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Abstract: - Scientists worldwide employ various cancer treatment methods, including Oncolytic Viral Therapy 
(OVT) and Adoptive Cell Transfer (ACT). In this study, we investigate the efficacy of combined therapies over 
short durations using optimal control theory strategies. We establish the existence of an optimal control pair and 
derive the necessary conditions. Using MATLAB, we conduct computational analyses and plot time series of 
susceptible tumour populations with and without therapy, as well as the behaviour of the control pair over time. 
This analysis identifies key parameters and dosages for effective cancer control. Our research aims to minimize 
the number of susceptible tumour cells and reduce therapy-related costs over the treatment period. We observe 
that combined therapy yields limited therapeutic outcomes compared to OVT and ACT alone. However, 
increasing the tumour-killing rate by immune cells enhances the effectiveness of both OVT and ACT therapies. 
This innovation holds promise for eliminating tumour cells using genetically modified viruses and immune 
cells. 
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1  Introduction 
Cancer is a complex disease responsible for many 
deaths worldwide. According to the World Health 
Organization nearly 10 million deaths occurred in 
2020 alone. It is characterized by the uncontrolled 
growth of abnormal cells that defy the normal rules 
of cell division. Throughout history, various 
therapies have been employed to treat cancer, but 
these methods have often proven insufficient in 
addressing persistent cancers. Consequently, there 
is a need for alternative treatment approaches to 
eradicate tumour cells. 

Today, cancer immunotherapy has emerged as a 
leading strategy for treating cancer through various 
approaches, [1]. This treatment method involves 
activating immune system’s ability to combat 
cancer, [1], [2], [3]. In cancer immunotherapy, the 
individual’s own immune system is utilized to target 
cancer cells. This approach can augment or modify 
the immune system’s function, enabling it to 
effectively attack cancer cells. Adoptive cell transfer 

is a successful method within cancer 
immunotherapy, where T cells are used to fight 
cancer. T cells, a type of immune cell, are potent 
weapons of the immune system, targeting cancer 
cells. These T cells are extracted from the patient’s 
body, enhanced in a laboratory to produce millions 
of copies, and then reintroduced into the patient. 
Oncolytic viral therapy has gained prominence as a 
modern cancer treatment method. This approach 
uses viruses to target cancer cells, with some viruses 
engineered specifically to combat cancer, known as 
oncolytic viruses (OVs). These OVs are either 
genetically modified or naturally occurring viruses 
that selectively replicate in and destroy cancer cells 
while sparing normal tissues, [3], [4]. 

Constructing mathematical models for the tumor 
and immune system interactions is challenging. 
These models serve as powerful tools for studying 
and describing the dynamic behavior of tumor-
immune interactions, [5]. In our model, we consider 
susceptible tumor populations, infected tumor 
populations, viral populations, and immune cell 
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populations. Both immune cells and oncolytic viral 
cells target tumor cells, and the interaction between 
tumor cells and immune cells can be studied using 
works such as [6], [7]. A recent study, proposed a 
mathematical model in [8], which considers the 
proliferation and exhaustion of immune cells 
through a single parameter.  

More recently [9] proposed and investigated a 
mathematical model of tumor-immune system 
interactions with oncolytic viral therapy. This model 
incorporates both immune exhaustion and 
proliferation with saturation effects. Using this 
result we have revealed that immunosuppression can 
enhance the effectiveness of OVT, while a weak 
immune response may increase the risk of tumor 
recurrence. 

Here, we apply optimal control techniques to 
the model introduced in [9]. Our primary objective 
is to investigate the short-term treatment effects of 
Adoptive Cell Transfer (ACT) and Oncolytic Viral 
Therapy (OVT), with the goal of minimizing both 
tumour size and therapy costs. While previous 
studies have explored the optimal control effects on 
OVT individually, none have examined the 
combined therapy, [10], [11]. Optimal Control 
Theory, a branch of mathematics, allows us to 
optimize the solution of the system. By employing 
the Classical Theory of Optimal Control [12], we 
first establish the existence of an optimal control 
pair. Although the model has only one positive 
equilibrium, it includes three boundary equilibria. 
Our goal is to design an optimal immunotherapy 
regimen using techniques from optimal control 
theory. 

First, we introduce the optimal control problem. 
Then, in Section 3, we apply Pontryagin’s 
Maximum Principle to derive the necessary 
conditions and the optimality system. Pontryagin’s 
Maximum Principle is a set of conditions that must 
be satisfied for an optimization problem to be solved 
optimally. In Section 4, we provide numerical 
examples illustrating monotherapy with OVT, ACT, 
and combined OVT and ACT. We conclude in 
Section 5. 
 
