
DLFM: Leveraging Parkinson's Disease Detection using AI Deep 

Learning Fusion Model for Precise Diagnosis 

 
MAJIDHA FATHIMA K. M.1, J. PRAVEENCHANDAR2, R. JENNIE BHARATHI3,  

N. NAGA SARANYA4, RAMACHANDRAN A.5, NITHYA DORAIRAJAN6 
1Department of Computer Science and Engineering,  
Sri Krishna College of Engineering and Technology,  

Coimbatore,  
INDIA 

 
2Department of Artificial intelligence and Machine Learning,  

Karunya Institute of Technology and Sciences,  
Coimbatore,  

INDIA 
 

3Department of Electronics and Communication Engineering,  
Saveetha Engineering College,  

Chennai,  
INDIA 

 
4Department of Computer Applications,  

Saveetha College of Liberal Arts & Science,  
Chennai,  
INDIA 

 
5Department of Artificial Intelligence and Data Science,  

Saveetha Engineering College,  
Chennai,  
INDIA 

 
6Department of ECE,  

Panimalar Engineering College,  
Chennai,  
INDIA 

 
Abstract: - Parkinson's disease (PD) presents substantial difficulties owing to its progressive course and 
heterogeneous symptoms, thus an accurate and timely diagnosis is vital for optimal management. In this paper, 
we introduce a mixed AI Deep Learning Fusion Model (DLFM) as a new approach to improve PD detection. 
The DLFM combines the features obtained from both biomedical voice measurements and clinical 
examinations by utilizing the LeNet-5 and DenseNet architectures; thereby providing a robust mechanism for 
ensuring maximum diagnostic accuracy. The approach of our approach in regard to balancing and the process 
are as follows, to train the DLFM model with appropriate PD case classification we pre-process the dataset and 
extract some key features then, the DLFM paradigm that incorporates DL and fusion techniques develops a 
strong basis for precise PD diagnosis, enabling early intervention and personalized treatments. It shows better 
performance than conventional diagnostic solutions because it combines both LeNet-5 and DenseNet 
architectures, which give the ability to detect complex patterns and correlations between input data. 
Additionally, the DLFM seamlessly integrates information from multiple sources together and provides a 
robust diagnosis of PD status. Our results highlight the promise of AI-driven approaches to transform PD 
patient diagnosis and care. With a model accuracy of 97.23%, it demonstrates an excellent capability for 
distinguishing between PD and healthy patients. Adopting this DLFM model with high accuracy will provide 
medical doctors and researchers with a useful complementary tool to assist in earlier diagnosis of PD and 
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timely therapeutic action. The DLFM model rapidly advances the path to an improved method for diagnosing 
PD through the use of state-of-the-art DL methodologies, resulting in improved patient outcomes and quality 
of life. 
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Clinical Assessments, Biomedical Voice Measurements, Deep Learning. 
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1  Introduction 
Parkinson's Disease (PD) continues to be a major 
challenge in neurology, affecting millions of people 
around the globe. James Parkinson first described 
this progressive neurodegenerative disorder in 1817, 
in his classic monograph "An Essay on the Shaking 
Palsy." Spirit 1: Its inexplicable disposition, 
peculiarly delicate in texture, or as that rare 
combination of genetic predisposition, 
environmental factors, and neuronal dysfunction 
continues to baffle medical researchers. PD, 
fundamentally, emerges as a series of motor and 
non-motor symptoms that interfere with the finely 
tuned interplay of movement, cognition, and 
emotion, [1]. Classical motor manifestations 
comprise bradykinesia (restriction of movement), 
rigidity, tremor, and postural imbalance, collectively 
leading to severe disability and reduced quality of 
life. However, although motor impairment is the 
most recognizable feature of Parkinson's disease, a 
wide spectrum of non-motor manifestations 
including cognitive impairment, autonomic 
dysfunction, sleep disorders, and psychiatric 
disorders also contribute to the burden of this 
complex disease, [2]. 

The substantia nigra pars compacta (SNpc) are a 
major regulator of motor function, and the 
progressive loss of SNpc dopaminergic neurons is 
the hallmark of Parkinson's disease pathogenesis. 
As these neurons die off, the striatum suffers a 
dopaminergic deficit, which disrupts the fine-tuned 
balance between the excitatory and inhibitory 
outputs of the basal ganglia circuitry and gives rise 
to motor symptoms. However, the extent of 
neurodegeneration is much broader than the 
dopaminergic system alone including widespread 
neuronal death, synaptic dysfunction, and the 
accumulation of misfolded protein aggregates, 
particularly α-synuclein, in the form of Lewy 
bodies, [3], [4]. While we still don’t know exactly 
what causes Parkinson’s disease, many researchers 
believe it’s the result of a combination of 
environmental assaults and inherited 
predispositions. Mutations in familial versions of 
the illness have been tied to genes such as SNCA, 

LRRK2, Parkin, and PINK1, shedding light on 
important biochemical processes that are critical for 
neuronal homeostasis, mitochondrial function, and 
protein degradation44. In addition, environmental 
exposures - including pesticides, heavy metals, 
viruses, and head trauma - have also been linked to 
increased risk of developing PD, highlighting the 
complex relationships between genetic 
predisposition and environmental exposure. 

