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Abstract: - Single-cell RNA sequencing (scRNA-seq) technologies have provided unprecedented insights into 
gene expression at the cellular level. Drop-seq is one of the most widely used scRNA-seq protocols, and the 
rapid development of analytical tools for Drop-seq data has followed. These methods are typically evaluated 
using spike-in experiments or simulated datasets, as the real-world differential gene expression is often 
unknown. However, spike-in experiments can be both costly and time-consuming, making simulated datasets a 
more practical alternative. Despite this, most existing RNA-seq simulators are designed for bulk RNA 
sequencing, highlighting the need for a specialized scRNA-seq simulating method tailored to Drop-seq 
technology. In this paper, we present Ds-Sim (Drop-seq reads Simulator), a mixture model-based RNA read 
simulator that generates sequencing reads mimicking those produced in Drop-seq experiments. Our proposed 
approach is capable of simulating large-scale Drop-seq reads based on user-defined experimental settings, and 
the generated data closely approximates real Drop-seq results. 
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1  Introduction 
Single-cell RNA sequencing (scRNA-seq) has 
revolutionized cellular genomics by enabling 
transcriptional profiling at unprecedented single-cell 
resolution, effectively resolving expression 
heterogeneity across diverse cell subpopulations. 
This technological paradigm shift overcomes the 
critical limitation of conventional bulk RNA-seq 
approaches, which generate population-averaged 
measurements that inherently mask cell-to-cell 
variability, [1]. For example, in tumors, bulk RNA-
seq averages signals from cancer cells, immune 
cells, and stromal cells, preventing the identification 
of transcriptionally distinct subpopulations, [2]. 
Similarly, in the immune system, bulk profiling of 
tumor-infiltrating lymphocytes fails to distinguish 
between exhausted and effector T cells [3], while in 
developmental contexts, it obscures the dynamic 
changes occurring during stem cell differentiation, 

[4]. These limitations have been overcome by 
scRNA-seq, which resolves gene expression at the 
individual cell level, uncovering previously hidden 
biological complexity. Specifically, scRNA-seq is 
preferred over bulk RNA-seq in these scenarios, 
where it reveals distinct subpopulations of cancer 
and immune cells or identifies rare immune subsets 
such as exhausted T cells. Moreover, it effectively 
traces dynamic gene expression during stem cell 
differentiation and developmental processes, which 
bulk RNA-seq is unable to capture. 

RNA-seq methodologies bifurcate into two 
principal architectures: (i) full-length category, 
exemplified by Smart-seq [5], and (ii) tag-based 
category, typified by Drop-seq [6]. In the latter 
category, mRNAs are captured by a 30-nucleotide 
oligo(dT) sequence attached to primer beads, which 
bind to the poly(A)-tails of mRNAs. This process, 
known as priming, initiates reverse transcription to 
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generate complementary DNA (cDNA). Primer 
beads are tiny beads coated with oligonucleotides 
that contain a cell barcode and a unique molecular 
identifier (UMI), allowing transcripts from 
individual cells to be tracked after sequencing, [7]. 
The efficiency of this priming process is crucial for 
accurate gene expression analysis. Primer beads 
tend to bind to regions that contain a continuous 
sequence of adenine nucleotides. This may involve 
the poly(A)-tail participating in the priming process 
and internal poly(A) sequences. As a conclusion, 
tag-based methods often produce more reads near 
the tagged end of a transcript (i.e., the poly(A)-tail), 
[8]. Since tag-based methods sequence only a 
portion of each RNA molecule, they generate non-
uniform read coverage across the transcript, [9]. In 
contrast, full-length methods divide the transcript 
into multiple fragments and sequence them, leading 
to more uniform read coverage. Despite this 
difference, tag-based protocols demonstrate superior 
biological fidelity through digital molecular 
counting - a capability rooted in their unique 
molecular tracing architecture. By unambiguously 
associating each sequencing read with its originating 
transcript molecule via UMIs, these methods 
effectively mitigate PCR amplification artifacts that 
plague full-length protocols. This molecular 
resolution advantage enables precise transcript 
enumeration, rendering tag-based approaches 
particularly advantageous for cell-to-cell 
comparison studies requiring high quantitative 
accuracy, [9]. 

