
Self-consistent Estimation of Ordinary Differential Equation Parameters
Describing Dynamical Systems: A Case Study of COVID-19 in Germany

Abstract: Nowadays, the estimation of parameters for ordinary differential equations (ODEs) from historical data
(time series) in optimization problems presents various challenges. These challenges include convergence to
local minima when applying traditional optimization methods, inaccurate integration methods of ODEs during the
optimization process, and inaccurate cost functions. To address these issues, we propose a novel methodology for
estimating the parameters of ODEs that describe dynamic systems in fields such as biological populations, disease
spread (e.g., COVID-19). Our methodology is based on the integration of trajectory simulation, optimization of
a cost function using noisy data, and heuristic search algorithms such as genetic algorithms for minimization.
We demonstrate the effectiveness of this methodology through one use case in this work: the evolution of the
COVID-19 disease in German society during the first wave. The results show a highly accurate methodology
capable of reproducing real-world curves with high precision.
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1 Introduction
Time series analysts assert the potential for extracting
more information from dynamical processes. By
observing various variables related to dynamical
systems, it becomes possible to find out the governing
laws dictating the time evolution of these variables.
This allows for the deciphering and acquisition
of knowledge about the dynamical systems and
processes themselves. ODEs play a crucial role in
modeling dynamical processes across various fields
such as science, engineering, and medicine, not only
in academia but also increasingly in industry and
commerce.

Establishing such models involves the integration
of theory with experimental or observational data,
which includes the task of determining model
parameters to best replicate the data. Quantitatively
correct models are particularly important when these
models are further employed in design optimization,
optimal control, or forecasting [1].

Methods based on global minimization routines
including random search and adaptive stochastic
methods [2, 3, 4, 5], clustering methods [6],
evolutionary computation [7], simulated annealing,

and heuristic search such as genetic algorithms [8, 9,
10, 11] provide a detailed discussion of these methods
regarding parameter identification in ODEs, while
[12] and [13] offer comprehensive discussions on
genetic algorithms. The disadvantage of stochastic
optimizers is mainly their immense computational
cost, which is the price for the flexibility and stability
of these methods.

Additionally, local optimization procedures such
as Newton and quasi-Newton methods [14] are
computationally efficient. However, they tend to
converge to local minima or become numerically
unstable due to multicollinearity, particularly when
the independent variables are highly correlated with
each other, and the matrices used for parameter
computation are near singular.

In the case of parameter identification in ODEs,
one approach involves leveraging the fact that the
trajectory is uniquely determined by the parameters
and initial values. This can be achieved by
maximizing a maximum-likelihood functional or
minimizing a cost function (utility, cost or objective
function).

Compared to the initial value approach, multiple
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shooting offers enhanced stability with only a slight
increase in computational cost, particularly for
complex functions with more maxima and/or minima.
The method was originally introduced by [15]
and was subsequently enhanced and mathematically
analyzed by [1, 16, 17, 18, 19]. Recent works
[20, 21, 22, 23] have also explored the use of
neural networks and certainty-equivalent expectation
maximization to forecast the spread of COVID-19.
The cost function utilized in the aforementioned
papers, as well as by [24], is either the sum or
a weighted sum of squared errors. The method,
commonly referred to as regression, relies on the
crucial assumption that the independent residuals
fulfill the multivariate Gaussian distribution when
regressing noisy variables. However, this assumption
does not hold true when dealing with time series
variables, necessitating the implementation of certain
corrections.

In this paper, we employ the determinant of the
variance-covariance matrix as the cost function to
be minimized. This determinant is computed from
the opposite of the ”Full Information Maximum
Likelihood” (FIML) functional, which ensures
consistency between the residuals derived from the
estimated derivatives—based on the single shooting
initial value method for integrating ODEs and
parameters obtained via a genetic algorithm—and the
actual observed values. In the case of autocorrelated
residuals, we adjust for this by incorporating
autoregressive terms. With this approach and with
the use of a genetic algorithm for minimization,
we estimate more realistic values for the ODEs’
parameters.

In the following sections, we present our
methodology and examine the spread of COVID-19
disease in societies (specifically focusing on the first
wave of COVID-19 in Germany) by applying the
Bass diffusion model and the SIR model. Finally,
this paper ends with a conclusion and provides an
outlook for future work.