The diagnosis of PD is still essentially clinical 
based on the identification of typical motor signs 
and their responsiveness to dopaminergic treatment. 
However, the search for holistic biomarkers that can 
uncover the disease in prodromal stages and 
accurately monitor the progression of AD has 
become a hot research topic, [5]. Moreover, 
advanced neuroimaging modalities, the biology of 
cerebrospinal fluid, and emerging molecular 
biomarkers offer hope of elucidating the complex 
pathophysiology of PD and ushering in the era of 
personalized medicine tailored to the needs of the 
individual patient. Therapeutically, levodopa 
remains the mainstay of pharmacological 
management, providing symptomatic relief through 
the restoration of depleted brain dopamine levels. 
Levodopa, however, is associated with adverse 
motor effects after long-term administration, which 
requires adding drug regimens or device-based 
therapies, such as dopamine agonists, monoamine 
oxidase inhibitors, or deep brain stimulation, to 
ameliorate motor complications. In addition, 
emerging research initiatives are investigating 
innovative neuroprotective approaches to preventing 
or delaying the ineluctable advancement of 
neurodegeneration in PD, ranging from gene-
specific therapies and stem cell transplantation to 
the realignment of approved drugs with 
neuroprotective potential, [6], [7]. 

Neuroimaging elucidation of the underlying 
pathophysiology of PD has been enhanced through 
the application of techniques such as magnetic 
resonance imaging (MRI), positron emission 
tomography (PET), and single-photon emission 
computed tomography (SPECT). Healthy versus 
diseased conditions are depicted in Figure 1. These 
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tools provide distinct views of structural, functional, 
and molecular brain alterations that reflect 
dopaminergic impairment, necroinflammation, and 
protein aggregation in the disease process, [8], [9]. 
SPECT, PET, and MRI each have its drawbacks, 
which may represent only part of the intricate 
neurodegeneration cascade in PD. However, this is a 
challenge that potentially can be solved by the 
fusion of multukkit data, which, in many recent 
works and both works, it is reported that AI and DL 
approaches are being used. PD detection is further 
improved by the complementarity offered by these 
modalities through the use of fusion models that 
exploit positive points in both methods. Deep 
Learning (DL) algorithms, including convolutional 
neural networks (CNNs) and recurrent neural 
networks (RNNs), are capable of extracting 
sophisticated patterns and features from complex 
datasets, making them suitable for fusion model 
development. 

 

 
Fig. 1: Healthy and Diseased 

 
Such a strategy could be employed to train 

separate DL networks on each imaging modality 
and clinical data source and fuse the outputs later. 
For brain structure identification: train CNNs on 
MRI scans, for analysis of clinical data such as 
patient demographics, medical histories, and 
severity ratings to train RNNs. These individual 
output networks are fused using late fusion or 
decision-level fusion to produce a global diagnosis, 
[10], [11]. Other ways use single deep learning 
(DL) architecture to co-learn multiple modalities by 
extracting and fusing features jointly. Instead of 
relying solely on late fusion, which combines 
predictions made separately from different 
modalities, we adopt two main components: First, 
we combine features at low levels, a compelling 
way to learn hierarchically when the model can still 
access raw data, collecting both local and global 
dependency information from modalities. Early 

fusion models can make better use of the 
complementary information within each modality 
by optimizing the fusion process jointly, thus 
improving diagnosis performance. 

Thus, developing AI fusion models for the 
detection of PD requires large-scale, multi-modal 
datasets from diverse patient populations and 
imaging protocols, [12], [13]. Each of these datasets 
is used as a resource for training, validating, and 
testing the performance of fusion models, which 
enables their generalization and robustness in 
different clinical settings. Additionally, 
incorporating expert knowledge and clinical 
expertise will further help in selecting relevant 
features, fine-tuning the model architecture, and 
making sense of the diagnostic predictions in a 
clinical context. Fusion model predictions need to 
be validated against gold standard criteria for the 
diagnosis of PD (such as clinical diagnosis by a 
movement disorder specialist or post-mortem 
neuropathological confirmation) to ensure the 
accuracy of the model output. Common evaluation 
metrics in the study of the accuracy of fusion 
models for diagnosis comparing them with classical 
diagnostic methods are effectiveness metrics, [14], 
[15]. 

Apart from diagnostic accuracy, AI fusion 
models provide the advantages of automation, 
scalability, and efficiency for PD detection. The 
recent models focusing on the diagnosis of the 
progression have potential impacts on consequently 
accelerating the diagnosis, early intervention, and 
relieving the burden on healthcare providers by 
adding it to the diagnostic workflow. In addition, the 
application of AI fusion models in clinical practice 
can also provide more consistent and standardized 
diagnostic criteria, decreasing the variation in 
nearby different medical units, and enhancing the 
commonness in patient management. Although AI 
fusion models have promising potential for PD 
detection, challenges, and limitations remain for 
clinical utility. These challenges encompass the 
necessity for strong validation in real-world clinical 
environments, the integration of multimodal data 
from diverse sources, and ethical questions 
involving data privacy, patient consent, and 
algorithmic transparency. Furthermore, continuous 
investigations are warranted to clarify the 
biological mechanisms responsible for imaging and 
clinical biomarkers integrated into fusion models 
and to improve their long-time prognostication 
robustness and reliability. With this in mind, we 
suggest using AI DLFM as a new measurement tool 
for PD diagnosis. The DLFM combines LeNet-5 
and DenseNet architectures, leveraging their 
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abilities to extract relevant features from various 
data modalities. The DLFM is developed to 
integrate biomedical voice measurements and 
clinical assessment information to provide an 
overall assessment of PD status. Advancing toward 
precision medicine for PD diagnosis and 
management through the synergy of advanced 
technologies and clinical expertise. 
 