Drop-seq has emerged as the industry-standard 
tag-based scRNA-seq method, predominantly 
adopted for its unparalleled capacity to interrogate 
cellular heterogeneity at scale. This bead-based 
barcoding system achieves cost-efficient population-
scale analyses through optimized molecular capture 
efficiency and moderate sequencing coverage 
requirements, [6]. It is particularly advantageous in 
applications such as analyzing tumor heterogeneity, 
where it captures diverse cell types within the tumor 
microenvironment at a large scale [6], and profiling 
immune responses, where it facilitates the 
identification of rare immune subpopulations, [7]. 
Additionally, Drop-seq is effective in developmental 
biology studies, enabling the reconstruction of 
dynamic gene expression trajectories during stem 
cell differentiation. Compared to other scRNA-seq 
methods, Drop-seq offers higher throughput and 
lower per-cell costs, making it well-suited for 
applications requiring large-scale single-cell 
profiling. According to [10], Drop-seq outperforms 
several popular single-cell sequencing techniques in 
terms of both time and cost efficiency. As Drop-seq 

gains popularity, more computational tools tailored 
for Drop-seq data analysis have been developed. 
Those tools are typically evaluated either by spike-
in methods or simulation data. However, due to the 
high cost of spike-in approaches, simulation data 
becomes a favorable alternative. Unfortunately, 
most current RNA-seq simulators are designed for 
bulk RNA-seq, underscoring the necessity for a 
simulator tailored for single-cell sequencing 
techniques. 

Several recent studies have highlighted the 
importance of simulating realistic read distributions 
for accurate analysis of RNA-seq data. [11] 
reviewed various machine learning approaches for 
analyzing genomic data and emphasized the need 
for accurate simulation models to validate 
downstream analysis pipelines. Similarly, [12] 
demonstrated how RNA knowledge graph analysis 
can provide insights into relationships between 
RNA sequences, which could further improve 
transcript distribution models in scRNA-seq studies. 
Additionally, [13] presented a cDNA expression 
analysis study that highlights the importance of 
accurate cDNA data in downstream analyses, 
reinforcing the need for improved simulation 
methods in scRNA-seq technologies. 

Most existing RNA-seq simulation tools 
predominantly focus on bulk sequencing paradigms, 
rather than scRNA-seq. Popular bulk RNA-seq 
simulators such as ART [14], Flowsim [15], Grinder 
[16], FASTQsim [17], and Polyester [18] 
successfully approximate real data in bulk 
sequencing. However, these simulators operate 
under two limiting assumptions: (i) positionally 
homogeneous read distribution across transcripts, or 
(ii) GC-content mediated bias inherited from PCR 
amplification artifacts [19]. These premises 
fundamentally misrepresent tag-based scRNA-seq 
platforms like Drop-seq, where 3'-end capture bias 
creates non-uniform read distributions. Furthermore, 
the nascent state of scRNA-seq simulation research 
has confined most tools to count matrix generation 
rather than generating sequencing reads. Tools such 
as Splatter [20], Lun [21], Lun 2 [22], and BASiCS 
[23] successfully obtain the variable gene 
expression and dropout rates characteristic of 
scRNA-seq. Dropout rates here refer to the 
phenomenon where transcripts that are truly 
expressed in a cell fail to be detected during 
sequencing, often due to technical inefficiencies or 
stochastic capture of mRNA molecules. While these 
tools capture gene expression trends effectively, 
they cannot simulate sequencing reads, highlighting 
the need for a read simulator specifically designed 
for Drop-seq technology: one capable of generating 
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mRNA reads that capture the unique distribution 
shape observed in scRNA-seq data, including the 
biases introduced by the priming process. 

In this paper, we present Ds-Sim (Drop-seq 
reads Simulator), a mixture model-based RNA read 
simulator that simulates the sequencing reads of a 
Drop-seq experiment. In Drop-seq data, reads are 
not uniformly drawn from a transcript but are more 
likely to be generated from positions near a poly(A)-
region (a region that contains a consecutive 
sequence of adenine nucleotides). The proposed Ds-
Sim learns a poly(A)-bias model from which we can 
sample the start position for each read. Through this 
process, we can accurately model the bias 
introduced by Drop-seq (or other tag-based scRNA-
seq methods). Next, we use Polyester [18], a 
popular bulk RNA-seq simulator, to generate reads 
from the corresponding positions and introduce 
potential sequencing errors. Finally, to distinguish 
the origin of the simulated reads, we generate the 
barcode (including the 12- nucleotide cell barcode 
and 8- nucleotide UMI) for each read accordingly. 
The proposed Ds-Sim serves as an effective 
simulator for Drop-seq technology. The reads 
generated by Ds-Sim demonstrate similar 
characteristics as real Drop-seq data. Extensive 
experiments demonstrate that Ds-Sim can produce 
effective simulations under different circumstances. 
Researchers can use this approach to generate 
simulated data using scRNA-seq techniques 
efficiently, eliminating the need for complex and 
costly experiments. 
 
The main contributions of this work are listed as 
follows: 
1. Poly(A)-Bias Modeling: We developed a 

probability model that captures the poly(A)-bias 
by estimating read sampling probabilities 
relative to poly(A)-regions. The model accounts 
for poly(A) tails at the 3' end as well as internal 
poly(A)-regions within transcripts. 

2. Read Simulation with Position-Specific 

Probability Distributions: By generating a 
transcript-specific probability distribution based 
on poly(A) distances and sampling from this 
distribution, we accurately model the skewed 
read distribution characteristic of Drop-seq data. 

