as the criterion. 

 
 

 

WSEAS TRANSACTIONS on BUSINESS and ECONOMICS 
DOI: 10.37394/23207.2023.20.112 Soontorn Boonta, Kanoktip Kotsamran

E-ISSN: 2224-2899 1263 Volume 20, 2023



 
Fig. 3: Relations between initial capitals and ruin probabilities using the 50P as a criterion  

 

 
Fig. 4: Relations between initial capitals and ruin probabilities using the 60P  as a criterion 

 

 
Fig. 5: Relations between initial capitals and ruin probabilities using the 70P  as a criterion 

 

 
Fig. 6: Relations between initial capitals and ruin probabilities using the 80P  as a criterion 

 
 
2.3 Minimum Initial Capital 
In Figures 3 to 6, the ruin probability, represented 
by y , and the initial capital u  are expressed by the 
exponential function given by 

 .buy ae  (5) 
Equation (5) can be written as the linear function

0 1 ,v u    by taking the logarithm function,  
 ln ln ,y a bu    
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where 0ln , lnv y a   and 1 .b     
The 0 and 1  can be calculated by the linear least 
squares regression: 
 2

1 1 1 1
0 2

2

1 1

ln ln
,

n n n n

i i i i i

i i i i

n n

i i

i i

u y u u y

n u u

    

 

     
     

     
 

  
 

   

 
  

 
 

1 1 1
1 2

2

1 1

ln ln

,

n n n

i i i i

i i i

n n

i i

i i

n u y u y

n u u


  

 

  
  
  
  

 
 
 
 

  

 
  

where 
iy  is the ruin probability and 

iu is the initial 
capital as in Figures 3 to 6. Thus we obtain 0a e


  

and 1.b      
 From (5), if we set the ruin probability y  that is 
less than or equal to ,  i.e., 
 ,buae     

then we obtain 1 ln .u
b a


   Therefore the 

minimum initial capital, denoted as MIC, is 
 1MIC : ln .u

b a


    (6) 

 
3 Results 
Equation (6) demonstrates that for each safety 
loading , the MIC will be as given in Table 3, 
Table 4, Table 5, and Table 6 if an insurance 
company would like to reserve the MIC under the 
ruin probability less than or equal to 0.01.   
 

Table 3. The MIC using 50P as the criterion 

  a  b  MIC(Baht) 

0.1 0.6684 62.0716 10  2028548 

0.2 0.6387 62.0751 10  2003259 

0.3 0.6129 62.0642 10  1993850 

0.4 0.5909 62.0592 10  1980880 

0.5 0.5711 62.0420 10  1980834 

0.6 0.5517 62.0151 10  1990225 

0.7 0.5361 62.0125 10  1978497 

0.8 0.5207 61.9886 10  1987597 

0.9 0.5082 61.9994 10  1964713 

1 0.4942 61.9554 10  1994660 

Table 4. The MIC using 60P as the criterion 

  a  b  MIC(Baht) 

0.1 0.2630 61.6661 10  1962494 

0.2 0.2179 61.7056 10  1806641 

0.3 0.1821 61.7078 10  1699245 

0.4 0.1557 61.7109 10  1604513 

0.5 0.1343 61.7004 10  1527443 

0.6 0.1187 61.7081 10  1448429 

0.7 0.1039 61.6837 10  1390153 

0.8 0.0925 61.6780 10  1325973 

0.9 0.0830 61.6666 10  1270002 

1 0.0757 61.6656 10  1214941 
 

Table 5. The MIC using 70P as the criterion 

  a  b  MIC(Baht) 

0.1 0.3898 62.0471 10  1789409 

0.2 0.3079 62.2889 10  1497381 

0.3 0.2480 62.4433 10  1313636 

0.4 0.2031 62.5491 10  1181252 

0.5 0.1702 62.6401 10  1073479 

0.6 0.1444 62.6965 10  990092 

0.7 0.1239 62.7344 10  920498 

0.8 0.1081 62.7988 10  850472 

0.9 0.0933 62.7798 10  803206 

1 0.0822 62.8086 10  749869 
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Table 6. The MIC using 80P as the criterion 

  a  b  MIC(Baht) 

0.1 0.1490 61.6661 10  2423403 

0.2 0.1115 61.6661 10  2019312 

0.3 0.0868 61.6661 10  1749673 

0.4 0.0698 61.6661 10  1560972 

0.5 0.0566 61.6661 10  1398550 

0.6 0.0480 61.6661 10  1253184 

0.7 0.0413 61.6661 10  1138041 

0.8 0.0358 61.6661 10  1024725 

0.9 0.0312 61.6661 10  923151 

1 0.0269 61.6661 10  823280 
 
The graph in Figure 7 illustrates the relationship 
between safety loading   and MIC. 
 
 

 
Fig. 7: Relation of safety loading   and MIC  
for each percentile 

 

  1 Using the 50th percentile as the criterion 
  2 Using the 60th percentile as the criterion 
  3 Using the 70th percentile as the criterion 
  4 Using the 80th percentile as the criterion 
 
According to Figure 7, the MIC is higher when 
using the 80th percentile as the criterion for safety 
loading 0.1   and 0.2   than when using the 
50th, 60th, and 70th percentiles as the criterion. The 
MIC for safety loading 0.3   is less when the 
80th percentile is used as the criterion than when the 
50th percentile is used, but it is higher when the 60th 
and 70th percentiles are used as the criterion. The 
MIC is smaller than using the 50th and 60th 
percentiles as the criterion for safety loading 

0.4, 0.5, , 1,   but it is still more than using the 
70th percentile as the criterion under the ruin 
probability less than or equal to 0.01. 

4 Conclusion 
Figure 7 shows that for each safety loading , 
dividing the claims into standard and large claims 
according to the 70th percentile yields a better MIC 
than using the 50th, 60th, and 80th percentiles so long 
as the dividing threshold for the claims under the 
ruin probability is less than or equal to 0.01. The 
insurance company should therefore be reserved 
the MIC as shown in Table 5 in cases where the 
ruin probability is less than or equal to 0.01. This is 
beneficial for the financial management of the 
insurance company since it allows them to grow 
their investment in risk-free assets, which will 
enhance return. In our future research, we'll look at 
discrete-time surplus processes with minimal initial 
capital that involve investments in risky assets like 
the stock market and the gold market. 
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