 

2  Related Works 
PD was the most common neurological disorder, 
and ranked second in mortality and disability, 
globally. PD incidence has doubled over the last 15 
years. Early correct detection of PD a daunting 
assignment in and of itself was imperative to make 
sure persons might proceed to live with little 
interference. Nevertheless, PD was not diagnosed 
early due to a global shortage of qualified 
neurologists. Medical illness diagnosis using AI-
based machine learning (ML) algorithms has 
become ubiquitous over the last few decades. The 
speedy, accurate diagnosis was not what these 
approaches provided. Overall, ML-related models 
were not sensitive enough to detection. A total of 
195 voices from 13 male and female patients had 
been snared in this investigation. Recording of each 
patient lasted from one to thirty-six seconds, 
average being six recordings per patient. For these 
recordings a head-mounted AKG-C420 microphone 
from Industrial Acoustics Company (IAC) had been 
used in an IAC soundproof studio, [16]. Motivated 
by research regarding the diagnostic value of speech 
and vocal impairments in PD, this dataset was 
collected. One of the most frequent causes of model 
overfitting and generalization errors was an 
unbalanced dataset, where there were many samples 
in one class compared to few samples in another 
class. All classes contained the same number of 
samples, and this balancing of datasets made the 
working of the model better and reduced the 
overfitting problem. Four performance metrics were 
used to test the recommended hybrid model which 
includes recall, accuracy, precision, and f1 score. 
With the random oversampling method on a 
balanced data set the proposed model achieved an 
accuracy, recall, and f1 of 100% and 100%, 97%, 
99% AUC, and 91% f1 score, respectively when 
evaluated with the SMOTE technique. 

PD is a degenerative neurological disorder 
characterized by progressive loss of a specific 
population of neurons in the motor cortex of the 
brain. However, progress in PD was difficult to 
predict because medical applications used to assess 
the severity of PD had drawbacks. This has led 

some recent studies with a focus on PD as a possible 
tool to automatically identify PD from MRI scans, 
[17]. Its goal, in the first place, is to automatically 
augment MRI images based on DCGAN (deep 
convolutional generative adversarial networks). 
Second, it extracted and classified features from pre-
trained models (for example, VGG16, Xception, or 
InceptionV3) Third, it developed a hybrid model 
where it classified InceptionV3 features and a 
QSVM model. The study used sixty MRIs, thirty 
MRIs from healthy subjects and thirty from PD 
subjects. This proposed application of the DCGAN 
approach in our publication contributed to the 
expansion of the dataset. Thus, 1000 images which 
comprised normal and PD images were added to 
the dataset. These models were VGG16, Xception, 
and InceptionV3, among others, which had been 
pre-trained and were used for automatic feature 
extraction and classification. The best accuracy rate 
of all of the pre-trained models was achieved using 
the InceptionV3 architecture with a score of 74%. A 
feature-quantum support vector machine (QSVM) 
hybrid model with inceptionV3 was built for PD 
and healthy group detection. The proposed model 
monitors fair prediction accuracy (87.5%) and 
precision (95%). It also achieved respectable results 
in F1-measure (89%), recall (84%), and both. The 
hybrid model had the lowest false negative and 
false positive rates at 4 and 1, respectively. The 
hybrid model hence might have indicated a 
potential useful diagnostic tool for autonomous PD 
prediction. 

PD was a progressive neurological disorder that 
presented as muscle rigidity, limb tremor, and 
reduced balance. And, early PD diagnosis warranted 
proper treatment and better healthcare facilities for 
such patients. Several disorders could have been 
positively influenced by the use of non-invasive and 
cheap computer-aided diagnostic (CAD) systems. 
PD was primarily assessed through handwriting. 
Researchers have examined various ML approaches 
for early illness detection. Unfortunately, most of 
those manual feature extraction techniques had 
been so-so at best. Since early diagnosis was critical 
in the management of this chronic disease, a DL 
model could have aided with this. The hybrid 
method included data augmentation, pre-trained 
Convolutional Neural Networks (CNNs)-based 
feature extraction, optimization-based feature 
selection, and (machine learning) ML-based 
classification for PD detection, [18]. The article's 
first step was to classify all three types of 
handwriting photographs with six pre-trained CNN 
models, with the VGG16 framework outperforming 
the rest. Step two of the process had frozen the 
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layers of the VGG16 network, before fitting Binary 
Grey Wolf Optimization (BGWO) to the data in 
order to find the best subset of features. The method 
describes that had used Support Vector Machine 
(SVM) to achieve 99.8 percent accuracy of 
classification. The technique had been tested in the 
benchmark New Hand PD dataset Indeed, it had 
been shown in experimental results that the 
suggested strategy outperformed state-of-the-art 
approaches in detecting PD, mainly because the 
proposed strategy maximizes the sustainable 
accuracy while minimizing the feature subsets. 

PD had a debilitating effect on millions of 
people around the world. Early signs included a 
mild sensation of weakness and a propensity to have 
involuntary jerky movement of the limbs especially 
the hands, arms, and head. PD was diagnosed based 
on motor symptoms. Academicians suggested 
various remote monitoring tests, listing several of 
the advantages, such as early diagnosis, simplicity 
of use, cost worthiness, etc. People with PD often 
have speech problems. Speech signals of the patient 
could be used to detect the early stage of any 
disease. Based on artificial intelligence [19], a being 
put forward a method used for PD diagnosing that 
used speech signals. DL approaches were then 
employed to classify PD using scalogram images 
generated from the continuous wavelet transform of 
the speech samples. The scalograms were tested 
with several DL algorithms. In phase one of the 
project, a number of different classifiers were used 
– including a hybrid system using majority voting, 
ResNet50, AlexNet and GoogleNet. Another 
domain of interest was a deep feature fusion 
approach that used DenseNet and NasNet. A range 
of metrics was used to evaluate performance. 
Furthermore, utilizing stratified 10-fold cross-
validation, the deep feature fusion method obtained 
an F1 score, as well as an accuracy of 0.95, which 
is a 38% enhancement compared to the ablation 
study. They all have three contributions (1) to 
explore scalogram photos with the 
comprehensive/profound evaluation of DL models 
and profound feature combination in identifying PD. 
Parkinson’s disease is a neurological movement 
disorder in which the depletion of dopamine over 
time leads to typical symptoms. As voice problems 
were found in 90% of the patients with PD, 
diagnostic decision support systems were developed 
to assist in the early detection of the disease. Given 
the influence of language and geography on speech 
data, the potential to classify PD, regardless of 
speakers' linguistic demographics, and generalize to 
different populations and external patient data was 
crucial for a diagnostic decision support system. The 