 
2  The Mathematical Model 
We begin by outlining the model we are using for 
optimal control techniques. This model consists of 
four state variables: x representing the susceptible 
tumor population, y representing the infected tumor 
population, v denoting the compartment of free viral 
particles, and z representing immune cells. The units 
for cell populations are given in cell numbers, while 
the unit for viral particles is in pfu (plaque-forming 

units), with time measured in days. Experimental 
results clearly indicate that logistic growth is 
appropriate for larger tumor sizes both in vivo and 
in vitro. We employ the logistic growth model to 
describe the growth of the susceptible tumor 
population, characterized by an intrinsic growth rate 
r and a carrying capacity of 1/b for all tumor cells, 
[12], [13], [14], [15]. 

The infection of viral cells is modeled using the 
famous Michaelis Menten term with a half-
saturation constant g and a high infection rate β. The 
rate at which susceptible tumor cells are killed by 
immune cells is denoted by k, while the 
corresponding killing rate of infected tumour cells 
by immune cells is given by c. Infected tumour cells 
face to additional death rate a due to infection. The 
viral burst size per infected tumour cell is denoted 
by q. The killing rate of OVT cells by immune cells 
is modelled using the mass action law with γ. The 
natural death rates of viruses and immune cells are 
constant and denoted by δ and d, respectively. It is 
assumed that there is a constant supply of immune 
cells from the lymph nodes into the tumour 
microenvironment at a rate s. As in our previous 
model, we also use a Michaelis-Menten mechanism 
to model the activation from infected tumour cells, 
with p denoting the maximum rate and h the half-
saturation constant. 

𝑥′ = 𝑟𝑥(1 − 𝑏(𝑥 + 𝑦)) −
𝛽𝑥𝑣

𝑔 + 𝑥
− 𝑘𝑥𝑧 

𝑦′ =
𝛽𝑥𝑣

𝑔 + 𝑥
− 𝑎𝑦 − 𝑐𝑦𝑧                                    (1)    

𝑣′ = 𝑞𝑎𝑦 − 𝛿𝑣 − 𝛾𝑣𝑧 

𝑧′ = 𝑠 − 𝑑𝑧 +
𝑏𝑒𝑥𝑧

𝑘𝑒 + 𝑥
−
𝑑𝑒𝑥𝑧

𝑘𝑑 + 𝑥
+
𝑝𝑦𝑧

ℎ + 𝑦
 

 
   𝑥(0) > 0, 𝑦(0) ≥ 0, 𝑥(0) + 𝑦(0) < 1

𝑏
, 

𝑣(0) ≥ 0, 𝑧(0) ≥ 0                                                     
 

All parameters in this model are positive. To 
account for saturation effects in the proliferation of 
immune cells, we introduce be as the maximum 
proliferation rate and de as the maximum exhaustion 
rate of immune cells. The corresponding half-
saturation constants are denoted by 𝑘𝑒 and 𝑘𝑑, 
respectively. This model is a modified version of 
our previous research on optimal control in tumor 
virus system interactions, [16]. The study in, 
provides sufficient conditions, based on the model 
parameters, under which the tumor can eliminate for 
all sizes. However, achieving complete tumor 
elimination may take a long period, potentially 
exceeding the patient’s lifetime. 
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3  Optimal Control Problem 
In this section, we aim to apply optimal control 
techniques. As discussed in the previous section, the 
results derived in [16], focus on the long-term 
dynamics of tumor behavior. Here, first we use 
optimal control strategies to explore the short-term 
effects of viral therapy and immunotherapy on 
tumor regression. 

The goal is to minimize both tumor size and the 
costs associated with implementing 
immunotherapies over the treatment period[0, 𝑇], 
where 𝑇 > 0 is fixed. Let 𝑠1 ≥ 0 and 𝑠2 ≥
0  represent the strengths of oncolytic viral therapy 
(OVT) and adoptive cell transfer (ACT) according 
to 𝑠1 + 𝑠2 > 0. The controls for OVT and ACT are 
denoted by 𝑢1(𝑡) and  respectively. Specifically, the 
units of 𝑠1 and 𝑠2 are 𝑝𝑓𝑢 𝑑𝑎𝑦−1 and 𝑐𝑒𝑙𝑙 𝑑𝑎𝑦−1, 
respectively, while 𝑢1(𝑡) and   𝑢2(𝑡),  are 
dimensionless. The state equations are expressed as 
follows. 