3. Realistic Read Fragmentation and 

Sequencing Simulation: We used the Polyester 
package to simulate transcript fragmentation 
and read sequencing, incorporating empirical 
sequencing error models from Illumina 
platforms. 

4. Accurate Barcode Generation: We simulated 
realistic 12-nt cell barcodes and 8-nt UMIs to 

label transcripts, ensuring that the simulated 
data accurately mimics real Drop-seq output. 

 
The remainder of this paper is organized as 

follows: The second Section introduces the 
framework of our method and explains the simulator 
workflow in detail. Section 3 describes the 
experimental datasets used for evaluation, the steps 
for data preprocessing, and the evaluation metrics. 
Section 4 presents and discusses the experimental 
results. Section 5 concludes the paper and explores 
potential directions for future work. 
 
 
2  Method 
We propose Ds-Sim, an RNA read simulator for the 
scRNA-seq technology. Figure 1 (Appendix) 
illustrates the overall framework of Ds-Sim. To 
begin with, Ds-Sim takes in two input files. The first 
one is the transcript count matrix 𝑀𝑇𝐶. Each entry of 
this matrix represents the transcript count of the 
corresponding cell. 𝑀𝑇𝐶 is determined by the user. It 
can also be generated by a count matrix generation 
tool, which was mentioned in the previous section. 
The second input file contains the reference 
transcript sequences, which is usually a FASTA file. 
Because of the poly(A)-bias that occurs in tag-based 
scRNA-seq techniques, the read coverage of most 
transcripts demonstrates a skewed shape. In order to 
accurately model the read distribution, a poly(A)-
bias model is learned from real Drop-seq datasets. 
Based on this model, the start positions of 
sequencing reads are obtained for each transcript. 
Polyester, a widely used conventional RNA read 
simulator, is then applied to produce the reads 
according to the input reference transcripts and the 
corresponding start locations. Finally, for each read, 
the cell barcode and molecular barcode are added to 
produce the paired-end sequencing data. 

As depicted in Figure 1 (Appendix), the 
proposed method begins by taking two files: a 
transcript reference file and a transcript count matrix 
𝑀𝑇𝐶. Specifically, 𝑀𝑇𝐶 is structured with each row 
representing a transcript, each column representing 
a cell, and each entry indicating the corresponding 
transcript count. The proposed simulator Ds-Sim 
proceeds in the following steps:  
1. Read Position Generation: A poly(A)-bias 

model is created from real Drop-seq data. For 
each transcript, Ds-Sim obtains the start 
positions for sequencing reads based on the 
trained model. 

2. Fragmentation and Sequencing: The reference 
transcripts are fragmented, and sequencing 
reads are produced starting from the sampled 
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positions. Every read contains cDNA sequences 
derived from the input transcripts. 

3. Barcode Generation: Ds-Sim creates the 
unique cell barcodes and UMIs for the produced 
reads by combining random nucleotides. 

 
The final output of Ds-Sim is formatted as 

FASTA files, which contain the simulated reads 
based on the input data. 
 
2.1 Read Position Generation 
As we mentioned in the previous section, reads 
produced by Drop-seq are affected by the bias 
introduced from the poly(A)-regions in a transcript 
due to the priming process. Compared to other 
regions of the transcript, a higher proportion of 
reads originate near poly(A)-regions. As a result, the 
reads are not uniformly distributed. In this paper, we 
define a poly(A)-region (PAR) and the 
corresponding poly(A)-bias (PAB) as follows.  
 
Definition 1 (Poly(A)-region, PAR). A PAR is a 
region that contains a consecutive sequence of 𝑛 
adenine nucleotides, where 𝑛 ≥ 20.  
 
Definition 2 (Poly(A)-bias, PAB). PAB occurs 
when reads are disproportionately generated from 
positions near a PAR, which can either be the 
poly(A)-tail at the 3' end of the transcript or an 
internal poly(A) sequence. 

To account for PAB in the simulation process, 
we train a probability model on real Drop-seq data 
(described in Section 3) to capture unique features 
and the biased shape of the read distributions. The 
PAB model defines the probability of producing a 
read at a given location in relation to a PAR. Based 
on the PAB model, we can obtain a probability 
distribution for each transcript that specifies the 
likelihood of initiating a read at different positions. 

The start positions of sequencing reads are 
obtained from the PAB model, ensuring that the 
positions chosen reflect the inherent poly(A)-bias. 
The selected positions from this step serve as the 
starting points for simulated reads.  
 
2.1.1 PAB Modelling 

As we mentioned earlier, for Drop-seq and other 
tag-based methods, the read distribution for each 
transcript is not uniform. Reads are more likely to 
originate from the positions near a PAR, which 
results in a skewed PAB distribution. To model this 
bias, we propose a PAB model. The proposed PAB 
model describes the read distribution of Drop-seq 
data. Based on the PAB model, we assign the 

probability of producing a read relative to the 
distance to a PAR. 