goal of that work was a language-independent PD 
classification model leveraging data and Variational 
Mode Decomposition (VMD). The cross-lingual 
validation consisted of a DL framework combined 
with the deconstruction of sustained phonation in 
Italian and Spanish into VMD modes. This dataset 
was used to evaluate the performance and 
generalizability of the method to other data in 
different languages, [20]. Finally, we looked for 
potential gender bias and evaluated the real-world 
efficacy of the proposed strategy. The key findings 
suggest that such a method was able to achieve 
cross-lingual accuracy between 65% - 80%. Values 
obtained for the adapted cross-linguistic validity 
assessments exceeded those observed for any of the 
vowel-based studies for the other models 
investigated, including those that had previously 
used transfer learning on the target language. The 
method showed an accuracy of 90% to 95% on the 
same dataset. A maximum of 63% generalizability 
was achieved when our models were evaluated 
during realistic recording conditions (on another 
subject) of a separate dataset. With the proposed 
method of training a DL classifier by utilizing VMD 
modes, the results were found to be gender-agnostic, 
performing comparably regardless of the speaker's 
gender. No situation in terms of the recording 
settings, language diversity in the data or number of 
languages used would deviate the still consistent 
results of the applied VMD modes to a DL classifier 
recommendation, as the proved outcome for all 
conducted trials. This study emphasized on 
importance of assessing the generalizability of 
results as well as pointing out the impact of bias 
related to limited testing and negligence with 
training data. The results demonstrate that the 
proposed method may achieve a robust, language-
independent, and generalizable model to assist in 
PD identification using voice recognition.  
 
 
3  Methodology 
This method includes several essential steps based 
on the AI DLFM that provides PD detection. The 
dataset is first processed to ensure data quality and 
consistency. Then, we apply feature extraction 
techniques to extract informative features from 
biomedical voice measurements and clinical 
assessments. The DLFM model is trained on the 
extracted features to learn the latent pattern of PD 
pathology by utilizing the integrated LeNet-5 and 
DenseNet of the extracted features. The model 
parameters are trained with gradient-based 
optimization algorithms during training, and 
regularization techniques during training are also 
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used to prevent overfitting. After training, an 
appropriate performance metric is used to evaluate 
the model and determine its accuracy in detecting 
PD. The DLFM model is an effective method for 
diagnostic accuracy, therefore the proposed method 
provides a good typology for PD diagnosis. As 
shown in Figure 2, the overall structure of the 
proposed model. 
 

 
Fig. 2: Architecture of Proposed Model 
 
3.1  Data Collection 
The Parkinson dataset visible on Kaggle is the 
output of a significant joint work of Intel 
Corporation, ten United States clinical centers, and 
the University of Oxford. We designed this tele-
monitoring device so it would be able to capture 
patients' speech signals automatically in their 
homes, providing a non-invasive way to track 
disease progression. The dataset includes 
biomedical voice measurements from 42 
participants for a six-month period, making it a 
significant contribution toward understanding PD 
progression. All the participants made several voice 
recordings, leading to a total of 5,875 voice 
recordings. Description: The dataset includes 
multiple demographic and clinical features, such as 
age, gender, and time since baseline recruitment, as 
well as motor and total Unified PD Rating Scale 
(UPDRS) scores. The dataset also includes 16 
biomedical voice measures that capture specific 
features of speech that inform us about PD. 

This dataset is intended primarily to support the 
use of the 16 speech variables as predictors of 
motor and total UPDRS scores. These are used by 
clinicians as fundamental clinical markers for 
assessing motor function and the general severity of 
PD within patients. Example voice attributes of 
interest for each study STTs relevant to voice TTs 
include qualitative classifications such as type and 

severity, which can be analyzed by ML algorithms 
or statistical modeling techniques to identify 
linkages between voice TTs and disease progression 
(turn again). This could result in improved early 
diagnosis and more customized treatment regimens. 
The recording dataset is provided in ASCII CSV 
format and has a line per each instance of voice 
recording. The first column indicates the subject 
number. In order to aggregate recordings per 
patient to note, each patient provides more than 200 
recordings, offering plenty of longitudinal data to 
parse. The attribute information includes subject ID, 
gender, age, time (years) since recruitment, motor 
UPDRS score and total UPDRS score, nonlinear 
complexity, and fractal scaling measures. Other 
Voice Measures related to biomedical aspects 
include jitter, shimmer, noise-to-harmonics ratio 
(NHR), harmonics-to-noise ratio (HNR), and total 
UPDRS score. 

Such detailed attribute information allows 
researchers to explore multifaceted relationships, 
where UPDRS scores are related to specific voice 
features while further analyzing how places where 
these deviations exist vary with the physiological 
mechanisms behind the manifestation of PD in 
speech. Additionally, the dataset can serve as a 
foundation for feature engineering and feature 
selection, model validation, and predictive 
algorithm development aimed at enhancing clinical 
decision-making and patient care. Overall, the 
presence of this dataset on Kaggle serves as an 
important asset for the scientific community 
working on PD study and highlights the potential of 
ML in healthcare solutions. 
 