𝑥′ = 𝑟𝑥(1 − 𝑏(𝑥 + 𝑦)) −
𝛽𝑥𝑣

𝑔 + 𝑥
− 𝑘𝑥𝑧 

𝑦′ =
𝛽𝑥𝑣

𝑔 + 𝑥
− 𝑎𝑦 − 𝑐𝑦𝑧                                        (2)    

𝑣′ = 𝑞𝑎𝑦 − 𝛿𝑣 − 𝛾𝑣𝑧 + 𝑠1𝑢1(t) 

𝑧′ = 𝑠 − 𝑑𝑧 +
𝑏𝑒𝑥𝑧

𝑘𝑒 + 𝑥
−
𝑑𝑒𝑥𝑧

𝑘𝑑 + 𝑥
+
𝑝𝑦𝑧

ℎ + 𝑦
𝑠2𝑢2(t) 

 
 𝑥(0) > 0, 𝑦(0) ≥ 0, 𝑥(0) + 𝑦(0) < 1

𝑏
, 

𝑣(0) ≥ 0, 𝑧(0) ≥ 0                                                          
 

Since the goal is to minimize the susceptible 
tumour size and the costs of implementing 
immunotherapies over the treatment period[0, 𝑇], 
the objective functional is given by: 
𝐽(𝑢1, 𝑢2) = ∫ (𝑥(𝑡) +

𝑐1

2
(𝑢1(𝑡))

2
+
𝑐2

2
(𝑢2(𝑡))

2
)𝑑𝑡

𝑇

0
       

 
                                                                            (3)           
Where (𝑢1, 𝑢2) belong to the class 
 
𝑈 = {(𝑢1, 𝑢2): 𝑢𝑖(𝑡) is piecewise continuous 

               𝑤𝑖𝑡ℎ 0 ≤ 𝑢𝑖(𝑡) ≤ 1 𝑜𝑛 [0, 𝑇], 𝑖 = 1,2}  
                                                                            (4) 
 

The parameters 𝑐1 ≥ 0 and 𝑐2 ≥ 0 are the 
weighted constants used to balance the contributions 
between the two types of treatment. We assume 
𝑐𝑖 > 0  if 𝑠𝑖 > 0. The optimal control problem 
consists of 

                     
𝑚𝑖𝑛

(𝑢1, 𝑢2) ∈ 𝑈
    𝐽(𝑢1, 𝑢2)                      (5)                           

 
subject to the state equations (1). 

Establishing the existence of optimal controls is 
a basic step in optimization. After outlining the 
optimal control problem, we will explore the 
existence of optimal controls, their 
characterizations, and the optimality system in the 
subsequent subsections. 
 
3.1 Existence of Optimal Control Pair 
The classical theory of optimal control, [17], can be 
applied directly to analyze the problem formulated 
in (3.1)–(3.4). We will begin by verifying the 
existence of an optimal control 
 
Theorem 3.1. There exists an optimal control pair 
for the problem 3.1-3.4. 

 

Proof. It is enough to show that the following 
conditions given in Corollary 4.1 of [17], are 
satisfied. 
 
(a) The set of all initial conditions with a control 
pair (𝑢1, 𝑢2) ∈ 𝑈 for which the state equations 
being satisfied is nonempty. 
 
(b)𝑈 is closed and convex. 
 
(c) The right-hand side of each of the state equations 
is continuous, bounded above by the sum of the 
control and the state, and can be written as a linear 
function of 𝑢1(𝑡), 𝑢2(𝑡), with coefficients 
depending on time. 
 
(d)The integrand of 𝐽(𝑢1, 𝑢2) is convex in 𝑈 and is 
bounded below by −𝑘2 + 𝑘1|(𝑢1, 𝑢2)|𝜂 with 𝑘1 >
0 𝑎𝑛𝑑 𝜂 > 1. 
 

Clearly for each fixed initial condition and 
control pair (1) has a unique solution on [0, 𝑇] and 
(a) is satisfied. Moreover, as 𝑥′|𝑥=0 = 0, 𝑦′|𝑥=0 ≥ 0 
and 𝑣′|𝑣=0 ≥ 0, 𝑧′|𝑧=0 ≥ 0 , solutions remain non 
negative on [0, 𝑇]. It is obvious that (b) is true and 
(d) is satisfied with 𝜂 = 2. To verify (c), notice 
𝑥(𝑡) > 0, 𝑦(𝑡) ≥ 0, 𝑣(𝑡) ≥ 0, 𝑧(𝑡) ≥ 0  and 𝑥(𝑡) +
𝑦(𝑡) <

1

𝑏
 

for all 𝑡 ∈ [0, 𝑇]. Thus 𝑥′ ≤ 𝑟𝑥,  𝑦′ ≤ 𝛽𝑣 −
𝑎𝑦, 𝑣′ ≤ 𝑞𝑎𝑦 − 𝛿𝑣 + 𝑠1𝑢1(𝑡) and 𝑧′ ≤ 𝑠 − 𝑑𝑧 +
𝑝𝑧 +