In this paper, we adopt a mixture model to 
describe the PAB in the process. The mixture model 
is composed of two components. To be more 
specific, the first one is learned from real Drop-seq 
data, which comes from the empirical distribution of 
reads. It specifically models the bias introduced by 
the PARs in a transcript, and also captures the 
potential biases from a real Drop-seq experiment. 
The second component is determined by a length 
factor, which adopts another strategy to generate 
simulated reads. The PAB model is shown in 
Equation (1), which specifies the probability of 
producing a read at position 𝑖, the distance to the 
nearest PAR in the transcript. 

𝑃𝐴𝐵(𝑥 = 𝑖) = (1 − 𝛼)𝑟𝑖 + 𝛼
1

𝐿
                             (1)  

 
In Equation (1), 𝑟𝑖 is the factor learned from real 

Drop-seq data. The proposed PAB is trained on real 
Drop-seq reads. Through the alignment process, we 
can generate the read distribution in relation to the 
PAR for each transcript, which is described in the 
following definition. 
 
Definition 3 (Transcript read distribution, TRD). 

For a given transcript, the transcript read 
distribution describes the number of reads at the 
current position in relation to the nearest PAR. 

Ultimately, a TRD is generated for each 
transcript in the training dataset. From the learned 
transcript read distribution, we can calculate 𝑟𝑖 
according to Equation (2). 

𝑟𝑖 =
1

𝑁
∑

𝑥𝑖𝑗

max(𝑥𝑗)

𝑁

𝑗=0

                                                 (2)  

 
To be more specific, 𝑥𝑖𝑗 denotes the number of 

reads at position 𝑖, which we can retrieve from the 
TRD of transcript 𝑗. It is divided by the maximum 
number of reads from the corresponding TRD.  𝑁 
here represents the total number of transcripts in the 
training data. Since reads may be mapped to 
incorrect positions during the alignment process, 
normalizing the number of reads for each transcript 
mitigates the risk of skewing the overall average due 
to transcripts with a large number of misaligned 
reads. 

Thereby, 𝑟𝑖  estimates the probability of 
generating a read at the given position in relation to 
its distance to the nearest PAR. Due to the fact that 
the RNA-seq process initiates from the 3’ end of a 
transcript, only PARs on the 3’ end side will be 
included in the model. We should notice that if a 
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transcript does not contain any internal PAR, the 
only contributing factor should be the poly(A)-tail at 
the 3’ end. In this case, 𝑖 is equivalent to its distance 
to the 3’ end. Since 𝑟𝑖 is calculated from the TRDs, 
which we build from real Drop-seq data, it can 
capture the PAB and other potential biases from 
Drop-seq experiments as well.  

Another contributing component in the PAB 
model is the length factor 𝐿. 𝐿 is determined by the 
read length in the sequencing process, which is 
defined as the following definition. 
 
Definition 4 (The read length 𝑹). Read length in 
scRNA-seq refers to the number of nucleotides 
sequenced from each cDNA fragment generated 
from mRNA transcripts. It determines the amount of 
sequence information obtained per read, influencing 
both the genomic mapping accuracy through unique 
read alignment capacity and expression 
quantification reliability via transcript coverage 
depth. 

 
The read length serves as another factor 

influencing the sampling probability. It is not fixed 
in real scRNA-seq experiments, and can be user-
defined in the simulation procedure. Previous 
studies have demonstrated that the read length 𝑅 in 
scRNA-seq data impacts the TRD for some 
transcripts, [24]. Specifically, if the length of a 
transcript is short (or close to 𝑅), the TRD of the 
transcript is likely to be uniform, rather than 
exhibiting the typical PAB we mentioned before. In 
other words, the reads tend to be uniformly 
distributed near a PAR. As a result, the proposed 
PAB model applies a uniform sampling strategy for 
the first 𝐿 nucleotides starting from the PAR. In this 
paper, we set  𝐿 = 4𝑅. The choice is based on cross-
validation results, but users can adjust it according 
to their own settings. 

Furthermore, in the PAB model, a weight factor 
𝛼 is applied to determine the influence of the two 
components, as described in Equation (3).  

𝛼(𝑖) = {

1   𝑖𝑓 𝑖 ≤ 𝐿

 
1

𝑖
   𝑒𝑙𝑠𝑒

                                                  (3)  

 
To summarize, the PAB model is adjustable by 

the weight factor 𝛼. 𝛼 is a function of the distance 𝑖; 
it adjusts the contribution of the two components: 𝑟𝑖 
and 𝐿. To be more specific, the PAB model applies 
a uniform sampling strategy when it is close to a 
PAR, where the probability of sampling at any 
given distance is the same. In this case, 𝐿 is the only 
contributing component to the model. However, 
when the value of 𝑖  becomes larger, the situation 

becomes different. When 𝑖 is larger than the length 
factor 𝐿, the other component 𝑟𝑖 , which is derived 
from the TRDs, takes over. In the meantime, the 
PAB becomes more important to the model. As 𝑖 
grows, the second component 𝐿  is weighted less, 
while the first component 𝑟𝑖  starts to be dominant. 
When the distance is large, the PAB model is almost 
entirely determined by the first component. In the 
next step, we will generate start positions for the 
simulated reads based on the PAB model. 
 