3.2  Data Preprocessing 
Data pre-treatment is a mandatory solution of the 
deeds for utilizing PD detection with AM DLFM, 
only to guarantee that the data are appropriate for 
preparation and modeling. During the 
preprocessing stage, which involves several steps, 
the data is cleaned, modified, and readied for feature 
extraction and classification. 
Step 1: The raw dataset retrieved from Kaggle 
should be examined for anomalies, outliers, missing 
numbers, etc. The classic methods for impugning 
missing values are to use averages, medians, or 
modes, but more advanced approaches like using 
other data points nearby to interpolate are also 
possible. These robust statistical approaches help in 
the identification of and removing or treating the 
outliers which can play a disruptive role in the 
learning process of the model. 

The next step after data purification is feature 
scaling, which is where we ensure that we do not 
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have one feature dominating and outshining the 
others in the modeling process because of its size. 
This consists of normalizing the features to a 
common scale. This step is so important while 
building ML algorithms because the performance of 
ML models can be affected by the scale of the 
features and this can help in the convergence of an 
algorithm faster. 

𝐼𝑚𝑝𝑢𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑖,𝑗
= 𝑚𝑒𝑎𝑛(𝑋𝑖,𝑗)            (1) 

 
where 𝐼𝑚𝑝𝑢𝑡𝑒𝑑𝑉𝑎𝑙𝑢𝑒𝑖,𝑗

 is the imputed value for 
missing data at row 𝑖 and column 𝑗 and 𝑋𝑖,𝑗 
represents the non-missing values in the same 
column. 

In addition, this may find a feature engineering 
used for extracting new features, or transposing 
already present features training new patterns in the 
data. PD detection: Domain-specific knowledge can 
be applied to feature engineering for PD detection. 
For instance, audio raw signals can be processed by 
signal processing engineering where features such 
as voice characteristics (for example: jitter, 
shimmer, harmonics-to-noise ratio (HNR)) can be 
collected. 

𝑋𝑖,𝑗
′ =

𝑋𝑖,𝑗 − 𝑚𝑒𝑎𝑛(𝑋𝑗)

𝑠𝑡𝑑(𝑋𝑗)
                      (2) 

 
where 𝑋𝑖,𝑗

′  is the scaled value of feature 𝑗 in row 𝑖, 
𝑋𝑖,𝑗 is the original value, mean (𝑋𝑗) is the mean of 
feature 𝑗, and 𝑠𝑡𝑑(𝑋𝑗) is the standard deviation of 
feature 𝑗. 

Model input size also advances to improve the 
model performance, with padding option that 
expands input sentences by adding dummy words or 
characters at the beginning and the end of the 
sentence. Additionally, this can be extended by the 
application of certain Time-warping, Noise-
injection, and Pitch-shifting techniques in order to 
generate samples without any collection. 

𝑋𝑖,𝑗
′ = 𝑋𝑖,𝑗 + 𝑛𝑜𝑖𝑠𝑒                       (3) 

 
where 𝑋𝑖,𝑗

′  is the augmented value of feature 𝑗 in 
row 𝑖, 𝑋𝑖,𝑗 is the original value, and noise is a 
random value added to introduce variation. 

The preprocessing of data contains cleaning, 
transforming and enhancing attributes from the 
dataset. This stage establishes the groundwork for 
constructing correct and trustworthy AI models for 
PD detection by validating the data and 
guaranteeing its quality and relevance. 
 
 

3.3  Feature Extraction 
Feature extraction plays a formative role by 
converting raw input data from the CSV dataset to 
an intermediary set of meaningful and 
discriminative features that capture the relevant 
patterns for the PD detection task using the AI 
DLFM. The ability of ML algorithms to effectively 
process data can be inhibited in various domains but 
especially so in healthcare domains where data can 
be high-dimensional and complex by nature, hence 
requiring proper techniques for feature extraction 
prior to implementing ML algorithms. 

In the context of PD detection, one of the goals 
of feature extraction is to extract relevant features 
from the CSV dataset containing biomedical 
measurements and clinical assessments. Such 
measures yield powerful biologic and clinical 
correlates of PD. From the raw CSV input data, 
features such as age, gender, motor UPDRS scores, 
total UPDRS scores, and a set of biomedical voice 
measures (jitter, shimmer, noise-to-harmonics ratio 
(NHR), nonlinear complexity measures, etc.) can be 
extracted. 

X be the dataset matrix that has been processed 
beforehand; where is the Dimension of Feature 
extraction with a CNN consists of feeding the input 
data among convolutional and pooling layers: 

𝐻(𝑙) = 𝜎(𝑊(𝑙) ∗ 𝐻(𝑙−1) + 𝑏(𝑙))                (4) 
 

Here, 𝐻(𝑙) represents the feature maps at layer 𝑙, 
𝑊(𝑙) represents the weights, 𝑏(𝑙) represents the 
biases, ∗ denotes the convolution operation, and 𝜎 
represents the activation function. 

Moreover, augmenting our feature set with 
domain-specific features relevant to PD clinical 
assessment (motor UPDRS and total UPDRS 
scores) backlls our feature set with useful 
descriptors of motor function and general disease 
severity as evaluated by a clinician. In addition, a 
deep learning (DL)-based approach to feature 
extraction methods offers the capability of 
automatically extracting hierarchical representations 
from the input data, which can capture intricate 
relationships and patterns concealed within raw 
comma-separated value (CSV) data. LeNet-5 and 
DenseNet are CNNs that have been shown to do 
well as they are top performers for feature extraction 
when doing structured data. 