𝑏𝑒𝑧

𝑏
+ 𝑠1𝑢1(𝑡)  

 

(

𝑥′

𝑦′

𝑣′

𝑧′

) ≤ 𝑀(

𝑥
𝑦
𝑣
𝑧

) +(

0
0

𝑠1𝑢1(𝑡)
𝑠 + 𝑠2𝑢2(𝑡)

) 

where 
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𝑀 =

(

 

𝑟
0
0
0

         

0
−𝛼
 𝑞𝑎           
0

0
𝛽
−𝛿      
0    

0
 0
0

−𝑑 +
𝑏𝑒

𝑏
+ 𝑝)

   

 
Let 𝑥 = (𝑥, 𝑦, 𝑣, 𝑧)𝑡𝑟, the transpose of (𝑥, 𝑦, 𝑣, 𝑧). 
Then 

||
𝑑𝑋

𝑑𝑡
|| = ||𝑀||. || (

𝑥
𝑦
𝑣
𝑧

) || + || (

0
0

𝑠1𝑢1(𝑡)
𝑠 + 𝑠2𝑢2(𝑡)

) || 

 
Thus (c) is verified and there exists an optimal 
control pair for the control problem (2)–(3) by [17]. 
 
3.2 The Adjoint System and Control Pair 
We next apply the Pontryagin’s Maximum Principle 
to derive necessary conditions, [18]. Let 
𝜆1, 𝜆2, 𝜆3, 𝜆4 denote the adjoint vector. The 
Hamiltonian of the optimal control problem (1)-(5) 
is: 
𝐻(𝑥, 𝑦, 𝑣, 𝑧, 𝜆1, 𝜆2, 𝜆3, 𝜆4) = 𝑥 +

𝑐1

2
𝑢1
2 +

𝑐2

2
𝑢2
2  

+𝜆1(𝑟𝑥(1 − 𝑏(𝑥 + 𝑦)) −
𝛽𝑥𝑣

𝑥+𝑔
− 𝑘𝑥𝑧)  

+𝜆2(
𝛽𝑥𝑣

𝑥+𝑔
𝑎𝑦)𝑐𝑦𝑧                                               (6) 

+𝜆3(𝑞𝑎𝑦 − 𝛿𝑣 − 𝛾𝑣𝑧 + 𝑠1𝑢1)  
+𝜆4(𝑠 − 𝑑𝑧 +

𝑏𝑒𝑥𝑧

𝑘𝑒+𝑥
−
𝑑𝑒𝑥𝑧

𝑘𝑑+𝑥
+
𝑝𝑦𝑧

ℎ+𝑦
)  

 
Where the adjoint variables satisfy 𝜆1′ = −

𝜕𝐻

𝜕𝑥
, 𝜆2
′ =

−
𝜕𝐻

𝜕𝑦
, 𝜆3
′ = −

𝜕𝐻

𝜕𝑣
, 𝜆4
′ = −

𝜕𝐻

𝜕𝑧
 with the transversality 

conditions 𝜆𝑖(𝑇) = 0 for 1 ≤ 𝑖 ≤ 4. 
 
Setting 𝜕𝐻

𝜕𝑢𝑖
= 0, 𝑖 = 1,2, we obtain 𝑢1 =

−𝜆3𝑠1

𝑐1
 and 

𝑢2 =
−𝜆4𝑠2

𝑐2
. Since 𝑢1 and 𝑢2 are bounded, 0 ≤

𝑢1, 𝑢2 ≤ 1, the characterization of the optimal 
control pair is therefore given by 
 
𝑢1
∗(𝑡) = 𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

−𝜆3𝑠1

𝑐1
}}                       (7) 

 
𝑢2
∗(𝑡) = 𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

−𝜆4𝑠2

𝑐2
}}           

 
Provided 𝑐𝑖 > 0, 𝑖 = 1,2. Above discussion is 
summarized as follows. 
 
Proposition 3.1. Given an optimal control pair 
(𝑢1
∗ , 𝑢2

∗) and solutions of the corresponding state 
equations (1) there exist adjoint variables 𝜆𝑖, 1 ≤
𝑖 ≤ 4, satisfying 
 

𝜆1
′ = −1 − (𝑟(1 − 2𝑏𝑥 − 𝑏𝑦) −

𝛽𝑔𝑣

(𝑔+𝑥)2
− 𝑘𝑧) 𝜆1 −

          
𝛽𝑔𝑣

(𝑔+𝑥)2
𝜆2 −𝑚𝑧𝜆4                                     (8) 

𝜆2
′ = 𝑟𝑏𝑥𝜆1 + (𝑎 + 𝑐𝑧)𝜆2 − 𝑞𝑎𝜆3 −

𝑝ℎ𝑧

(ℎ+𝑦)2
𝜆4  

𝜆3
′ =

𝛽𝑥

𝑔+𝑥
𝜆1 −

𝛽𝑥

𝑔+𝑥
𝜆2 + (𝛿 + 𝛾𝑧)𝜆3  

𝜆4
′ = 𝑘𝑥𝜆1 + 𝑐𝑦𝜆2 + 𝛾𝑣𝜆3 − (−𝑑 +𝑚𝑥 +

𝑝𝑦

ℎ+𝑦
)𝜆4  

 
𝜆𝑖(𝑇) = 0 for 1 ≤ 𝑖 ≤ 4. 
 
