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Abstract: - In recent years, carbon emission markets have become liquid and promising markets within the 

European Union emissions trading scheme (EU ETS). In order to fit and forecast futures price for CO2 

emissions allowances, we propose a new N-factor affine term structure model for CO2 futures price and 

estimate parameters in the new affine model by using the Kalman filter technique. Our empirical results show 

that CO2 futures price follow significant mean-reversion process, and the estimated coefficients of mean-

reversion speed, market risk premium, volatility and correlation among state variables are almost significant. 

Compared with one-factor model, mean absolute errors (MAE) and root mean square errors (RMSE) in 

prediction errors from two-factor and three-factor model are lower, accordingly two-factor and three-factor 

model can accurately describe the term structure of CO2 futures price. 
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1 Introduction 
In recent years, CO2 emission allowances markets 

have become liquid and promising markets within 

the European Union emissions trading scheme (EU 

ETS). The EU ETS dominates the global carbon 

markets, a variety of specialized financial products 

such as spot, futures and options are traded. The 

trading scale of global emissions markets has 

achieved 93 billion euros or about 120 billion 

dollars until 2010. The emission rights of 

greenhouse gas, called EU allowances (EUA), allow 

for the right to emit one ton of CO2 in the EU ETS. 

Therefore carbon emissions right has given specific 

ownership, and it is significantly valuable credit 

assets for the investors, hedgers, other market 

practitioners. Benz and Truck (2006) propose 

emission allowances prices are directly determined 

by the expected market scarcity and their empirical 

results show futures prices have strongly time-

varying trend [1]. 
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Stochastic models of commodity prices have 

received much attention among the scholars, 

hedgers, financial practitioners, and stochastic 

models are mainly about the pricing and hedging of  

commodities assets. Early studies in the field 

typically assume that storable commodities prices 

follow Brownian motion process. Gibson and 

Schwartz (1990) develop two-factor model of 

commodity pricing, where the spot price follows a 

geometric Brownian motion and the convenience 

yields follow mean-reverting Ornstein-Uhlenbeck 

(O-U) process [2]. Schwartz (1997), Miltersen and 

Schwartz (1998) add the third stochastic interest 

rates by assuming mean reversion process, and they 

propose the three-factor model of commodity 

futures pricing [3-4]. Therefore the commodity spot 

price, the instantaneous convenience yields, and the 

instantaneous interest rate are of important state 

variables for commodity futures price.  

Lautier (2005) indicates that the term structure 

is defined as the relationship between spot price and 

futures prices with different maturities [5]. In many 

commodities markets, the concept of term structure 

becomes significant because it provides useful 

information for the hedging or investment decision 

of different assets. Many scholars consider that the 

term structure of commodity price is affected by 

many state variables. Schwartz and Smith (2000) 

develop a two-factor model of commodity price 
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which allows mean-reversion in short-term prices 

and uncertainty in the equilibrium level [6]. Manoliu 

and Tompaidis (2002) present multi-factor 

stochastic model of term structure for energy futures 

price [7]. Cortazar and Naranjo (2006) propose an 

N-factor Gaussian model to explain the stochastic 

behaviour of oil futures prices [8]. Wang et al 

(2010) put forward an N-factor affine term structure 

model in terms of behavioural characteristics of 

copper futures prices in Shanghai Futures Exchange 

(SHFE) [9]. They propose that spot prices are 

composed of multi arbitrary state variables, and they 

estimate unobserved state variables and calibrated 

model parameters by using Kalman filter method. 

The above affine models can well simulate and 

forecast term structure of commodities futures 

prices, and they have become the significantly 

hedging and risk-managing tools for all market 

participants. 

CO2 emission allowances prices are directly 

determined by the expected market scarcity which is 

induced by the change of emissions regulation 

policy, extreme weather, energy prices, abatement 

technology progress etc. Benz and Truck (2009) 

analyze the short-term dynamics behaviour of spot 

price for carbon dioxide (CO2) emission allowances 

[10]. Wagner and Homburg (2009), Daskalakis and 

Psychoyios (2009) propose the dynamics behaviour 

of futures price for CO2 emission allowances. Benz 

and Truck (2009) reveal that these futures contracts 

for CO2 emission allowances lead the price 

discovery process in the EU ETS [11-12]. 

Daskalakis and Psychoyios (2009) develop the 

empirically and theoretically valid framework for 

the pricing and hedging of intra-phase and inter-

phase futures and options on emission futures 

contracts. Chevallier (2010) analyzes time-varying 

risk premium and positive relationship between risk 

premium and time-to-maturity in CO2 spot and 

futures prices [13]. 