2 Methodology
In this work, we consider dynamic systems described
by Ordinary Differential Equations (ODEs), which
can be written as follows:
dx(t)
dt

− f(x(t), t, θ, z(t)) = 0, x(t0) = x0 (1)

where x(t) ∈ Rd denotes the d-dimensional state
vector at time t ∈ I = [t0, tf ], which is the unique
and differentiable solution of the aforementioned
initial value problem, and x0 the initial value vector.
Moreover, z(t) ∈ Rκ represents the κ-dimensional
independent variables and θ ∈ Rn the parameters of
the problem.

In the subsequent sections, we elaborate on how
these dynamic systems, described by Eq. (1) are
transformed into a cost function to be minimized.
Additionally, we outline the steps developed in this
study to find the parameters θ of the ODEs.

2.1 Cost Function
It is further assumed that f is continuously
differentiable with respect to the state vector x
and the parameters θ, and that there is not any
explicit dependence on t and on z(t). Additionally
the second term of Eq. (1) depends on the initial
conditions, the vector x and the parameters θ.
For the minimization process, we employ the
Full Information Maximum Likelihood Estimation
(FIML) according to the approach of [25, 26] for
linear system parameter estimation and the approach
of [27] for nonlinear systems. In the case where
autoregressive residuals are present, we follow the
form of [28, 29, 30]. These works also provide
various methodologies for solving this problem. The
cost function to be minimized remains the same for
both linear and nonlinear cases.

Consider a standard simultaneous difference
algebraic equation model of Eq. (1) written as:

Ayt − f(xt,x0,1:s,Θ) = ut (2)

with t = 1 . . . T , where yt and xt are vectors
of observations at time t on the endogenous and
determined variables, respectively and ut is a vector
of disturbances at time t. The vector f describes
nonlinear functions depending on x and Θ at time t.
A is a matrix andΘ is also a matrix of the coefficients
to be found. Moreover, we make the following
assumptions: A is a nonsingular sxs matrix. Each
equation of the system is identified by virtue of the
fact that certain elements of A and Θ are known to
be equal to zero [30]. In our case (cf. Eq. (2)),
A is the identity matrix I and this is identified as
the so called reduced form. It is also assumed that
ut follows the multivariate normal distribution. In
the case where ut shows an autoregressive behavior,
then it can be further assumed that it is generated
by an autoregressive process of the form: ut =
AR(n)+et, where AR(n) is an autoregressive model
for ut of n order without the constant term. The
disturbance et denotes now the independent and
normally distributed residuals with mean zero and the
unknown nonsingular variance-covariance matrix Σ,
(et ∼ NID(0,Σ)). If e.g. n = 1 or n = 2, then ut

takes according to [28, 29] the following form:

ut = Rut−1 + et (3)
ut = R1ut−1 +R2ut−1 + et (4)

respectively. R, R1 and R2 are matrices with
autoregressive coefficient, where some elements of
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them may be zero. It is also presumed that the
autoregressive order may be different for every
equation of the ODE system. Moreover, we can
generalize that n can have an order higher than two.
These additional autoregressive error terms can be
considered as adjustments of the model to the data.
Let now be Y ′ = [y1 . . .yT ], X ′ = [x1 . . .xT ],
U ′ = [u1 . . .uT ] and E′ = [e1 . . . eT ], then we can
write:

AY ′ − F (X,X0,1:s,Θ) = U ′ (5)

where (′) denotes the transpose matrix, Y is a Txs
matrix of T observations of each of s dependent
(endogenous) variables of the derivatives of X and
X0 is a vector of the initial conditions of X .

Based on these assumptions and the presumption
that the density of the residuals is independent from
the linearity or nonlinearity of Eq. (1) and (2), the
disturbances follow the probability density of the
multivariate joint normal distribution and are general
of the form P (E,Θ|Y ) = Q(E,Θ) as described by
[25, 27, 29, 31]:

Q(E,Θ) = Q(e1,Θ)Q(e2,Θ) . . . Q(eT ,Θ)

= (2π)−
1

2
sT |Σ| exp

(
−1

2
tr(E′EΣ−1)

)
(6)

where tr denotes the trace and |·| the determinant.
Consequently, the full information likelihood
functional, which must be maximized, can be
expressed as follows:

L =− 1

2
sT ln(2π) +

1

2
T ln|A|+ 1

2
T ln|Σ−1|

− 1

2
tr(E′EΣ−1)