Moreover, 𝑢1∗ , 𝑢2∗  are represented by (7) 
 

The optimality system, which includes the state 
and adjoint system is given by, 
 

𝑥′ = 𝑟𝑥(1 − 𝑏(𝑥 + 𝑦)) −
𝛽𝑥𝑣

𝑔 + 𝑥
− 𝑘𝑥𝑧 

𝑦′ =
𝛽𝑥𝑣

𝑔 + 𝑥
− 𝑎𝑦 − 𝑐𝑦𝑧                                            

𝑣′ = 𝑞𝑎𝑦 − 𝛿𝑣 − 𝛾𝑣𝑧 + 𝑠1min {1,max {0,
−𝜆3𝑠1
𝑐1

}} 

𝑧′ = 𝑠 − 𝑑𝑧 +
𝑏𝑒𝑥𝑧

𝑘𝑒+𝑥
−
𝑑𝑒𝑥𝑧

𝑘𝑑+𝑥
+

             
𝑝𝑦𝑧

ℎ+𝑦
𝑠2𝑚𝑖𝑛 {1,𝑚𝑎𝑥 {0,

−𝜆4𝑠2

𝑐2
}}           

𝜆1
′ = −1 − (𝑟(1 − 2𝑏𝑥 − 𝑏𝑦) −

𝛽𝑔𝑣

(𝑔+𝑥)2
− 𝑘𝑧) 𝜆1 −

          
𝛽𝑔𝑣

(𝑔+𝑥)2
𝜆2 −𝑚𝑧𝜆4                                      

𝜆2
′ = 𝑟𝑏𝑥𝜆1 + (𝑎 + 𝑐𝑧)𝜆2 − 𝑞𝑎𝜆3 −

𝑝ℎ𝑧

(ℎ+𝑦)2
𝜆4  

𝜆3
′ =

𝛽𝑥

𝑔+𝑥
𝜆1 −

𝛽𝑥

𝑔+𝑥
𝜆2 + (𝛿 + 𝛾𝑧)𝜆3  

𝜆4
′ = 𝑘𝑥𝜆1 + 𝑐𝑦𝜆2 + 𝛾𝑣𝜆3 − (−𝑑 +𝑚𝑥 +

𝑝𝑦

ℎ+𝑦
)𝜆4  

 
𝑥(0) > 0, 𝑦(0) ≥ 0, 𝑥(0) + 𝑦(0) <

1

𝑏
,  

𝑣(0) ≥ 0, 𝑧(0) ≥ 0   𝜆𝑖(𝑇) = 0 for 1 ≤ 𝑖 ≤ 4. 
 

Optimality system (3) results in a two-point 
boundary value problem. As demonstrated in [19], 
the solution of (3) is unique if 𝑇 > 0 is small. 
 
 
4   Numerical Investigations 
To analyze the theoretical discussion using optimal 
control theory, we employ the backward-forward 
sweep method, as detailed in [18], in conjunction 
with the fourth-order Runge-Kutta scheme to solve 
the optimality system (3) numerically. MATLAB 
software is used for computations. Our numerical 
analysis begins with the monotherapy of OVT, and 
the progresses of the monotherapy of ACT, and 
concludes with the evaluation of the combined 
treatment of OVT and ACT. 
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i 

When applying only OVT, the immune cell 
supply from outside the body is set to zero, which is 
represented by setting𝑐2 = 𝑠2 = 0. The fixed 
parameter values are as follows: 
 
𝑟 = 0.346, 𝑏 = 1.02 × 10−9, 𝑎 = 1.333, 𝑐 = 1.8  
𝑞 = 100, 𝑑 = 2, 𝛿 = 1.83, 𝑝 = 2.4 × 10−4,  
ℎ = 5 × 104, 𝑔 = 105, 𝑠 = 5000, 𝑏𝑒 = 1,  
𝑘𝑒 = 500, 𝑘𝑑 = 25000  
 

We vary the parameter values of 𝛽, 𝛾, 𝑑𝑒, and 𝑘. 
Unless otherwise specified, 𝑐1 = 10and 𝑐2 = 10 are 
used for the corresponding therapies. However, 
changing these values produces similar simulation 
results. 