Therefore futures prices for CO2 emissions 

allowances are affected by many state variables, 

especially non-observable state variables. 

Understanding term structure of futures prices and 

accurately forecasting futures prices for emission 

allowances are of crucial importance for all market 

participants. The paper has three major objectives. 

Firstly on basis of understanding the behaviour 

feature of CO2 futures price, we propose a new 

multi-factor affine term structure model of futures 

price for CO2 emissions allowances. Secondly we 

also show how to estimate model parameters of 

unobservable state variables by using the Kalman 

filter and maximum likelihood methods in the whole 

period. Thirdly we compare with measurements 

errors in observable futures price by making an 

optimal use of all market prices available.  

The remainder of this paper is organized as 

follows. The second section describes the data 

samples and the statistical analysis results of CO2 

futures prices. Section 3 proposes a new N-factor 

affine term structure model of futures price for 

emissions allowances. Section 4 presents the 

Kalman filter technique. Section 5 shows estimated 

model parameters by using the Kalman filter and 

maximum likelihood methods. Section 6 compares 

the evaluation of model Robustness. Section 7 

concludes the paper. 

 

 

2 Data description 

 
2.1 Data description 

The EU ETS is the largest greenhouse gas 

(GHG) emissions trading system in the world. 

European Climate Exchange (ECX, now it is 

merged by ICE) is the most liquid platform for CO2 

futures market in European. The EU ETS has the 

existing two phrases: the pilot phase (2005-2007) 

and the Kyoto phase (2008-2012). Montagnoli and 

Vries (2010) indicate that market efficiency was 

inefficient in the trial and learning period, then it 

shows restoring signs in the Phase II [14]. Since EU 

government banned out-of-phrase banking and 

borrowing, then the spot price for CO2 emissions 

allowances fell down to zero from October 2006 

until December 2007 (see Chevallier, 2010). 

Therefore emissions allowances prices had lost their 

real value.  

The minimum trading volumes for each futures 

contract are 1,000 tons of CO2 equivalents. We 

select that date samples are time-varying daily 

settlement prices for EUA futures contracts with 

varying maturities going from December 2010 to 

December 2014. The trading of futures contracts 

with vintages December 2013 and 2014 were 

introduced on April 8, 2008.Considering the 

availability and continuity of EUA futures price, we 

choose that date samples cover the period going 

from April 8, 2008 to December 20, 2010 in the 

ECX market. 

 

 

2.2 Descriptive of statistical evidence for 

emissions futures price 
In the following figure 1, F1,F2,F3,F4,F5 denote the 

traded EUA futures contracts with varying 

maturities going from December 2010 to December 

2014.Among them, F1 is the closest to maturity for 
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EUA futures contract, F2 is the second closest to 

maturity for EUA futures contract, and so on. In the 

figure 1, we see the prices of EUA futures contracts 

with varying delivery dates have strongly time-

varying trend in the whole sample period. We find 

that futures prices for emissions allowances show 

strongly time-varying volatility, and they have the 

higher upward and downward jump. 
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Fig. 1. EUA futures price for CO2 emissions 

allowances 

 

Table 1 Descriptive statistical evidence for EUA 

futures prices 

futures mean max min Std.dev skew kurt 

F1 16.87 31.71 8.43 5.15 1.27 3.25 

F2 17.48 32.90 8.90 5.31 1.28 3.25 

F3 18.32 34.38 9.43 5.49 1.28 3.24 

F4 19.63 36.43 11.30 5.66 1.29 3.29 

F5 20.67 37.78 12.30 5.71 1.30 3.34 

 

Seen from the above table 1, mean statistics shows 

mean values for EUA futures price gradually step up 

with time-to-maturity increase. Emissions futures price 

with long-term delivery date is higher than the recent 

futures contract, therefore term structure of CO2 futures 

price is contango. To some extent, the volatility can 

measure changing speed in the market price. The 

increasing volatility in futures price for emissions 

allowances can be observed with the rising of time-to-

maturity, and it denotes mean-reverting speed in the 

price of futures contract with long-term maturity is 

faster than those futures contract with short-term 

maturity. With the increasing of time-to-maturity, 

higher positive kurtosis and skewness denote the 

greater deviation degree and long tail dragging on the 

right of Gaussian distribution.  
 