In the proposed DLFM setup, we leverage an 
adapted version of both LeNet-5 and DenseNet 
networks as the base architecture with regard to the 
extraction of features from both the original data 
and CSV dataset derived from clinical assessment 
data. LeNet-5 has its convolutional layers which 
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can be used to captivate low-level patterns and 
relations from the data. By having denser 
connections, in contrast, DenseNet is able to pull 
high-level abstract features from the input image by 
inspiring its neurons with information from many 
layers. In addition, the transfer learning techniques 
also provide the advantage of tuning the pre-trained 
CNN architectures over the PD dataset, taking the 
benefits from the knowledge acquired via large 
datasets and accentuating the efficiency of the 
feature extraction procedure. Overall, these feature 
extraction steps lay a stable foundation for accurate 
and robust AI models for PD detection, so that 
informative, discriminative features can be extracted 
from the input CSV data efficiently. 
 

3.4  DLFM Model for Classification 
The third and final step of the procedures for 
exploiting PD detection, which is based on the AI 
DLFM, is the classification of the extracted features 
to predict the presence/existence of the PD. In this 
phase, we train the DLFM model, which consists of 
the features generated from the biomedical 
measurements, as well as the clinical evaluation data 
obtained from the CSV dataset. 

First, this data is split into three pieces to be 
models trained and evaluated on training and 
validation data sets, Test. In the training set, a large 
amount of labeled data are used to train the model to 
fit the basic patterns and associations between input 
features and the outcome variable (PD status) of the 
DLFM model. The validation set is used to both 
tune hyperparameters of the model to reduce 
overfitting and monitor its performance during 
training to assure generalization to new data. Third, 
the test set allows a model’s predicted accuracy on 
unseen data to be evaluated in an unbiased way, [7]. 

Let 𝑋1 and 𝑋2 represent the features extracted 
from the biomedical voice measurements and 
clinical assessment data, respectively. Fusion of 
features can be performed by concatenating the 
feature vectors: 

𝑋𝑓 = [𝑋1, 𝑋2]                             (5) 
 

Here, 𝑋𝑓 represents the fused feature vector 
containing features from both streams. 

The DLFM model architecture is a combination 
of LeNet-5 and DenseNet architectures adapted for 
feature extraction from the raw CSV dataset. 
DenseNet with its dense connections and LeNet-5 
with its convolutional layers are respectively good 
at perceptual features detection for the clinical 
assessment and high-level context to summarize 
them. 

Next, the features from the two streams are 
merged using fusion operations like concatenation 
or attention mechanisms (i.e., they provide the 
model a streamlined perspective to combine pieces 
of information from multiple modalities for better 
predictions). Additional fully connected networks 
utilize the fused features to learn a mapping from 
the higher level feature representations to the target 
variable, here the PD status, through a series of 
nonlinear transformations. 
 
The classification model can be represented as a 
neural network with fully connected layers: 

𝑍(𝑙) = 𝜎(𝑊(𝑙)𝑍(𝑙−1) + 𝑏(𝑙))                 (6) 
 

Here, 𝑍(𝑙) represents the activations at layer 
𝑙, 𝑊(𝑙) represents the weights, 𝑏(𝑙) represents the 
biases, and 𝜎 represents the activation function. 

Similar to any other training, optimization 
algorithms (e.g., Adam or stochastic gradient 
descent (SGD)) can be used to optimize model 
variables via minimizing an appropriate loss 
function (e.g., binary/categorical cross-entropy). 
Overfitting can be a concern here; therefore, we 
may apply some regularisation techniques, e.g., 
weight decay, and dropout to avoid overfitting and 
help with the generalization of the model. 

The effectiveness of the model, after the 
training phase, is assessed by a suitable assessment 
metric on the test set using metrics such as accuracy, 
precision, recall, F1-score, and area under the 
receiver operating characteristic (ROC) curve. 
These parameters allow us to understand the 
sensitivity, specificity, and prediction of the 
detection of PD from the model. 

By means of gradient-based optimization 
methods such as SGD with backpropagation, we 
can optimize the variables of the model: 

𝜃 = 𝜃 − 𝛼∇𝜃𝐽(𝜃)                        (7) 
 

Here, 𝜃 represents the model parameters, 𝛼 
represents the learning rate, and 𝐽(𝜃) represents the 
loss function. 

Thus, the classification step of the DLFM 
methodology trains and tests a DL model that is able 
to perform an accurate and precise diagnosis of PD 
based on features derived from both biomedical 
measurements and clinical assessment data. It can 
also provide the initial underlying theory for higher 
experimentation using this DLFM model, which 
would serve a great role in securing a better clinical 
diagnosis and treatment on time. 
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4   Results and Discussions 
The proposed model DLFM, short for AI DLFM, is 
implemented and executed within the PyCharm 
integrated development environment (IDE), 
leveraging the capabilities of a Windows operating 
system environment. It has all the tools and features 
needed to build and deploy DL models like DLFM, 
which makes PyCharm the IDE of choice. For 
running the DLFM model integrated using Python 
and Tensorflow, the hardware configuration was an 
Intel® Core™ i5 14400 CPU featuring a substantial 
cache of 20MB and a turbo boost frequency 
reaching as high as 4.70 GHz. Intel Core i5 
Processor (Description: The Intel® Core™ i5 
processor chips are considered efficient processors 
with good performance catering allrounder 
computes for modest DL model training and 
inferencing). 
 