Before conducting numerical explorations, we 
suppose to present a plausible range of parameter 
values and their sources in Table 1, with baseline 
values given in Equation (9).  

 
Table 1. Parameter values and sources 

parameter Value Reference 
𝑟  0.2773-0.3466 day-1 estimated 
𝛿  0.024-24 day-1 [12] 
𝛾  0.024-48 cell-1day-1 [12] 
𝑝  2.4× 10−4 −  2.5day-1 [12] 
ℎ  20−5 × 104cell [12] 
𝑔  40-105cell [13] 
𝑢1  0-1 dimension less [18] 
𝑢2  0-1 dimension less [18] 
𝑘  10−5 − 10−3cell-1day-1 [20] 
𝑎  1.333-2.6667 day-1 [20] 
𝑐  0.0096-4.8 cell-1day-1 [20] 
𝑞  10-1350pfu day-1 [20] 
𝑏𝑒  1 day-1 [20] 
𝑑𝑒  10−3 − 103day-1  [20] 
𝑘𝑒  500cell [20] 
𝑘𝑑  2.5× 104cell [20] 
𝑠  5000 cell day-1 [20] 
𝑑  2day-1 [20] 

𝛽  6 × 10−12 −

0.862 cellpfu-1day-1  
[21], [22] 

𝑏  1.02 × 10−9cell-1  [23], [24], 
[25] 

𝑠1  varied pfu day-1  
𝑠2  varied pfu day-1  
   

The literature reports a wide range of tumor 
growth rates. For example, 

𝑟𝜖(0.69,0.97) in [22], 𝑟 = 0.18 in [24]. The 
review paper, [22] includes simulated tumour 
growth rates 0f 0.23,0.43, and 1.636 to illustrated 
model outcomes. Based on [25], we estimate the 
tumour growth rates using the doubling time of 
approximately 45-60 hours for the BxPC-3 cell line, 
[26], [27], assuming an initial exponential growth 
phase. These parameter values were also used in the 
numerical investigations in [28]. BxPC-3 cells are a 
type of cell line associated with adenocarcinoma 
and are commonly used in cancer research. In [28], 
5 × 106human BxPC-3 cells, which are associated 
with pancreatic ductal cancer, were subcutaneously 
injected into mice. After allowing the tumor to grow 
to a diameter of 5–7 mm, two different oncolytic 
viruses were injected at a multiplicity of infection 
(MOI) of 108 pfu into different groups of mice. 
Therefore, the dosage 𝑠1 of OVT typically varies 
around 108pfu. 

Additionally, [28], reports that between 105 and 
2 × 106 T-cells were infused into the experimental 
mice. For our numerical examples, we use 
hypothetical values for 𝑠1 and 𝑠2 that are consistent 
with the values reported in these experiments. 
 
4.1  Monotherapy of Oncolytic Viruses 
We explore the scenario where only OVT is applied 
by setting 𝑐2 = 𝑠2 = 0. 
Firstly, we set the strength of OVT to 𝑠1 = 10 and 
the cost coefficient to 𝑐1 = 10, with a fixed 
treatment period of 100 days (𝑇 = 100) The initial 
conditions are chosen as (𝑥(0), 𝑦(0), 𝑣(0), 𝑧(0)) =
(2 × 107, 0,0,300). 

In this subsection, we investigate optimal 
treatment strategies numerically. Parameter values 
are set according to those given in (9), with 𝑏𝑒 = 1. 
We will divide the discussion to monotherapy of 
OVT, monotherapy of ACT, and the combined 
treatment of OVT and ACT in the following 
subsections. Unless otherwise stated, we use 𝑐1 =
𝑐2 = 10. In the following numerical examples, 
susceptible tumor sizes without therapy are denoted 
by 𝑥(𝑡), while those under optimal therapy are 
represented by 𝑥∗(𝑡), plotted in the top row. The 
bottom row displays the corresponding optimal 
controls 𝑢𝑖(𝑡). In Figure 1, we fix𝛾 = 0.15, 𝑘 =
10−4, 𝑑𝑒 = 103, and the initial condition(2 ×
107, 0,0,300). Panels (a) and (b) of Figure 1 
correspond to scenarios where 𝛽 = 0.6 and 𝛽 = 0.2, 
respectively. Further, s1 is set to 108 for Panel (a) 
and 105 for Panel (b) of Figure 1. Two scenarios 
demonstrate tumor eradication; however, achieving 
this goal requires a longer treatment period and 
smaller dosages, as seen in the comparison between 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE 
DOI: 10.37394/23208.2025.22.23 G. V. R. K. Vithanage, Sophia R-J Jang

E-ISSN: 2224-2902 227 Volume 22, 2025



Panels (a) and (b). When the infection rate 𝛽 is 
reduced, as shown in Panels (c) and (d) of Figure 1, 
tumor eradication remains feasible, though it 
necessitates a long treatment period, particularly 
with smaller values of 𝑠1.  