2.1.2 Sampling Positions 

In this part, we will explain how we generate the 
start positions of the simulated reads based on the 
PAB model derived from the previous step. For 
every transcript, we create a transcript probability 
distribution, as defined in the following definition. 
 
Definition 5 (Transcript probability distribution, 

TPD). For a given transcript, the transcript 
probability distribution describes the probability of 
producing a read at the current position in relation to 
the 3’ end. 

 
For each transcript, we will generate the start 

positions for simulated reads based on the TPD. For 
a given transcript, the corresponding TPD is defined 
in Equation (4). Let 𝑖 represent the distance to the 3’ 
end of the transcript, and 𝑚 represent the number of 
PARs between the current location and the 3’ end. 
The term dij is the distance from position 𝑖 to the 𝑗-
th PAR, and 𝑐 is the weight factor that determines 
the influence of the poly(A)-tail at the 3' end of the 
transcript. We calculate the probabilities based on 
the PAB model, as shown in Equation (5). 

𝑇𝑃𝐷(𝑥 = 𝑖) = {
𝑐𝑝𝑖 +

1 − 𝑐

𝑚
∑ 𝑝𝑑𝑖𝑗

𝑚

𝑗=1

, 𝑖𝑓 𝑚 ≥ 1

 𝑝𝑖 ,                                  𝑖𝑓 𝑚 = 0

 (4) 

 
𝑝𝑖 = 𝑃𝐴𝐵(𝑥 = 𝑖)                                                         (5) 
 

According to the definition of TPD, the 
probability of generating a read at the current 
location is affected by two components. The first 
one is the poly(A)-tail at the 3’ end of the transcript, 
while the second one is the PARs inside the 
transcript. If the number of PARs 𝑚 = 0, TPD is 
only affected by the first component, and the 
probability is directly calculated based on the PAB 
model. However, if the number of PARs 𝑚 ≧ 1, the 
internal PARs of the transcript will also have a 
considerable influence on TPD. In this case, we 
should take both components into account. 
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In Equation (4), 𝑐  serves as a weight factor, 
which is used to control the influence of the two 
components. Specifically, when an internal PAR is 
long, we would consider giving more weight to the 
bias caused by the PAR instead of the bias resulting 
from the poly(A)-tail. In this paper, we set 𝑐 = 0.5 
due to the fact that most transcripts in the training 
dataset do not have long internal PARs. 

To summarize, we calculate TPD based on the 
PAB model, which takes both the poly(A)-tail and 
the internal PARs into account. Through sampling 
from the TPD for each transcript, we generate a list 
of start positions of simulated reads. Generally, an 
amplification factor is applied to ensure the read 
coverage for every transcript. To be more specific, 
this parameter is mathematically defined as the 
number of sampling iterations from the TPD for 
individual transcripts during stochastic read 
generation. 
 
2.2 Fragmentation and Sequencing 
In this part, the transcripts are fragmented, and 
sequencing reads are generated from the start 
positions we obtained in the previous step. As we 
have introduced the typical bias PAB for tag-based 
scRNA-seq methods in the model, we can adopt a 
bulk RNA-seq simulator to perform the following 
part of the simulation process. Polyester, a widely 
used bulk RNA-seq simulator, is used to produce 
the simulated reads.  

Firstly, Polyester generates short fragments for 
every transcript based on the list of start positions 
we obtained from the corresponding TPD before. 
Fragment lengths are stochastically generated 
following a normal distribution N(100,10²) as 
Polyester's default configuration. Subsequently, the 
simulator performs directional synthesis by 
extracting single-end reads from the 5'-terminal R 
nucleotides of each fragment, where R corresponds 
to the user-defined sequencing read length. 

In Drop-seq experiments, sequencing outputs 
adopt a dual-read structure: the initial read embeds 
both cellular identifiers (barcodes) and unique 
molecular identifiers (UMIs), whereas the 
subsequent read captures partial transcript 
sequences synthesized using Polyester. Given that 
Drop-seq protocols predominantly utilize Illumina 
platforms, we implemented Polyester's statistical 
error profile: an empirically derived model trained 
on Illumina sequencing data. This framework 
quantifies positional error rates by calculating 
substitution probabilities for each nucleotide base 
across read positions. Although our pipeline defaults 
to this platform-specific error simulation, Polyester's 
modular architecture permits the integration of 

alternative error models. Final outputs are formatted 
as FASTA-compliant single-read records, ensuring 
compatibility with standard downstream analysis 
tools. 
 