 

3 Affine term structure model for CO2 

futures prices 
Futures prices for CO2 emissions allowances are 

affected by the observable and non-observable state 

variables, for example emissions regulation policy, 

energy prices and energy efficiency, low-carbon 

technologies progress and application, extreme 

climate change and short-time deviation in 

emissions allowances price etc. Regulation policy, 

energy efficiency, low-carbon technologies progress 

and application promote long-term equilibrium 
between demand and supply in CO2 emissions 

allowances markets, they directly determine long-

term trend in emissions allowances prices. Extreme 

climate change, interest rate fluctuation, energy 

price and the other factors induce expected changes 

between demand and supply in CO2 emissions 

allowances markets, they push short-term deviation 

in emissions allowances prices. Therefore futures 

prices are affected by many state variables. 
Manoliu and Tompaidis (2002), Wang et al 

(2010) propose that the commodities spot prices are 

composed of general N-factor state variables 

∑
−

=
N

i

itt xS
1

ln , and they provide simple analytical 

valuation formulas for futures prices. Cotarzar and 

Naranjo (2006) assume that the commodity spot 

price can be described as the arbitrary number of 

state variables and the long-term constant growth 

rate, ttt uxhS += 'log .In our model, Let St denote the 

spot prices for emissions allowances at time t, and 

spot prices are assumed as non-observable state 

variables. We consider that the logarithmic process 

of spot prices for CO2 emissions allowances can be 

more precisely expressed as a sum of N-factor state 

variables[7][9]: 

∑
−

=
N

i

itt xS
1

ln  (1) 

where the vector of state variables tx follows mean-

reverting process with the Ornstein- Uhlenbeck 

type. We assume that a constant market risk 

premium λ , the risk-adjusted process for the vector 

of state variables is equal to [8-9]: 

 

ttt dZxdx ∑++−= )K λ（  (2) 

 

where market risk premium 

[ ]Tnλλλλ L21= is an n × 1 vector of real 
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constants, 
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 are nn × diagonal matrices 

with entries that are positive constants and term-

wise different. tdZ  is a n × 1 vector of correlated 

Brownian motion increments, such 

that dtdZdZ
T

tt Ω=))(( ,where the (i, j) element of 

Ω  is ]1,1[−∈ijρ , the instantaneous correlation 

between state variables i and j[8]. 

F(t, T) denotes CO2 emissions allowances price 

at time t for futures contract with the delivery date 

T. The futures price for emissions allowances F(t, T) 

can be defined as the expected value of spot price at 

the delivery date T under the risk-neutral measure Q 

[15]. 

)(),,( T

Q

tt SETtxF =  (3) 

As shown in the Appendix A, the futures price 

for emissions allowances at time t and maturing at T 

in Equation (3) can be described as: 

ji

tTkk
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e
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2
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)1()(

))A(exp(),,(

ρσσ

λ
(4) 

One important advantage of this model is tract-

able to obtain simple analytical futures price formu-

la for emissions allowances. The logarithm of the 

futures price is a linear function of N-factors state 

variables, it is useful when estimating the para-

meters of term structure model by using the Kalman 

filter method. Because the state variables have a 

multivariate normal distribution, any linear combi-

nation of state variables will also distribute normal 

by allowing maximum likelihood technique [8]. 

 

 

4 The Kalman filter 
As the above mention, the most difficulty in the 

empirical implementation for EUA futures price is 

the arbitrary and non-observable state variables in 

the affine model. The state space form is the 

appropriate procedure to deal with situations in 

which the state variables are not directly observable. 

The Kalman filter is the most appropriate estimation 

methodology which recursively calculates the model 

parameters and the time series of unobservable state 

variables. The form of state variables is applied to a 

multivariate time series of state variables. The 

measurement equation relates a vector of observable 

variables yt with a vector of state variables xt. In our 

affine model, EUA futures prices as inputted 

observable variables are the time series at several 

varying maturities. Measurement equation in the 

affine model is then given by equation (4): 

ttttt vdxy ++= H )R,0( ttv ∈   (5) 

where [ ]
1

),(ln
×

=
mit TtFy  is a 1×m  vector of 

EUA futures contracts with varying maturities, 

[ ]Tntttt xxxx ,,, 21 LL=  is a 1×n  vector of state 

variables,
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is a nm ×  

matrix, [ ]
1

)(
×

=
mit TAd  is a 1×m  vector, and vt  is a 

1×n  vector of serially uncorrelated Gaussian 

disturbances with E (vt)=0 and cov(vt)=R
2 
[8-9].  