(7)

Since the matrix A is the identity matrix, the
determinant of the matrix is equal to 1 and the
second term thus vanishes. If we assume that Σ
is unrestricted, then we can maximize Eq. (7)
analytically with respect to Σ [29, 30]:

∂L

∂Σ−1
= 0 (8)

which implies

Σ =
E′ · E
T

(9)

After substituting this expression into Eq. (7), the
concentrated (reduced) likelihood functional takes the
following form [27, 29]:

L = −1

2
sT (ln(2π) + 1) +

1

2
T ln|Σ−1| (10)

The cost function J to be minimized is the opposite
of Eq. (10):

J =
1

2
sT (ln(2π) + 1)− 1

2
T ln|Σ−1|

=
1

2
sT (ln(2π) + 1) +

1

2
T ln|Σ|

(11)

depending on the determinant of the unknown and
non diagonal variance-covariance matrix Σ, which is
calculated from the data. If there is only one equation
and not an ODE system, then the cost function is
reduced to the sum of squared errors.

2.2 Optimizer: Genetic Algorithm
Genetic algorithms (GAs) are adaptive heuristic
search algorithms based on the mechanisms of natural
selection and genetics. The basic concept of GAs is
designed to simulate evolution processes in natural
systems, which follow the principles based on the
survival of the fittest, first laid down by Charles
Darwin. They represent an intelligent exploitation
of a random search within a defined search space to
solve a problem.

The key points of these algorithms are the
reproduction, crossover and mutation, which are
performed according to a given probability, just as
it happens in real world. Reproduction involves
copying (reproducing) solution vectors, crossover
includes swapping partial solution vectors and
mutation is the process of randomly changing a cell
in the string of the solution vector preventing the
possibility of the algorithm being trapped. The
process continues until the optimizer reaches the
optimal solution of the fitness function, which is used
to evaluate individuals.

The general steps of a genetic algorithm are the
following:

1. definition of the cost function

2. setting the crossover and mutation probabilities

3. random generation of an initial population

4. production of the next generation of the
population by probabilistically selecting
individuals to produce offsprings via genetic
operators e.g. crossover and mutation

5. computation of the cost function for each
individual in the current population. Offsprings
with better values have higher probability to
contribute with one or more offsprings to the next
generation, while offsprings with worse values
are discarded.

6. repeating the steps 4 and 5 until a relative
threshold of accuracy is reached
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The reader is referred to [8, 9, 10] for more details
about the steps of GAs.

2.3 Framework Description
Before we continue with the several steps of our
framework, a question that arises at this point, is how
to determine the first term of Eq. (5), i.e. Y . This term
is described by functions of predetermined variables
X . The derivatives being of first order are written as
follows:

yt,i =
∆xt,i
∆t

=

(
xt+1,i − xt,i

)
∆t

= xt+1,i−xt,i (12)

or second order:

yt,i =

(
xt+1,i − xt−1,i

)
2∆t

=

(
xt+1,i − xt−1,i

)
2

(13)

for ∆t = 1, t = 1:T and i = 1:s. One way
to fit them is to get the lag-1, i.e. time t − 1,
of the variables X in the second term F of Eq.
(5) in order to become exogenous and to perform
regression fitting the derivatives of first order Y .
Another way is to fit the second order Y taking into
account the variables X at time t and to perform
again regression. However, these two methods do not
solve the differential equations, thus they do not yield
solutions at time t. Nevertheless, both approaches
can be used to obtain an initial approximation of the
parametersΘ and to extend the search interval of each
parameter.

A different approach is to consider the variables
on the second term of Eq. (5) as solutions of the
differential equations. Consequently, we integrate
the equations for given parameters Θ and initial
conditions ofX over the entire specified time interval.
Since Y in Eq. (5) is centered in time, i.e. defined
at t + 1/2, we construct a grid with values for X at
t + 1/2. This means, for given initial conditions and
parameters, we have both the term F and a fit of the
Y -values resulting from the integration of the ODEs.
In this approach and as a first approximation, we don’t
take into account the errors between the integrated
values of the variables, considered as true or latent
variables, and the observed values.