2.3 Barcode Generation 
Since the reads produced by Drop-seq have a dual-
read structure, the simulated results should also 
consist of two parts: the cell barcode and molecular 
barcode (UMI), as defined in the following 
definitions. 
 
Definition 6 (Cell Barcode). A cell barcode is a 
short, unique nucleotide sequence incorporated into 
each mRNA molecule during scRNA-seq to label 
transcripts originating from the same cell. 
 

Definition 7 (Unique Molecular Identifier, 

namely UMI). A Unique Molecular Identifier 
(UMI) is a short, random sequence of nucleotides 
added to each mRNA molecule during the reverse 
transcription step in scRNA-seq. 
 

UMIs are crucial for distinguishing original 
mRNA molecules from PCR duplicates. The cell 
barcodes are identical across all primers on one bead 
but differ across beads, allowing identification of 
the cell of origin. In contrast, each primer receives a 
unique UMI, which distinguishes between different 
mRNA molecules. In Drop-seq experiments, both 
the cell barcodes and UMIs are generated through 
"split-and-pool" synthesis cycles, [6]. 

The simulation framework implements a 
probabilistic nucleotide assignment strategy for 
biological indexing. Cellular identification relies on 
12-nucleotide combinatorial sequences 
stochastically generated through permutations of 
canonical DNA bases (adenine, guanine, cytosine, 
thymine), whereas transcript-level tracking employs 
8-mer unique molecular identifiers (UMIs) 
constructed via analogous randomization. Barcode 
allocation follows computational mapping: cellular 
signatures are uniquely assigned according to the 
input transcript abundance matrix, while UMIs are 
deterministically linked to individual RNA 
molecules. This design ensures systematic 
traceability, where sequencing reads exhibit UMI 
homogeneity within identical transcriptional units 
(intra-molecule conservation) and UMI 
heterogeneity across distinct molecular origins 
(inter-molecule divergence). 
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3  Datasets and Experimental Settings 
 

3.1 Datasets 
For model development and validation, we utilize 
publicly accessible Drop-seq datasets obtained from 
the Gene Expression Omnibus (GEO) repository. 
These curated datasets provide standardized 
benchmarks for assessing simulation fidelity across 
diverse cellular contexts. 

The experiments were conducted on two 
datasets (GSM1544798 and GSM2177570). The 
first dataset contains samples of mouse and human 
data. We trained our model only using the mouse 
data in the first dataset, and the remaining human 
samples were used for testing. To be more specific, 
as introduced in [25], multiple isoform genes 
introduce ambiguities and uncertainties in 
expression analysis, so we restrict the training to 
single isoform transcripts. After filtering, we retain 
401 transcripts for training our model. The second 
dataset contains mouse data, and it is also used for 
testing the effectiveness of the proposed method. In 
other words, we will demonstrate the performance 
of our model on two datasets in the following 
section. 
 
3.2 Data Preprocessing 
As for the Drop-seq data, data pre-processing 
follows the Drop-seq core computational protocol 
outlined by [6]. Reads are aligned using the RNS-
seq aligner STAR, [26]. The reference genome and 
isoform annotations are based on hg19 for human 
cells and mm10 for mouse cells. 

For the simulated data, data preprocessing is 
also required before we evaluate the performance of 
the model. Specifically, we must perform the same 
alignment process after obtaining the simulated 
reads. The reason for this is that the aligner could 
make mistakes during the alignment operation. For 
example, for transcripts with similar sequences, 
reads could be mapped into the wrong locations. 
Some reads might be discarded if the aligner cannot 
determine which transcript they are generated from. 
To account for these alignment errors, it is essential 
for us to align the simulated reads before evaluation. 
The alignment tool STAR is also applied in this 
step.  

After alignment, discrepancies may arise 
between the total number of reads on a given 
transcript before alignment and after alignment. 
Therefore, we must normalize the data before 
evaluation. The normalized read number 𝑛𝑖  at 
position 𝑖 is determined according to the following 
formula. 

𝑛𝑖 =
∑ 𝑝

∑ 𝑎
𝑎𝑖                                                                 (6)  

 
Here, ∑ 𝑝  is the number of reads before 

alignment, and ∑ 𝑎  is the number of reads after 
alignment. 𝑎𝑖  is the number of reads at the 
corresponding position. This procedure should 
correct for the biases from the alignment process, 
and offer a more accurate means of evaluating our 
model. 
 

3.3 Performance Evaluation 
In this subsection, we will introduce how we 
evaluate the performance of the proposed simulator 
Ds-Sim, and the evaluation metrics we adopt. 
Before the evaluation process, we applied a sliding 
window strategy (window size of 100) as a 
preprocessing step to the read distribution. This 
procedure will tolerate some positional biases for 
evaluation. To be more specific, we group adjacent 
nucleotides into bins and calculate the average read 
count within each bin. This process is illustrated in 
Figure 2. 