Based on equation 2, the transition equation in 

the affine model is described as the stochastic 

process followed by the state variables: 

ttttt wcxGx ++= −1 , )Q,0( ttw ∈  (6) 

where
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 is a nn ×  vector of 

diagonal matrix, we assume tT −=τ , 

[ ]Ttc 0,,0,0 LL= is a 1×n vector, and wt is a 1×n  

vector of serially uncorrelated Gaussian 

disturbances with E(wt)=0 and cov(wt)=Qt [9] . 

 

 

5 Parameters coefficients estimation 
The data samples used in this empirical study are 

observable daily settlement price for EUA futures 

contracts with the varying maturities going from 

December 2010 to December 2014, and five futures 

contracts are used in the parameters estimation. The 

empirical period of data samples covers the 

historical time series going from April 8, 2008 to 
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December 20, 2010. EUA futures prices as 

observable variables are inputted into the 

measurement and transition equations, the estimated 

parameters in the affine model are obtained by using 

the Kalman filter and maximum likelihood 

techniques. When the number of state variables n is 

equal to one, two and three, the following estimated 

parameters coefficients in the affine model are listed 

in the following table 2, 3 and 4 by using the same 

date samples. 

 

Table 2: Estimated parameters coefficients in one-

factor affine model 

Model 

paramet

ers 

Coeffici

ent 

value 

Std. 

Error 

Z-

Statisti

c 

Probab

ility 

k1 0.0214 0.0007 31.75 0.0000 

1λ  -0.116 0.0019 -60.63 0.0000 

ln 2

1σ  -7.602 0.0452 -168.21 0.0000 

Log like 

lihood  

 8163.7

69 

  

 

Table 3: Estimated parameters coefficients in two-

factor affine model 

Model 

paramet

ers 

Coeffici

ent 

value 

Std. 

Error 

Z-

Statisti

c 

Probab

ility 

k1 0.093 0.0048 19.48 0.0000 

1λ  -0.437 0.0295 -14.84 0.0000 

ln 2

1σ  -6.225 0.1684 -36.97 0.0000 

k2 0.229 0.0137 16.80 0.0000 

2λ  0.138 0.0209 6.61 0.0000 

ln 2

2σ  -7.373 0.338 -21.81 0.0000 

cov(x1, 

x2 ) -0.001 0.0003 -3.91 0.0001 

Log like 

lihood  

10574.

52   

 

As is shown in the above table 2, 3 and 4, all 

mean-reversion speed parameters k1,, k2, k3 are 

significantly unequal to zero at the significant level 

1%, and their corresponding standard deviations of 

the measure errors approximately go to zero when 

the number of unobservable state variables are equal 

to one, two and three, those signs show that the state 

variables x1t, x2t, x3t follow mean-reverting process. 

The higher value of mean-reversion speed 

parameters k indicates the existence of strong mean-

reversion process and the shorter time-variant of the 

corresponding state variables for EUA futures price. 

The parameters of market risk premium 321 ,, λλλ  

and volatility 321 ., σσσ  are almost significant at the 

significant level 1%, and their standard deviations of 

the measure errors are lower. Covariance statistics 

describes that the state variables x1t and x2t have 

negative correlation, and the state variables x1t and 

x3t have positive correlation, however the state 

variables x2t and x3t have negative correlation. 

 

Table 4: Estimated parameters coefficients in three-

factor affine model 

Model 

paramet

ers 

Coeffici

ent 

value 

Std. 

Error 

Z-

Statisti

c 

Probab

ility 

k1 0.0462 0.0014 34.16 0.0000 

1λ  -0.0017 0.0001 -33.80 0.0000 

ln 2

1σ  -7.196 0.1071 -67.19 0.0000 

k2 1.001 0.061 16.46 0.0000 

2λ  0.2955 0.0903 3.273 0.0011 

ln 2

2σ  -8.073 0.2310 -34.955 0.0000 

cov(x1, 

x2) -0.0001 0.0001 -2.201 0.0277 

k3 0.1384 0.0055 24.94 0.0000 

3λ  -0.6032 0.0174 -34.68 0.0000 
2

3ln σ  -

7.247 0.1013 -71.55 0.0000 

cov(x1, 

x3) 0.0003 0.0002 3.712 0.0002 

cov(x2, 

x3) -0.0003 0.0001 -3.98 0.0001 

Log like 

lihood 

 11181.