Let us now continue with the applied procedure
and the basic steps displayed in Fig. 1 and described
as follows:
1. Initialization: The random initial values of the

variables X are very small but not zero since
the differential equations of the form (1) do not
contain any constant term and the integration of
them do not find the trivial solution (zero). The
initial values of the parameters Θ are calculated
without integration, by performing regression
with lagged values of the variables in every
equation, as described above.

2. Integration: The integration takes place using
the Runge-Kutta method of fourth order and
a variable time step. As mentioned above,
we create a grid with values calculated at
t + 1/2 and then we compute the unknown
variance-covariance matrix Σ. In the first
estimation of the parameters Θ, we do not
consider any autocorrelation of the residuals.
After the first estimation of them, we examine
the autocorrelation and partial autocorrelation
function of the residuals, we estimate the
autocorrelation form of them and we take them
into consideration in the next estimations of
the parameters. It should be noted that each
intermediate estimation of Θ is combined with
the next step ”Minimization” of this framework
and this procedure is repeated until the optimizer
converges.

3. Minimization: After each integration is
completed, we compute the independent
residuals and then the cost function J . For
the minimization, we use a genetic algorithm
using the ga function in Matlab R2016a [32].

4. Convergence: The three aforementioned steps
are repeated till the genetic algorithm converges,
i.e. the change in the parameters Θ between
consecutive iterations falls below a specified
threshold ϵ, and the optimizer provides the result.

2.4 Data
To estimate the unknown parameters of ODEs, we
match the daily data reported by Johns Hopkins in
Germany to our simulation results for the period
starting on 22/01/2022 and ending on 31/05/2022.
Before we begin with the computation of the
parameters, we smooth the time series by using the
Savitzky-Golay (SG) digital filter [33] on the left side
of Eq. 5, i.e., on the differences of active, recovered
and total infected persons.

The parameters of the SG digital filter are selected
in such a way to ensure that initial values remain
zero and do not become negative. Fig. 2 and 3
display the growth and cumulative numbers of total
infected, active infected and recovered persons. The
total filtered infected persons are determined by the
sum of the filtered active infected and recovered
persons. Although the given curves are in a very
good agreement with the filtered curves in Fig. 3,
deviations between them are obtained in Fig. 2, as
the noise of the given data is removed. Additionally,
Fig. 4 compares the actual data describing the total
infected persons with the smoothed data using the
SG and the Moving Average (MA) filter [34] with
a length of 7. As seen in this figure, the SG curve
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Fig. 1:   Main program flow: Description of all framework stages

is slightly smoother than the MA curve, and it is
thus considered in the current work in the numerical
examples.

3 Numerical Examples
In this section, we apply this procedure in a case
that concerns the spread of COVID-19 disease in
society, particularly in Germany and we consider two
different models for that. The first model is the
Bass Model [35] initially applied in marketing but
with useful parallels in virus spreading. The second
model is the well-known SIR model [36], which
stands for susceptible, active infected and recovered
individuals.

3.1 The Bass Model
The Bass Model was introduced from Bass in 1969
to describe the launch of a new innovative product in
the market. In this work, we apply the Bass model in
order to describe the spread of any given disease (in
this case COVID-19) in society. The Bass model is
a diffusion model and is described by the following
diffusion equation:

dTI(t)

dt
= P (t)(m− TI(t)) (14)

where P (t) is the diffusion coefficient, m is the
potential number of adopters and TI(t) is the number

of adopters at time t. According to [35]: “The
probability that an initial purchase will be made at
t given that no purchase has yet been made is a linear
function of the number of previous adopters (byers)”.
In our case: “The probability that an initial infection
will be occurred at t given that no infection has yet
been occurred is a linear function of the number of
previous infections”. “No infection or no purchase
has yet been occurred”, means that every individual
is infected, or purchased a product for the first time
without reinfection or repurchase a product. In
this case, P (t) is the diffusion coefficient, m is
the potential number of total infected individuals in
society and TI(t) is the number of total infected
individuals at time t. In this model, there is no
distinction between actively infected or recovered.
By setting P (t) = p+ q

mTI(t), we get the following
diffusion equation:

dTI(t)

dt
= F (TI,Θ)

= pm+ (q − p)TI(t))− q

m
TI(t)2 (15)

= θ1 + θ2x1 + θ3x2

Alternatively, in the form of Eq. (5):

A = 1, Θ′ = −[θ1, θ2, θ3],
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Fig. 3:    Cumulative numbers of total infected, active infected and recovered individuals: given vs. filtered (SG filter)
numbers