Following distribution generation, two 
quantitative metrics are employed to assess the 
statistical congruence between simulated outputs 
and experimental Drop-seq data profiles: 

 
1. Pearson Correlation Coefficient: The Pearson 

correlation coefficient describes the similarity 
between the simulated data and the real Drop-
seq data. The value ranges between (0,1). A 
higher Pearson value means that the two 
distributions are more similar. The calculation 
of Pearson is defined in Equation (7). 

Pearson =
𝑁 ∑ 𝑥𝑦 − (∑ 𝑥 ∗ ∑ 𝑦)

√𝑁 ∑ 𝑥2 − (∑ 𝑥)2√𝑁 ∑ 𝑦2 − (∑ 𝑦)2
    (7)  

 
2. Bray-Curtis (BC) Distance: The second metric 

is the Bray-Curtis (BC) distance, defined in 
Equation (8). The metric value is between (0,1). 
Opposite to Pearson, a lower BC distance means 
the two distributions are more similar. 

BC distance =
∑(|𝑥 − 𝑦|)

∑(𝑥 + 𝑦)
                                     (8)  

 
Both metrics provide a means of quantitatively 

evaluating the closeness of the simulated 
distributions to the real data, with higher scores 
indicating better performance. 
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4  Experiments 
 

4.1 Comparison with the Baseline Model 
In this subsection, we will demonstrate the 
performance of the proposed simulator Ds-Sim 
compared with a baseline model. Most current 
simulators adopt a uniform read distribution for 
each transcript [7], which performs well for bulk 
RNA-seq methods but not for tag-based scRNA-seq 
methods, for example, Drop-seq. In order to 
accurately model the bias introduced by the priming 
process, more reads should be generated from the 
positions closer to PARs. For most circumstances, 
the dominant PAR for a transcript is the poly(A)-tail 
at its 3’ end, which results in a significant peak in 
the read distribution, [7]. Equation (9) serves as the 
baseline method to model this trend. Here, 𝑖 
represents the distance to the 3’ end of the 
transcript, and 𝑃(𝑥)  represents the sampling 
probability. It is obvious that the baseline model 
will generate more reads as the start position is 
closer to the 3’ end of a transcript. 

𝑃(𝑥 = 𝑖) =
1

𝑖
                                                              (9)  

 
Fig. 3: Comparison of the baseline and the proposed 
Ds-Sim in terms of Pearson and BC distance 
 

Figure 3 demonstrates the experiment results of 
the baseline model and the proposed Ds-Sim in 
terms of Pearson and BC distance on the 
experimental datasets. It is obvious that the 
proposed Ds-Sim achieves a higher Pearson value 
and a lower BC distance. On the first dataset, the 
Pearson value of Ds-Sim is nearly 30% higher than 
that of the baseline model; on the second dataset, it 
is 56% higher. As for the BC distance, the BC 
distance of Ds-Sim is 17% lower than the distance 
of the baseline model on the first dataset, and 25% 
lower on the second dataset. The proposed Ds-Sim 

shows a great improvement in terms of both metrics 
compared to the baseline model. 

In Figure 4 (Appendix), we demonstrate the 
read distribution of three example transcripts 
selected from the experiment datasets. We plot the 
read distributions of the baseline model, the 
proposed Ds-Sim and the real Drop-seq data in each 
graph. As we can observe from the graphs, all 
transcripts demonstrate an obvious PAB, with a 
significant peak on the left side, which is caused by 
the poly(A)-tail at the 3’ end of the transcript. In 
most cases, as shown in the first two transcripts, the 
distribution obtained by Ds-Sim demonstrates a 
more similar shape to the real data, compared to the 
baseline model. The baseline model captures the 
overall trend of the distribution, but fails to capture 
the bias introduced by other potential factors in a 
Drop-seq experiment. However, there are 
exceptions where the baseline model obtains a better 
result, such as the third example transcript. There 
are several possible factors that may lead to this 
result, since the real Drop-seq experiment is very 
complex. For example, in some cases, an extremely 
large number of reads appear near the 3’ end of the 
transcript, and the read distribution will be closer to 
the baseline model. Yet, this is quite a rare 
circumstance. As we can tell from the experiment 
results, the read distribution generated by Ds-Sim is 
more similar to the real Drop-seq data, and the 
proposed Ds-Sim achieves a better overall 
performance than the baseline model. 
 
4.2 Comparison of Single-isoform 

 Transcripts and Multi-isoform 

 Transcripts 
In this subsection, we will demonstrate the 
performance of Ds-Sim on single-isoform 
transcripts and multi-isoform transcripts. For genes 
with multiple isoforms, it is difficult to determine 
which transcript the corresponding read was 
originally sequenced from. Most gene quantification 
tools are especially burdened by the multiple 
isoform issue and perform poorly when handling 
problems in this field, [27]. Fortunately, the 
proposed Ds-Sim achieves a satisfying performance 
on both single-isoform transcripts and multi-isoform 
transcripts. 

