
Official journal of the American Thyroid
Association, Vol.18, 2008, pp.1071–1085.
[4] J. Berberich, J. W. Dietrich, R. Hoermann, and
M. A. Müller, ”Mathematical modeling of the
pituitary–thyroid feedback loop: role of a
TSH-T3-shunt and sensitivity analysis”,
Frontiers in endocrinology, Vol.9, 2018, pp.1-11.
[5] M. Pompa, et al., ”A physiological mathematical
model of the human thyroid”, Journal of
Computational Science, Vol.76, 2024.
[6] M. K. Leow, ”A mathematical model of
pituitary–thyroid interaction to provide an
insight into the nature of the thyrotropin–thyroid
hormone relationship”, Journal of Theoretical
Biology, Vol.248, No.2, 2007, pp.275-287.
[7] R. Sharma, V. Theiler-Schwetz, C. Trummer, S.
Pliz., M. Reichhartinger, ”Automatic
Levothyroxine Dosing Algorithm for Patients
Suffering from Hashimoto’s Thyroiditis”,
Bioengineering, Vol.10, No.6, 2023.
[8] S. Goede, ”General review on mathematical
HPT modeling General Review on Mathematical
Modeling in the Hypothalamus Pituitary Thyroid
System”, submitted for publication.
[9] M. Gekle, et al., Taschenlehrbuch Physiologie,
Georg Thieme Verlag, 2015.
[10] L. Danzinger, and G. L. George, ”Mathematical
theory of periodic relapsing catatonia”, Bulletin
of Mathematical Biophysics, Vol.16, 1954,
pp.15-21.
[11] M. C. Eisenberg, F. Santini, A. Marsili, A.
Pinchera, and J. J. DiStefano, ”TSH Regulation
Dynamics in Central and Extreme Primary
Hypothyroidism”, Thyroid, Vol.20, No.11, 2010,
pp.1215-1228.
[12] J. S. Neves, et. al., ”Thyroid hormones within
the normal range and cardiac function in the
general population: the epiporto study”,
European Thyroid Journal, Vol.10, No.2, 2021,
pp.150-160.
[13] B. Pandiyan, S. J. Merrill, and S. Benvenga, ”A
patient-specific model of the negative-feedback
control of the hypothalamus-pituitary-thyroid
(HPT) axis in autoimmune (Hashimoto’s)
thyroiditis”, Mathematical medicine and
biology: a journal of the IMA, Vol.31, No.3,
2014, pp.226-258.
[14] F. Ragusa, et. al., ”Hashimotos’ thyroiditis:
Epidemiology, pathogenesis, clinic and therapy”,
Best Practice & Research Clinical
Endocrinology & Metabolism Vol.33, No.6,
2019.
[15] L. Chiovato, F. Margi, A. Carlé,
”Hypothyroidism in Context: Where We’ve
Been and Where We’re Going”, Advances in
Therapy, Vol.36, No.2, 2019, pp.47-58.
[16] H. Tamaki, et. al., ”Low prevalence of
thyrotropin receptor antibody in primary
hypothyroidism in Japan”, The Journal of
Clinical Endocrinology and Metabolism Vol.71,
1990, pp.1382-1386.
[17] C. Horvath, A. Körner, and C. Modiz,
“Data-based model identification of the
hypothalamus-pituitary-thyroid complex”,
EUROSIM Congress 2023, to be published.
[18] M. Koda, A. H Dogru, and J. H. Seinfeld,
”Sensitivity analysis of partial differential
equations with application to reaction and
diffusion processes”, Journal of Computational
Physics, Vol.30, No.2, 1979, pp.259-282.
[19] C. Rackauckas, et al., ”A comparison of
automatic differentiation and continuous
sensitivity analysis for derivatives of differential
equation solutions”, in Proc. IEEE High
Performance Extreme Computing Conference
(HPEC), Waltham, 2021, pp.1-9.
[20] R. L. Burden, J. D. Faires, and A. M. Burden,
Numerical Analysis, Cengage Learning, 2015.
[21] A. Saltelli, et el., ”Variance based sensitivity
analysis of model output design and estimator
for the total sensitivity index”, Computer
Physics Communications, Vol.181, No.2, 2010,
pp.259-270.
[22] J. Nossent, P. Elsen, and W. Bauwems, ”Sobol’
sensitivity analysis of a complex environmental
model”, Environmental Modelling and Software,
Vol. 26, No.12, 2011, pp.1515-1525.
[23] C. Horvath, ”Modelling and Analysis of the
HPT-Complex”, M.Sc. thesis, Intitute of
Analysis and Scientific Computing, TU Wien,
Vienna, 2023.
[24] K. Cheng, Z. Lu, Y. Zhou, Y. Shi, and Y. Wei,
”Global sensitivity analysis using support vector
regression”, Applied Mathematical Modelling,
Vol.49, 2017, pp.587-598.
WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE
DOI: 10.37394/23208.2024.21.31
Clara Horvath, Andreas Körner