 

 
Fig. 1: γ = 0.15, k = 10−4, and de = 103 with initial 
condition (2 × 107, 0, 0, 300). (a) β = 0.6, s1 = 108. 
(b) β = 0.6, s1 = 105. (c) β = 0.2, s1 = 108. (d) β = 
0.2,s1 = 107. Reducing the dosage requires extending 
the duration of the therapy. Conversely, decreasing 
the viral infection rate leads to a longer time needed 
to reduce the cancer load 

 
In Figure 2, we set 𝑑𝑒 = 103 and 𝑠1 =

108 while varying the infection rate 𝛽 and the viral 
killing rate 𝛾. Tumor elimination by day 15 is 
observed in panels (b) and (c) when 𝛾 is small, 
whereas in panel (a), tumor control is achievable 
only if 𝛾 is larger. In plot (d), where 𝑘 = 10−5 is 
smaller, a longer treatment period is required to 
eradicate the tumor. Similarly, in Figure 2(e), when 
𝑘 = 10−3 is large and i 𝛾 = 0.25 s also larger, a 
prolonged treatment period is necessary. In each 
plot, the blue curve represents the tumor size with 
therapy, while the red dashed curve represents the 
tumor size without therapy. Figure 2 illustrates that 
as 𝑘 increases, it becomes easier to reduce the tumor 
size. Additionally, decreasing the killing rate of 
viral cells by immune cells enhances the 
effectiveness of the therapy. 
 
 

 
Fig. 2: de = 103 with initial condition(2 ×
107, 0,0,300). (a) k = 10−4, β = 0.4, γ = 1.0 and 𝑠1 =
108. (b) 𝑘 = 10−4, 𝛽 = 0.2, 𝛾 = 0.09 and 𝑠1 = 108 
(d) 𝑘 = 10−5, 𝛽 = 0.6, 𝛾 = 0.15 and 𝑠1 = 107 (e) ) 
k = 10−3, β = 0.2, γ = 0.25 and 𝑠1 = 108 
 

4.2  Monotherapy of Adoptive Cell Transfer 
In this subsection, we explore the monotherapy of 
adoptive cell transfer (ACT), setting 𝑐1 = 𝑠1 = 10.  
As in [8], if there are no viruses and infected tumor 
cells initially (𝑣(0) = 𝑦(0) = 0), it is sufficient to 
consider the 𝑥𝑧-subsystem with ACT, as the 
parameters 𝛽 and 𝛾 do not influence the simulations. 
The results are presented in Figure 3. 

First, observe that ACT is applied throughout all 
the treatment period. In Figure 3(a), with a large 
immune exhaustion rate of 𝑑𝑒 = 103 and an initial 
tumor size of 2 × 108, the tumor is controlled by the 
therapy but cannot be eradicated. Reducing 𝑑𝑒 to 
200, as shown in Figure 3(b), results in a 
significantly smaller treated tumour compared to 
Figure 3(a) illustrates that with 𝑑𝑒 = 600, the 
tumour can only be controlled but not eradicated. 
Increasing the tumour-killing rate to 𝑘 = 10−3, as 
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seen in Figure 3(d), leads to a reduction in tumour 
size during the treatment period. 

 

 
Fig. 3: (a) 𝑘 = 5 × 10−4, 𝑑𝑒 = 10

3, 𝑠2 = 2 ×
105with initial condition(2 × 108, 0,0,300). (b) 𝑘 =
5 × 10−4, 𝑑𝑒 = 200, 𝑠2 = 10

5 with initial condition 
(2 × 107, 0,0,300). (c) 𝑘 = 5 × 10−4, 𝑑𝑒 =
600, 𝑠2 = 10

5  with initial condition (2 ×
107, 0,0,300). (d) 𝑘 = 10−3, 𝑑𝑒 = 300, 𝑠2 = 10

5 
with initial condition (2 × 107, 0,0,300). When we 
decrease the immune exhaustion rate, it becomes 
evident that the cancer can be more effectively 
reduced. Additionally, increasing the tumor-killing 
rate enhances the reduction of tumor levels; 
however, continuous administration of the therapy is 
necessary. 
 