Figure 5 demonstrates the experiment results of 
single-isoform transcripts and all transcripts in terms 
of Pearson and BC distance. From observation, the 
proposed Ds-Sim achieves a slightly better 
performance on single-isoform transcripts, but still 
obtains a satisfying result on the whole dataset.  
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Fig. 5: Comparison of single-isoform transcripts and 
all transcripts in terms of Pearson and BC distance 
 

On the first dataset, the Pearson value of single-
isoform transcripts is 17% higher than that of all 
transcripts; on the second dataset, it is only 1.2% 
higher. As for the BC distance, the BC distance of 
single-isoform transcripts is 23% higher on the first 
dataset, and 40% lower on the second dataset. 

All experiment results are acceptable, with the 
highest Pearson of 0.86 and the lowest BC distance 
of 0.18. It is obvious that transcripts with multiple 
isoforms did not have a detrimental effect on the 
experiment results. On the second dataset, multi-
isoform transcripts only cause a difference of 1.2% 
in Pearson value. Even on the first dataset, adding 
multi-isoform transcripts results in an improvement 
in BC distance. We should notice that, as we 
removed multi-isoform transcripts to avoid 
ambiguities in the data preprocessing process, the 
model is only trained using single-isoform 
transcripts from the first dataset. Therefore, it shows 
great learning ability, demonstrating satisfying 
flexibility and adaptability to multi-isoform cases. 
Overall, the proposed Ds-Sim achieves an effective 
performance on both single-isoform transcripts and 
multi-isoform transcripts. 
 
4.3 Comparison of Different Species 
In this subsection, we will evaluate the performance 
of the proposed simulator Ds-Sim on different 
species. We conducted simulation experiments for 
both mouse and human data. The mouse cell 
samples are from the dataset GSM2177570, and the 
human cell samples are from the dataset 
GSM1544798. 

Figure 6 presents the experiment results on the 
two datasets in terms of Pearson and BC distance. 
From observation, we notice that the experiment 
results of the two species are quite similar, only with 

a slight difference. To be more specific, the Pearson 
value of the human data is about 4.8% higher than 
that of the mouse data. 
 

 
Fig. 6: Comparison of different species in terms of 
Pearson and BC distance 
 

In terms of the BC distance, the BC distance of 
the human data is about 8.6% lower than that of the 
mouse data. It seems the experiment results on the 
human data are slightly better. There are several 
possible reasons for this. We infer this may be 
because the human samples are from GSM1544798, 
so they share similar characteristics to the training 
data. For example, they were obtained under the 
same experiment condition, and they have the same 
read length, etc. Still, the proposed Ds-Sim achieves 
satisfying simulation results on both species, with a 
Pearson value around 0.8 on both datasets, which 
suggests that the distribution of simulated reads 
obtains similar shape and features to the real Drop-
seq reads. Furthermore, human samples are 
completely new to the simulator, since it is only 
trained on mouse samples. Despite that, the 
proposed Ds-Sim demonstrates great adaptability to 
an entirely new species. Overall, the proposed Ds-
Sim is able to model the PAB caused by the 
sequencing process, and produce valid simulation 
data for different species. 
 
 
5  Conclusion 
In this paper, we present a novel RNA read 
simulator, namely Ds-Sim, which can simulate reads 
of Drop-seq data that accurately capture the 
poly(A)-bias inherent in single-cell RNA 
sequencing (scRNA-seq) data. Unlike conventional 
RNA-seq simulation methods that assume uniform 
read distributions, our method explicitly models the 
skewed distribution caused by poly(A) priming, 
resulting in a more biologically realistic read 
distribution. Furthermore, by introducing a mixture 
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model that dynamically adjusts the read sampling 
probability based on read length and distance to 
poly(A)-regions, we capture nuanced positional 
biases that better reflect real Drop-seq experiments. 
In addition, the integration of realistic barcode and 
UMI generation, combined with empirical 
sequencing error models, ensures that the simulated 
data closely mimics real Drop-seq data at multiple 
levels. Our approach not only improves the quality 
of simulated reads but also provides a robust 
framework for benchmarking and evaluating new 
computational methods designed for Drop-seq data 
analysis. 

Our model can be further enhanced by 
incorporating additional sources of bias, such as GC 
content or transcript secondary structures, which 
may also affect read distributions. Additionally, 
extending the model to accommodate other single-
cell sequencing technologies, such as 10x Genomics 
or Smart-seq, would broaden its applicability. 
Future work could also explore improving the 
barcode synthesis process to capture more complex 
cell barcode structures and error profiles. 
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APPENDIX 
 

Fig. 1: The method framework 
 
 

 
Fig. 2: The original read distribution (left) and the distribution processed by the sliding window (right) 

 
 
 

 
Fig. 4: The read distributions of real Drop-seq data, the baseline model and the simulated data generated by the 

proposed Ds-Sim 
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