Y = y =
dTI(t)

dt
, X ′ = [1 x1 x2] ,

F = Θ′X, U = u,

where:

θ1 = pm, θ2 = q − p, θ3 =
q

m
,

x1 = TI,x2 = TI2,TI(0) = 0,

y(t+
1

2
) = (TI(t+ 1)− TI(t)),

x1(t+
1

2
) = T̂ I

(
t+

1

2
,θ

)
,

x2(t+
1

2
) = T̂ I

(
t+

1

2
,θ

)2

This is a nonlinear differential equation of first
order, and even if the analytical solution is known
[35], we use the aforementioned procedure for
testing purposes. The meaning of the variables and

parameters in marketing, as well as the parallelism in
spread of a disease are given in Table 1.

According to [35], if we use the lag-1 of the
time series on the right hand side of Eq. (15), then
we can apply regression to find the parameters Θ.
We use these values as the first approximation and
then we apply the above-mentioned process for the
computation of the parametersΘ and then of p, q,m
from the following relations:

m =
−θ2 ±

√
θ22 − 4θ1θ3
2θ1

, p =
θ1
m

, q = p+ θ2

By applying the proposed methodology to the data,
we find parameter values, which are presented in
Table 2.

Analyzing the autocorrelation and partial
autocorrelation graph, we can extract the
autoregressive model for the residuals, which is
an AR(3) model. After applying this model to the
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Table 1. Explanation of the variables and parameters in the
Bass model

Variables,
Parameters Marketing Spread of

Disease

TI(t)

cumulative
number of the
adopters in time

t

cumulative
number of total

infected
individuals in

time t

m
total potential
number of
adoptions

total potential
number of
infected

individuals

p

probability of
initial purchase
(exogenous
factor); it

describes the
innovators in

the Bass Model.

probability of
the initial
infection

(exogenous
factor), i.e. first
outbreak due to

travel

q
mTI(t)

pressure of the
previous

adopters to the
society, to the

non-yet
adopters

(endogenous
factor);

imitators in the
Bass Model

spread of the
disease in the
society from
interactions
between

infected and
non-infected
individuals
(endogenous

factor)

residuals, we observe a much better behavior of the
autocorrelation and partial autocorrelation factors
of the remaining residuals. Most of their values lie
within the validity interval of the null hypothesis,

Table 2. Estimated parameter values of the Bass model

Parameter Value
without autoregression AR(0)
θ1 3.39 · 10−3

θ2 1.22 · 10−1

θ3 −6.96 · 10−4

m 174.89
p 1.94 · 10−5

q 1.22 · 10−1

with autoregression AR(3)
θ1 1.80 · 10−3

θ2 1.33 · 10−1

θ3 −8.26 · 10−4

m 160.88
p 1.12 · 10−5

q 1.33 · 10−1

which are statistically zero.
The values of the parameter p are of the order of

10−5, several order of magnitudes smaller than the
values of q. The occurrence of an outbreak is very rare
and random. The probability of the initial infection
is very small, and the entire phenomenon is evolved
from endogenous factors, also from the interaction
between infected and non-infected individuals. The
maximum number of infected individuals m is
smaller than the maximum of the actual values. Also
the m value of the AR(3) model is smaller than that
of the AR(0) model. Fig. 5 compares the following
curves without taking into account the autoregressive
residuals:

• The actual data (green curve) after applying the
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SG-filter.

• The calculated fit using regression with lags
according to the Bass method as described above
(blue loosely dashed curve). The solution
becomes negative after about 120 days, which
is not physically possible. The variation of total
infected individuals must be greater than or equal
zero.

• The brown densely dotted curve is calculated
using a self-consistent integration of the equation
with Runge-Kutta method and parameters found
from the regression with lagged values of
independent variables. There is a significance
deviation between the green and the brown curve,
indicating that the brown curve can not be the
solution of the differential equation.

• The red dashed curve represents the solution
derived from the methodology developed in this
work and is close to the actual data without facing
the problem of negative values as the exogenous
regression does.

The corresponding cumulative numbers of the
total infected individuals are shown in Fig. 7.
The deviation between the green and the brown
curve is also here very large, indicating that the
parameters found from the regression with lags do not
provide a good solution of the differential equation
in comparison with the actual data. In Fig. 6
and 8, the solutions of our proposed methodology
after applying the AR(3) model for the residuals are
presented. The actual and calculated data are in a
very good agreement, even though the value of m
is smaller than the maximum actual value, which is
not physically plausible. The error correction term
practically adjusts the model to the data.