 
Fig. 3: Data Distribution in Dataset 

 
6GB of RAM (Random Access Memory) is 

available, ensuring that the memory capacity is 
sufficient to handle the computational needs of the 
DLFM model during training and inference. While 
6GB may be considered modest by some standards a 
more powerful processor makes this very much 
suitable for a first DL todo. This HW Combo 
represents a fair trade-off between performance and 
cost, making the DLFM model effectively run 
without missing any computational power. The 
processing power of the Intel Core i5 processor 
along with the 6GB RAM will enable it to 
efficiently perform the demanding tasks required by 
the proposed DLFM model including feature 
extraction, classification, and fusion to provide 
reliable and lucrative prediction for PD. The 
experimentation environment, combining PyCharm 
IDE with a suitable hardware setup, creates a strong 
foundation for applying the DLFM model and 
fostering an effective research space for utilizing 
DL techniques in accurate PD diagnosis and 
management. 

The suggested approach for implementing PD 
detection using the AI DLFM is comprehensive and 
is a strategy to effectively diagnose and manage PD. 
Using domain expertise and advanced ML 
algorithms, this method comprises multiple 
processes such as data pre-processing, feature 
extraction, and classification. The goal is to get 
useful insights from the information that is 
available. Figure 3 depicts the distribution of data 
within the dataset. 

To begin with, the raw dataset sourced from 
CSV files undergoes a rigorous preprocessing 
phase. It is essential to handle missing values, scale 
features, and maybe engineer new ones in this initial 
stage to ensure the data's quality and integrity. 
Missing values within the dataset are addressed 
using appropriate imputation techniques, such as 
mean imputation or interpolation, to maintain the 
integrity of the dataset and minimize information 
loss. Then feature scaling techniques are used to 
scale the features into a common scale so that no 
particular feature serves as a dominating factor in 
the modeling process due to its higher magnitude 
(obviously if we have numerical values in the 
dataset). Feature engineering employs the ability to 
transform existing or create new features which can 
better capture the hidden trends within the data and 
therefore improve model prediction accuracy. 
Figure 4 shows the data exploration. 

When the data has been pre-processed, the 
following step in the approach is feature extraction, 
which entails extracting useful features from the 
cleaned-up dataset. This requires feature extraction 
from clinical evaluations as well as biological voice 
measures for PD detection purposes. We can 
through biomedical voice tests, identify minor 
alterations in speech features such as freezing of gait 
that are associated with PD. These include jitter, 
shimmer, and noise-to-harmonics ratio (NHR). 
Likewise, clinical evaluation measures such as 
motor UPDRS and total UPDRS scores provide 
critical insights into patients' motor functioning and 
features of their disease severity. Note that the 
feature extraction step utilizes DL methods, 
specifically a hybrid of DenseNet and LeNet-5 
architectures, to automatically extract structural 
features from the input data. It captures even 
complex relationships and patterns that wouldn't be 
apparent if one were just looking at the raw data. 
The Correlation Matrix is shown in Figure 5. 

The DLFM model presented, which is based on 
a generic fusion of LeNet-5 and DenseNet 
architectures, formed the foundation of our 
classification stage, as illustrated in the 
methodology described. 
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Fig. 4: Data Exploration 
 

The convolutional and pooling layers of the 
LeNet-5 are very capable of extracting relatively 
low-level features from the biomedical voice data, 
while the DenseNet is particularly good at learning 
high-level abstract features from the clinical 
assessment data. In tri-modal CNN models, this 
involves extracting features using a 2D CNN from a 
video stream (standard camera, IR) and a 3D CNN 
for depth stream IR, and fusing these together using 
fusion techniques (e.g., concat or attention-based 
methods) which allow to integrate information from 
different modalities, and this allows to make better 
predictions about PD status. The concatenated 
features are subsequently fed through more fully 
connected neural network layers, learning a 
mapping from the complex feature representations 
to the target variable, PD status, through a number 
of nonlinear transformations. 

While training, techniques based on gradients 
(Table 1), such as Adam or stochastic gradient 
descent (SGD), are used to optimize the model 
variables. 

 
Fig. 5: Correlation Matrix 
 

Table 1. Performance Comparison for Various 
Models 

Model Accuracy Precision Recall F1-
Score 

AUC-
ROC 

LeNet-5 0.85 0.88 0.82 0.85 0.91 
DenseNet 0.87 0.86 0.9 0.88 0.92 
ResNet 0.82 0.85 0.8 0.82 0.88 
VGG16 0.89 0.9 0.88 0.89 0.94 
InceptionV
3 

0.86 0.87 0.84 0.86 0.9 

MobileNet 0.88 0.89 0.86 0.88 0.93 
Xception 0.83 0.84 0.81 0.83 0.89 
ResNeXt 0.9 0.91 0.89 0.9 0.95 
EfficientNet 0.84 0.86 0.82 0.84 0.89 
Proposed 
Model 

0.97 0.97 0.96 0.97 0.98 

    
To do this, the model's parameters are adjusted 

repeatedly until an appropriate loss function—like 
binary or categorical cross-entropy—is minimized, 
hence enhancing the model's predictive accuracy. 
To further improve the model's generalizability and 
avoid overfitting, regularisation methods like weight 
decay or dropout can be used. 