4.3  Combined OVT and ACT 
In this subsection, we examine the effects of 
combined therapy involving both OVT and ACT. 
Initially, let𝑘 = 10−3, 𝛽 = 0.6, 𝑑𝑒 = 300, 𝛾 = 0.49, 
and the initial condition be (2 × 107, 0,0,300). 
Figure 4(b) offers a detailed view of (a) in the first 
half-day. It’s evident that, despite the application of 
OVT from[0,1000], the combined therapy is 
ineffective in panel (a). In Figure 4(c) and Figure 
(d), both OVT and ACT are applied throughout the 
whole treatment period. Here, 𝑠2 = 9 × 10

4, 
significantly larger than 𝑠2 = 103used in Figure 
4(a)-(b). The combined therapy effectively reduces 
tumor size. Next, we fix the parameter values𝛽 =
0.2, 𝛾 = 0.7, and 𝑑𝑒 = 200, and use strengths 𝑠1 =
6 × 106and 𝑠2 = 103 with the initial condition (2 ×
107, 0,0,300).   

 

 
Fig. 4: Parameter values 𝑘 = 10−3, 𝛽 = 0.6, 𝑑𝑒 =
300, 𝛾 = 0 and the initial condition (2 ×
106, 0,0,300) are fixed. (a)-(b) 𝑠1 = 6 × 106 and 
𝑠2 = 10

3. (c) 𝑠1 = 2 × 105 and 𝑠2 = 2 × 10
4. (d) 

𝑠1 = 2 × 10
5   and𝑠2 = 9 × 104. Here, we observe 

that increasing the dosage makes it easier to reduce 
the tumor size, but continuous treatment is 
necessary to achieve this effect. 

 
Fig. 5: Parameter values 𝛽 = 0.2, 𝛾 = 0.7, 𝑑𝑒 =
200 , 𝑠1 = 6 × 10

6, 𝑠2 = 10
3 and the initial 

condition (2 × 107, 0,0,300) are fixed. (a) 𝑘 =
3 × 10−4. (b) 𝑘 = 5 × 10−4.(c) 𝑘 = 6 × 10−4.(. (d) 
𝑘 = 7 × 10−4. At this stage, we adjust the killing 
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rate of tumor cells. It is evident that increasing the 
killing rate makes it easier to reduce the tumor size, 
but both therapies need to be administered 
continuously. 
 

We vary the tumor killing rate 𝑘, and the results 
are displayed in Figure 5. It is clear that increasing 
the anti-tumor killing rate improves the success of 
the therapy. However, in both numerical examples 
Figure 4 and Figure 5, the anti-tumor killing rate 𝛾 

is relatively high, necessitating the use of both types 
of therapy all the entire treatment period. 
 
 
5   Summary and Conclusion 
We apply optimal control theory techniques to a 
model incorporating half-saturation effects in tumor 
proliferation and exhaustion [29]. We explore the 
effectiveness of Oncolytic Viral Therapy and 
Adoptive Cell Transfer both individually and in 
combination over short time periods. Previously, in 
[29], optimal control strategies were applied to the 
base model introduced in [8]. In [9], the model from 
, was modified to incorporate Michaelis-Menten 
kinetics, introducing saturation effects for the 
considering immune cells, [19], [30], [31]. 

From this research, our objective is to minimize 
the number of susceptible tumor cells while 
accounting for the costs or tolerances associated 
with therapy. Since infected cells do not proliferate, 
our optimization focus excludes them. Although 
immune cells can remove viruses from Oncolytic 
Viral Therapy (OVT), the two therapy types do not 
synergize. In OVT monotherapy, the killing rate of 
susceptible tumor cells by immune cells is crucial, 
as increasing this rate leads to reduced tumor level. 
Similarly, in combined therapy, a higher killing rate 
of susceptible tumor cells by immune cells improves 
treatment success. In the context of Adoptive Cell 
Transfer monotherapy, the rate of immune 
exhaustion is crucial; reducing this rate decreases 
tumor levels, as depicted in Figure 3 (Appendix). 
For the combined therapy, continuous application of 
both therapies is necessary to achieve efficient 
results, as given in Figure 5(Appendix). Increasing 
the anti-tumor killing rate also contributes to the 
success of the therapy, as shown in Figure 
5(Appendix). Furthermore, increasing the initial 
tumor level from (2 × 106, 0,0,300) to (2 ×
107, 0,0,300). necessitates a lower immune 
exhaustion rate, as indicated in Figures 4 and 
5(Appendix). Comparing OVT and ACT treatments 
in the Figure 5(d)(Appendix) demonstrates that a 
strong treatment with 𝑠1 and 𝑠2 and 𝑘 = 6 ×

10−4 can eradicate cancer in nearly 100 days. 
Unlike in [16], ACT proves more valuable in 
combined therapy. Increasing 𝑠2 aids in tumor 
reduction, as observed in the simulations shown in 
Figure 4(Appendix). 
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