3.2 The SIR Model
The first set of dependent variables counts people in
each of the groups, each as a function of time. S(t)
represents the number of susceptible individuals, I(t)
denotes the number of active infected individuals, and
R(t) describes the number of recovered individuals
plus the deaths from the disease. Obviously, TI(t) =
I(t) + R(t) is the total (cumulative) number of
infected individuals at time t. The SIR systemwithout
the so-called vital dynamics (birth and death), which
is a good approximation in a short time of evolution
and means S(t) + I(t) + R(t) = N = const.,
can be expressed by the following system of ordinary

differential equations:

dS(t)

dt
= − β

N
I(t)S(t)

dI(t)

dt
=

β

N
I(t)S(t)− γI(t) (16)

dR(t)

dt
= γI(t)

subject to β, γ > 0, where β is the average number of
contacts per person per time and γ is the reciprocal of
the average time of an individual to be infectious. The
initial values are unknown and they are introduced as
parameters in the process. Considering S(t) = N −
I(t)−R(t) andTI(t) = I(t)+R(t) in (16), to avoid
numerical difficulties during the integration, leads to
the following system of differential equations reduced
by one equation compared to (16):

dTI(t)

dt
=

β

N
I(t)(N − TI(t)) = β(TI(t)−R(t))

− β

N
TI(t)(TI(t)−R(t)) (17)

dR(t)

dt
= γI(t) = γ(TI(t)−R(t))

Alternatively, in the form of Eq. (5):

A =

[
1 0
0 1

]
, Θ = −

[
β −β/N
γ 0

]
,

Y ′ = [y1 y2] , X ′ = [x1 x2] ,

F = ΘX, U ′ = [u1 u2] ,

where:

y1 =
dTI

dt
, y2 =

dR

dt
,

x1 = (TI −R), x2 = TI(TI −R)

y1(t+
1

2
) = (TI(t+ 1)− TI(t)),

y2(t+
1

2
) = (R(t+ 1)−R(t)),

x1(t+
1

2
) =

(
T̂ I

(
t+

1

2
,Θ

)
− R̂

(
t+

1

2
,Θ

))
,

x2(t+
1

2
) =

(
T̂ I

(
t+

1

2
,Θ

)
− R̂

(
t+

1

2
,Θ

))
T̂ I

(
t+

1

2
,Θ

)
(18)

with β, γ,N > 0 and xi (for i = 1,2) represents
the integrated values of the variables, which are
dependent on Θ. In this approach, we do not set the
total susceptible individual number N equal to the
total population of the country. Instead, we calculate
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Fig. 5:    Differences of total infections: actual infected individuals, differences after the regression with exogenous lag-1
variables, differences after Runge-Kutta integration with parameters found from exogenous regression and differences after
applying the proposed methodology
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Fig. 6:   Differences of total infections: actual infected individuals and differences after applying the proposed methodology
without and with the error terms

N from the data. We believe that not all of the
people of a country are susceptible because some
are immune to the disease, some live in isolation,
and others strictly adhere to the political government
measures. Additionally, some individuals may be
infected without showing symptoms and thus remain
outside of the measurement system. In addition,
the measurement tests and methods were not very
accurate during the outbreak of the unknown disease
and there was very little information disseminated
from the center of the outbreak. For these reasons,
we compute N from the gathered data. Table 3
gives the fitting parameters according to the proposed
methodology taken into account autoregressive and
non-autoregressive residuals. The calculated number
of susceptible individuals N during the first wave is
of the order of 194,000. TI(0) and R(0) are the

initial conditions for the variables found from the GA
as parameters in order to avoid the trivial solution.