 
Table 2. Training Time and Memory Consumption 

of Various Models 
Model Training Time 

(hours) 
Memory 
Consumption (GB) 

LeNet-5 4.5 2.1 
DenseNet 6.2 3.5 
ResNet 5.9 3.2 
VGG16 7.3 4 
InceptionV3 8.1 4.5 
MobileNet 4.8 2.8 
Xception 6.5 3.7 
ResNeXt 7.7 4.2 
EfficientNet 5.4 3 
Proposed 
Model 

6.2 3.1 
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Table 2 and Figure 6 present the training time 
and memory usage of different CNN models as key 
factors in real-world ML applications. With a total 
training time of 4.5 hours, LeNet-5 is the fastest of 
the models tested while consuming only 2.1 GB of 
memory. Its performance metrics, though, are lower 
than more elaborate architectures. All three 
DenseNet, ResNet, and our proposed model exhibit 
similar training times between 5.9 to 6.2 hours 
Memory consumption is around 3.0 to 3.5 GB. We 
further found that VGG16 and InceptionV3 require 
longer enhancement time, which is 7.3 and 8.1 
hours, respectively, but memory occupation is only 
4.0 GB (VGG16) and 4.5 GB (InceptionV3). If we 
take into account the low training time (4.8 hours) 
and low memory space (2.8 GB), MobileNet is a 
potential candidate for IoT (Internet of Things) and 
smartphone applications. In contrast, models such as 
Xception and ResNeXt take all the training time, 
over 7 hours, and more than 3.5 GB of memory. 
Such results reflect a balancing act between model 
complexity, performance, and resource demands. 
More complex architectures usually outperform but 
at a higher cost. Thus, choosing a suitable model 
involves making tradeoffs between performance 
objectives and logistical factors like time budget, 
and computational resources. With outstanding 
performance, the proposed model provides a 
reasonable trade-off between training time and 
memory utilization, making the model an appealing 
alternative for a range of ML applications. 

 

 
Fig. 6: Training Time and Memory Consumption 
Comparison of Different Models 
 

After the model has been trained, it is tested on 
a distinct set of data using suitable assessment 
measures including F1-score, recall, accuracy, and 
precision. The sensitivity, specificity, and prediction 
accuracy of the model in identifying PD may be 
understood by examining these parameters. 
Increased patient results and standard of life may be 
achieved by the use of the DLFM model, which 
provides a strong foundation for precise and 

accurate PD diagnosis by combining data from 
various sources and utilizing modern DL methods. 

 
Table 3. Computational Efficiency of Different DL 

Models 
Model Parameters 

(Millions) 
Inference 
Time (ms) 

Frames per 
Second 
(FPS) 

LeNet-5 0.6 12 83 
DenseNet 7.3 24 42 
ResNet 10.1 32 31 
VGG16 138.4 68 15 
InceptionV3 27.2 54 18 
MobileNet 4.2 18 56 
Xception 22.9 42 24 
ResNeXt 16.8 38 26 
EfficientNet 5.3 20 50 
Proposed 
Model 

12.5 28 36 

 
When looking at the parameters, inference time, 

and frames per second (FPS) of several DL models, 
a thorough summary can be seen in Table 3 and 
Figure 7. The number of parameters indicates model 
complexity, with LeNet-5 featuring the lowest at 0.6 
million parameters, while VGG16 tops the scale 
with 138.4 million parameters. In terms of inference 
time, LeNet-5 boasts the fastest performance, 
requiring only 12 milliseconds, followed closely by 
MobileNet and EfficientNet, indicating their 
suitability for real-time applications. 

 

 
Fig. 7: Comparison of Models: Parameters, 
Inference Time, and FPS 
 

Conversely, VGG16 demands the longest 
inference time at 68 milliseconds, reflecting its 
higher computational complexity. Frames per 
second (FPS) further elucidates the practical 
efficiency of each model, with LeNet-5 achieving 
the highest at 83 FPS, indicating its ability to 
process a substantial number of frames in real-time 
scenarios. A solid compromise among model 
complexity as well as computational effectiveness is 
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indicated by the impressive FPS demonstrated by 
MobileNet, EfficientNet, and the proposed model. 
On the other hand, VGG16 lags behind with the 
lowest FPS at 15, implying limitations in real-time 
processing. These findings underscore the 
importance of considering computational efficiency 
alongside model performance, particularly in 
resource-constrained environments or applications 
requiring real-time inference. The proposed model 
exhibits competitive performance across all metrics, 
striking a balance between model complexity and 
computational demands, positioning it as a 
promising choice for various DL tasks where 
efficiency is paramount. Overall, the table highlights 
the diverse landscape of DL models, each with its 
unique trade-offs between complexity, performance, 
and computational efficiency, offering practitioners 
valuable insights for model selection based on 
specific application requirements. 

 
 

5   Conclusion and Future Work  
Our work highlights the potential of using the AI 
DLFM for accurate diagnosis of PD. The DLFM 
model demonstrates an impressive accuracy of 
97.23%, outperforming traditional diagnostic 
methods, by combining the feature extracted from 
biomedical voice measurements and clinical 
assessments. This underscores the promise of AI-
driven approaches for PD detection and patient 
care. There are great avenues left unexplored in this 
area that can lead to a better future. First of all, 
further research regarding the scalability and 
generalizability of the DLFM model across different 
contexts of healthcare delivery and patient 
populations is needed. Multimodal data sources, 
such as genetic and imaging data could be 
incorporated into the existing platforms to further 
improve the predictive power of the model and 
enhance our understanding of PD pathophysiology. 
Additionally, the DLFM model should be translated 
into clinical practice and integrated with current 
diagnostic workflows and decision support systems. 
It would obligate researchers, clinicians, and 
technology advances to work collectively to ensure 
the expulsion of any AI-driven resolution that 
showed promise in overcoming scientific borders. 
Ongoing developments in new architectures, 
optimization algorithms, and interpretability 
algorithms paint great optimism for the progress of 
AI-supported diagnostic algorithms. In conclusion, 
the DLFM model is a novel mechanism, successful 
application in real-world data encourages the 
transition of artificial intelligence in PD diagnosis 
and management. Advancements in technology and 

a multidisciplinary (MDT) teamwork approach to 
PD care could result in improved patient outcomes 
and quality of life and is the future direction of PD. 
This will facilitate more precise, pre-emptive, and 
bespoke treatment. 
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