16 

  

 

 

6 Parameters robustness 
The performance and estimation procedure in 

the affine model are measured by estimating 

term structure of observable futures price and 

the empirical volatility of term structure in 

futures returns [8]. These daily prediction errors 

represent the difference between observable 

futures prices and predictable futures prices by 

using the Kalman filter technique. The 

prediction errors for EUA futures contracts with 

varying delivery dates are shown in the 

following Figure 2, 3, 4. e1,e2,e3.e4.e5 denote the 

prediction errors for CO2 futures contracts with 

varying maturities, 1e  is the prediction error for 

CO2 futures contract with the closest to 

maturity, 2e  is the prediction error for CO2 

futures contract with the second closest to 

maturity, and so on. 
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Fig. 2. The prediction errors in EUA futures price 

(one-factor model, ×100%) 
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Fig. 3. The prediction errors in EUA futures price 

(two-factor model, ×100%) 
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Fig. 4. The prediction errors in EUA futures price 

(three-factor model, ×100%) 

 

Based on historical time series for EUA futures 

contracts, we compare the capabilities of fitting in 

the affine model. Seen from the above figures 2, 3, 

4, we can obviously find the prediction errors in 

CO2 futures price are the biggest in the one-factor 

model, and the prediction errors in CO2 futures price 

are significantly lower in the two-factor and three-

factor model. Mean absolute errors (MAE) and root 

mean square errors (RMSE) in prediction errors for 

five EUA futures contracts are shown in the above 

Table 5. The MAE and RMSE in prediction errors 

from the one-factor model are the largest, they 

reflect that the very large deviations from the one-

factor model cannot accurately fit observable futures 

price in time-variant date samples. Compared with 

one-factor model, MAE and RMSE in prediction 

errors from the two-factor model is lower, and the 

lower deviations from the two-factor model appear 

to significantly forecast for the observable futures 

price. Compared with two-factor model, MAE and 

RMSE in prediction errors from the three-factor 

model is the lowest, and their lowest deviations 

indicate that their fitting ability slightly increases. 

Therefore MAE and RMSE for five CO2 futures 

contracts from the two-factor and three-factor model 

are less than 1%, they indicate that two-factor and 

three-factor model can more accurately describe the 

term structure of EUA futures prices. 

 

Table 5 Comparison results of the prediction errors 

statistics ( 410 −× ) 

lnF One-factor 

MAE RMSE   

Two-factor 

MAE  RMSE 

Three-factor 

MAE  RMSE 

lnF1 177 225 30.9 42.1 19.1 25.0 

lnF2 100 130 38.2 48.0 33.2 39.5 

lnF3 140 166 58.6 83.4 48.9 70.2 

lnF4 105 172 73.2 89.4 39.1 54.3 

lnF5 153 240 43.4 56.9 27.3 38.9 

 

 

7 Conclusions 
In recent years, futures markets for emissions 

allowances have become liquid and potential 

markets within the EU emissions trading scheme 

(EU ETS). Although the CO2 spot price is a tradable 

and observable asset in the EU ETS, we assume that 

spot price is an unobservable state variable, and our 

affine model provides that futures price can be 

expressed as multi-factor arbitrary state variables. 

Based on the affine model of futures price [8-9], we 

propose a new N-factor affine term structure model 

of EUA futures price and the corresponding futures 

valuation. Based on the state space formulation of 
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futures price, we can estimate parameters in the 

affine model by using the Kalman filter and 

maximum likelihood techniques.  

We find that futures prices for CO2 emission 

allowances show strongly time-varying motion 

trend. Our empirical results show that all 

unobservable state variables follow significantly 

mean-reversion process, therefore futures prices for 

CO2 emissions allowances also follow mean-

reverting process. The parameters coefficients of 

mean-reversion speed, market risk premium, 

volatility and correlation are of almost significant 

level. Compared with one-factor model, MAE and 

RMSE in prediction errors from two-factor and 

three-factor model are lower; accordingly two-factor 

and three-factor model can accurately describe the 

term structure of EUA futures price. In general, our 

affine model can work well in estimating the term 

structure of EUA futures prices. The direction of 

future work is to study term structure of volatility 

and the implications of affine model in future 

options pricing for futures contracts. 

 

 

Appendix A 
This Appendix deduces Equation (4) with the use of 

Equation (3). Because the conditional normal 

distribution of the spot price ST is the lognormal, it 

follows that 
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The futures price for CO2 emissions allowances 

F(t, T) can be defined as the expected value of spot 

price at the delivery date T under the risk-neutral 

measure Q, )(),,( T

Q

tt SETtxF = . The valuation of 

formula (4) is obtained by inserting equations (A1), 

(A4) and (A5) into Equation (4). 
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