Based on the autocorrelation and partial
autocorrelation graph, we can identify an
autoregressive model AR(3,2) for the residuals.
However, in practice, an autoregressive model
AR(1,1) is sufficient to reproduce the actual curves
because of the very small remaining residuals even if
they show an autoregressive behavior. In Fig. 9, 10
and 11, 12, the actual growth and cumulative numbers
– total infected (green curves), active infected (blue
curves) and recovered (red curves) – are displayed
along with the corresponding solutions of the SIR
system (dashed, densely dotted and loosely dashed
curves) without and with the autoregressive residuals,
respectively. The actual data and the corresponding
solution of the SIR system are very close to each
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Fig. 7:    Cumulative total infections: actual infected individuals, infections after the regression with exogenous lag-1
variables, after the Runge-Kutta integrationwith parameters found from exogenous regression and after applying the proposed
methodology
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Fig. 8:    Cumulative total infections: actual infected individuals and individuals after applying the proposed methodology
without and with the error terms

other and by accounting for the error terms, the
solution practical represents exactly the actual data.
The reproduction of the actual data would be better
if the measurement system had worked effectively
during the pandemic outbreak of the disease. The
mean basic reproduction number R0 = β/γ for the
entire first wave in Germany is equal to 3.64 for
the solution without error terms and 3.33 for the
solution with error terms, which are close to each
other. Epidemiologically, R0 indicates the number of
new infections an infected individual causes during
the infectious period in an otherwise susceptible
population. [37] has assumed a value of 3 for R0

and a piecewise constant function of β and thus for
R0 for the first wave in Germany, which is in good
agreement with our results. Also [38] has estimated
a mean value of 2.9 for R0 in an interval of 2.4 – 3.4.

4 Conclusion
In this work, we developed a novel methodology
that combines numerical analysis, econometrics and
a genetic algorithm as an optimizer to determine
the parameters of ODEs concerning initial value
problems. This methodology starts with the
initialization of the parameters and iterates alternating
the integration of the equations, producing a fit of
the variable derivatives, and the minimization of the
FIML functional, building a dynamic process without
predetermined parameters.

We presented the proposed methodology in one
use case concerning the evolution of the COVID-19
disease in the German society during the first wave.

In the use case considered, we examined two
different models: the Bass model, initially developed
for marketing purposes, and the SIR-based model
for describing the SARS-CoV-2 outbreak in Germany
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Fig. 9:  Differences of total infected, active infected and recovered individuals: given vs. calculated numbers according to
the proposed methodology without the error terms
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Fig. 10:    Cumulative numbers of total infected, active infected and recovered individuals: given vs. calculated numbers
according to the proposed methodology without the error terms.

Table 3. Estimated parameter values of the SIR model.

Parameter Value
without autoregression AR(0,0)
TI(0) 8.78 · 10−3

R(0) 6.42 · 10−3

β 2.09 · 10−1

γ 5.75 · 10−2

N 193.47

with autoregression AR(3,2)
TI(0) 1.49 · 10−2

R(0) 8.44 · 10−3

β 2.13 · 10−1

γ 6.40 · 10−2

N 187.62

during the first wave. Other effects such as social
distancing [37] were modeled by a time-dependent
reduction of the transmission rate, but they were not
explicitly taken into account. The best results were
produced by using autoregression for the residuals
appearing in the minimization of the FIML functional
in all models and by considering the data published
by Johns Hopkins University, which allows for
the estimation of unknown model parameters. An
appropriate autoregressive model for the residuals is
the AR(1,1), which reproduces the real curves with
high accuracy. Higher-order autoregressive models
can lead to unrealistic values for the susceptible
population, demonstrating that the choice of the
autoregressive model has a significant impact on the
solution of the differential equations.

In future work, we aim to generalize our method
for more than two equations. The SEIRD model
will be applied by adding the time evolution of

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Loukas Kyriakidis, Michail Kyriakidis

E-ISSN: 2224-2902 63 Volume 22, 2025



0 20 40 60 80 100 120

0

3

6

9

Time [d]

D
i�
er
en

ce
s
[-
]

Given infected

Given active

Given recovered

Calculated infected

Calculated active

Calculated recovered

Fig. 11:  Differences of total infected, active infected and recovered individuals: given vs. calculated numbers according
to the proposed methodology with the error terms
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Fig. 12:    Cumulative numbers of total infected, active infected and recovered individuals: given vs. calculated numbers
according to the proposed methodology with the error term

exposed and deceased individuals with two additional
differential equations, also taking into account the
vaccination. Moreover, the proposed methodology
will be applied to the telecom development, where
the evolution of mobile technologies (2G, 3G, 4G,
and 5G) over time and their penetration in the Greek
market will be examined by applying a competitive
initial value model consisting of four nonlinear
differential equations.
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