Seasonal smoothing on confidence indices,
economic confidence index, and real GDP by
economic sectors was conducted.
The predictive nature of the calculated economic
confidence index has been identified and the turning
points of the business cycle of the Azerbaijani
economy have been evaluated;
The dependence of real GDP growth rates on the
Economic Confidence Index (ECI) has been
econometrically assessed and business cycle turning
point analysis models have been developed, and
forecasts for the period up to March 2022 have been
prepared based on the VAR (vector autoregression)
model.
We observed that the turning points of the ECI and
real GDP cycles coincide. So, the economic
confidence index can be used to prepare short-term
forecasts of economic growth rates.
ECI is predictive. Moreover, these predictive
features can be used in two ways:
1.ECI can be considered as a leading indicator in
terms of economic activity. In this context,
information is provided on the expected changes in
economic activity and the forthcoming phase of
business cycles.
2.ECI can be used as an explanatory variable for
GDP growth rate in relevant forecasting models.
References:
[1] Handbook on Economic Tendency Surveys.
New York, NY: United Nations, 2015;
Guidelines on Producing Leading, Composite
and Sentiment Indicators. Geneva: United
Nations, 2019; OECD System of Composite
Leading Indicators. 2012.
http://www.oecd.org/std/leading-indicators
/41629509.pdf;
[2] Hüseynova A., Ələkbərov E., Salıfova T.
Pandemiya dövründə real sektorun
monitorinqinin nəticələrinin təhlilinə dair
arayış. “Azərbaycanda iqtisadi islahatların
həyata keçirilməsi xüsusiyyətləri və
problemləri” elmi əsərlər toplusu, 2020, xüsusi
buraxılış (covıd-19), Bakı, 2020, s. 62-77
[3] Hüsynova A., Ələkbərov E. Real sektorun
monitorinqinin nəticələrinin təhlilinə dair
arayış. “Azərbaycanda iqtisadi islahatların
həyata keçirilməsi xüsusiyyətləri və
problemləri” elmi əsərlər toplusu, 2020, xüsusi
buraxılış (covıd-19), Bakı, 2020, səh. 86-109
[4] Крук, Д.Э. Экономический цикл и
опережающие индикаторы: методоло-
гические подходы и возможности
использования в Беларуси / Д.Э. Крук, А.
Коршун // Исследовательский центр ИПМ.
– 2010. – 35 с.
[5] Крук, Д.Э. Методология построения
сводного индекса опережающих
индикаторов для Беларуси [Электронный
ресурс].
[6] А.В. Зарецкий // – Исследовательский
центр ИПМ, Рабочий материал WP11/01. -
2011
[7] В.Малюгин, Д. Крук, П. Милевский, Индекс
экономических настроений белорусской
экономики: методические, модельные и
программные средства, Национальный банк
Республики Беларусь, Электронное
приложение к журналу «Банкаўскі веснік»,
Банкаўскi веснiк, 2019, 31 p.
[8] Claveria O., Pons E., Ramos R. Business and
Consumer Expectations and Macroeconomic
Forecasts // International Journal of
Forecasting. 2015. Vol. 23. No 1. P. 47–69.
[9] Gayer С. Report: The Economic Climate
Tracer. A Tool to Visualise the Cyclical Stance
of the Economy Using Survey Data. 2008.
https://www.oecd.org/sdd/leadingindicators/39
578745.pdf.
[10] Biau O., D’Elia A. Is There a Decoupling
Between Soft and Hard Data? The
Relationship Between GDP Growth and the ESI
// Fifth Joint EU-OECD Workshop on
International Developments in Business and
Consumer Tendency Surveys. Brussels, 2011.
https://www.oecd.org/sdd/leading-
indicators/49016412.pdf.
[11] The Joint Harmonised EU Programme of
Business and Consumer Surveys. European
Commission,2020.
https://ec.europa.eu/info/sites/info/files/bcs_use
r_guide_2020_02_en.pdf.
WSEAS TRANSACTIONS on BUSINESS and ECONOMICS
DOI: 10.37394/23207.2022.19.75
Arzu Huseynova, Ophelya Mazanova,
Simuzar Mammadova, Saadat Majidova,
Afaq Aslanova, Samira Rustamova